首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In order to simulate the precipitation process of microbial limestone at the offshore of the ancient ocean, different calcites induced by Synechocystis sp. PCC6803 in culture media with low Mg/Ca ratios (0.01 M Ca2+, Mg/Ca = 0, 0.2, 0.4, 0.6) were investigated, and the characteristics of intracellular and extracellular biomineralization were described. Carbonic anhydrase activity of Synechocystis sp. PCC6803 in different culture medium was further detected. The ultrathin slices of Synechocystis sp. PCC6803 cells were analyzed by transmission electron microscope (TEM) and selected area electron diffraction (SAED). Then the precipitates were analyzed by polarizing microscope, scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The results showed that the biomineralization precipitates of Synechocystis sp. PCC6803 under low Mg/Ca ratios were mainly calcites with different morphologies. The CA accelerated the pivotal rate limiting step of the calcite precipitation. It was also found that the morphology, microstructure, particle size, preferred orientation, crystallinity and cell volume of calcites changed gradually with the increasing Mg2+ concentrations. What is more important, it was found that Synechocystis sp. PCC6803 had the ability of intracellular biomineralization without crystal structure. The intracellular biomineralization product could be divided into two types. This study can provide some useful information for further understanding the characteristics and mechanisms of biomineralization and even the diagenetic environment research of microbial limestone.  相似文献   

2.
Precipitation of calcite induced by Synechocystis sp. PCC6803   总被引:1,自引:0,他引:1  
Calcite with laminate structure was successfully prepared by culturing Synechocystis sp. PCC6803 with different concentrations of calcium chloride (CaCl2) in BG11 media. S. PCC6803 was examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser confocal scanning microscope (LCSM) and energy dispersive spectroscopy (EDS). The effects of Ca2+ concentrations and pH values on calcification were investigated and the micro morphs of the CaCO3 crystals were observed by means of SEM. These results showed that CaCO3 crystals could be more easily formed with increasing the concentration of CaCl2 in S. PCC6803 culture solution. S. PCC6803 could largely bind calcium ions, most of which were present in extracellular polymeric substances and on the cell wall. Inside the cells there were a lot of circular areas rich in calcium ions without the crystallization of calcium. Some cells produced a thicker gelatinous sheath outside of the translucent organic thin layer. And the cells inside also produced major changes that the original chloroplasts were almost transformed into starch grains whose sizes were from 0.5 to 1 μm with relatively uniform in sizes. At the same time the cell sizes significantly reduced to only about 8–9 μm almost changing to half of its original diameters. The calcite crystals with a highly preferred orientation induced by S. PCC6803 were observed with X-ray diffraction (XRD). A critical implication was that S. PCC6803 could induce bio-calcification and then mediate the further growth of CaCO3 crystals in the biological system.  相似文献   

3.
Although microbially induced calcium carbonate precipitation (MICP) through ureolysis has been widely studied in environmental engineering fields, urea utilization might cause environmental problems as a result of ammonia and nitrate production. In this study, many non-ureolytic calcium carbonate-precipitating bacteria that induced an alkaline environment were isolated from the rhizosphere of Miscanthus sacchariflorus near an artificial stream and their ability to precipitate calcium carbonate minerals with the absence of urea was investigated. MICP was observed using a phase-contrast microscope and ion-selective electrode. Only Lysinibacillus sp. YS11 showed MICP in aerobic conditions. Energy dispersive X-ray spectrometry and X-ray diffraction confirmed the presence of calcium carbonate. Field emission scanning electron microscopy analysis indicated the formation of morphologically distinct minerals around cells under these conditions. Monitoring of bacterial growth, pH changes, and Ca2+ concentrations under aerobic, hypoxia, and anaerobic conditions suggested that strain YS11 could induce alkaline conditions up to a pH of 8.9 and utilize 95% of free Ca2+ only under aerobic conditions. Unusual Ca2+ binding and its release from cells were observed under hypoxia conditions. Biofilm and extracellular polymeric substances (EPS) formation were enhanced during MICP. Strain YS11 has resistance at high pH and in high salt concentrations, as well as its spore-forming ability, which supports its potential application for self-healing concrete.  相似文献   

4.
To better understand the mechanism of formation of carbonate minerals by microbes, culture experiments with Arthrobacter sp. strain MF-2 were carried out using M2 medium without carbonate ions for 50 days. A series of sterile control experiments without bacteria were run simultaneously. During the incubation, cell density, the quantity of precipitate, the extracellular polysaccharide (EPS) content, the activity of carbonic anhydrase (CA), the low molecular weight organic acid concentration, the pH, the electrical conductivity, and the Ca2+ and Mg2+ concentrations of the medium were determined. The morphologies of the precipitated carbonates were observed using scanning electron microscopy, and their mineral species were determined by X-ray diffraction. The results demonstrated that the quantity of precipitate in the biotic experiments increased gradually with the incubation time; precipitate was not obtained in the abiotic experiments. The average precipitation rate correlated positively with the cell density and the EPS content, with r = 0.64 and 0.61, respectively. This suggests that bacterial cells and EPS effected carbonate precipitation. Carbonate ion incorporation into minerals results from carbon dioxide hydration, promoted by microbial secretion of CA by bacteria. These findings contribute to the ongoing search for feasible mechanisms for the sequestration of carbon dioxide in the subsurface, in this case mediated by microorganisms.  相似文献   

5.
We show here that both salinity and osmotic stress trigger transient increases in intracellular free Ca2+ concentration ([Ca2+]i) in cells of the nitrogen‐fixing filamentous cyanobacterium Anabaena sp. PCC7120, which constitutively expresses apoaequorin. Isoosmolar concentrations of salt (NaCl) and osmoticum (sucrose) induced calcium transients of similar magnitude and shape, suggesting that cells sense, via Ca2+ signalling, mostly osmotic stress. The Ca2+ transients induced by NaCl and sucrose were completely blocked by the calcium chelator ethylene glycol‐bis(b‐aminoethylether)N,N,N¢,N¢‐tetraacetic acid (EGTA) and were partially inhibited by the calcium channel blocker verapamil. Increased external Ca2+ and the Ca2+ ionophore calcimycin (compound A23187) enhanced Ca2+ influx further, suggesting the involvement of extracellular Ca2+ in the observed response to salinity and osmotic stress. However, the plant hormone abscisic acid (ABA) did not provoke any effect on the Ca2+ transients induced by both stresses, indicating that it may not be acting upstream of Ca2+ in the signalling of salinity and/or osmotic stress in Anabaena sp. PCC7120.  相似文献   

6.
The enzymatic basis for the Ca2+ pump in human red cells is an ATPase with hysteretic properties. The Ca2+-ATPase shifts slowly between a ground state deficient in calmodulin and an active state saturated with calmodulin, and rate constants for the reversible shifts of state were recently determined at different Ca2+ concentrations (Scharff, O. and Foder, B. (1982) Biochim. Biophys. Acta 691, 133–143). In order to study whether the Ca2+ pump in intact red cells also exhibits hysteretic properties we have analysed transient increases of intracellular calcium concentrations (Cai), induced by the divalent cation ionophore A23187. The time-dependent changes of Cai were measured by use of radioactive calcium (45Ca2+) and analysed with the aid of a mathematical model, based partly on the Ca2+-dependent parameters obtained from Ca2+-ATPase experiments, partly on the A23187-induced Ca2+ fluxes determined in experiments with intact red cells. According to the model a delay in the activation of the Ca2+ pump is a prerequisite for the occurrence of A23187-induced calcium transients in the red cells, and we conclude that the Ca2+ pump in human red cells responds hysteretically. It is suggested that Ca2+ pumps in other types of cell also have hysteretic properties.  相似文献   

7.
Organophosphorus pollution and heavy metal pollution are prominent in China and have caused increasingly severe environmental pollution. This research used Pseudomonas putida to degrade dimethoate so as to induce the formation of calcium carbonate (CaCO3) and calcium phosphate (Ca3(PO4)2) in beef extract peptone medium. In addition, the mineral immobilizing function of the generated Ca3(PO4)2 and CaCO3 for Cd2+ was studied by adding different concentrations of Cd2+ to the culture solution. Meanwhile, transmission electron microscopy (TEM), scanning electronic microscopy (SEM), X-ray diffraction, gas chromatography and atomic absorption spectrophotometry were used to investigate the biodegradation of dimethoate, the concentration variation of Ca2+ and Cd2+, the mineral and chemical compositions of the precipitates. The results showed that the growth of P. Putida could increase the pH value of the culture solution and effectively degrade the organophosphorus pesticide dimethoate. Besides, the concentration of Ca2+ in the culture solution decreased significantly in the first four days and then tended to be stable. Moreover, the TEM and SEM results presented that there were large amounts of biogenic sedimentary CaCO3 and a little Ca3(PO4)2 in the precipitates. Furthermore, in the employed culture system, the removal rates of Cd2+, when added at two different concentrations (6 ppm and 15 ppm), reached 100%. Therefore, this study provided a new idea for treating wastewater polluted with organophosphorus pesticide and heavy metals by using microorganisms.  相似文献   

8.
To determine if microbial species play an active role in the development of calcium carbonate (CaCO 3 ) deposits (speleothems) in cave environments, we isolated 51 culturable bacteria from a coralloid speleothem and tested their ability to dissolve and precipitate CaCO 3 . The majority of these isolates could precipitate CaCO 3 minerals; scanning electron microscopy and X-ray diffractrometry demonstrated that aragonite, calcite and vaterite were produced in this process. Due to the inability of dead cells to precipitate these minerals, this suggested that calcification requires metabolic activity. Given growth of these species on calcium acetate, but the toxicity of Ca 2+ ions to bacteria, we created a loss-of-function gene knock-out in the Ca 2+ ion efflux protein ChaA. The loss of this protein inhibited growth on media containing calcium, suggesting that the need to remove Ca 2+ ions from the cell may drive calcification. With no carbonate in the media used in the calcification studies, we used stable isotope probing with C 13 O 2 to determine whether atmospheric CO 2 could be the source of these ions. The resultant crystals were significantly enriched in this heavy isotope, suggesting that extracellular CO 2 does indeed contribute to the mineral structure. The physiological adaptation of removing toxic Ca 2+ ions by calcification, while useful in numerous environments, would be particularly beneficial to bacteria in Ca 2+ -rich cave environments. Such activity may also create the initial crystal nucleation sites that contribute to the formation of secondary CaCO 3 deposits within caves.  相似文献   

9.
Summary The involvement of exogenous calcium ions in the regulation of pollen tube formation has been investigated in Haemanthus albiflos L. and Oenothera biennis L. by following the changes that occur in pollen germination, tube growth, and 45+Ca2+ uptake and distribution upon application of Verapamil (an inhibitor of calcium channels), lanthanum (a Ca2+ substitute), and ruthenium red (believed to raise the intracellular calcium level). It was found that exogenous Ca2+ takes part in the formation of the calcium gradient present in germinating pollen grains and growing pollen tubes. Ca2+ ions enter the cells through calcium channels. Raising or reducing 45Ca2+ uptake causes disturbances in the germination of the pollen grains and in the growth of the pollen tubes.  相似文献   

10.
K. R. Robinson 《Planta》1977,136(2):153-158
The effect of external calcium and sodium ion concentrations on the calcium fluxes on the Pelvetia fastigiata De Toni egg was measured. Decreasing external [Ca2+] greatly increased the permeability of the eggs to Ca2+; at 1 mM external Ca2+ this permeability was 60 times as great as it was at the normal [Ca2+] of 10 mM. Lowering the external [Na+] also increased Ca2+ influx; at 2 mM Na+, the Ca2+ influx was 2–3 times as great as it was at the normal [Na+] if choline was used as a Na+ substitute. Lithium was less effective as a Na+ substitute in increasing Ca2+ influx. The extra Ca2+ influx in low [Na+] seemed to be dependent on internal [Na+]. The Ca2+ efflux increased transiently and then declined in low Na+ media.  相似文献   

11.
《Geomicrobiology journal》2013,30(4):305-318
Coprecipitation in carbonate minerals offers a means of slowing the transport of divalent radionuclides and contaminant metals (e.g.,90Sr2+, UO2+, Co2+) in the subsurface. It may be possible to accelerate this process by stimulating the native microbial community to generate chemical conditions favoring carbonate precipitation. In a preliminary evaluation of this approach, we investigated the ability of ureolytic subsurface bacteria to produce alkaline conditions conducive to calcium carbonate precipitation. Groundwater samples from the Eastern Snake River Plain (ESRP) aquifer in Idaho were screened for urea-hydrolyzing microorganisms; three isolates were selected for further evaluation. Analysis of 16S rRNA gene sequences indicated that two of the ESRP isolates were of the genus Pseudomonas , and the other was a Variovorax sp. The specific urease activities of the ESRP isolates appeared to be similar to each other but less than that of Bacillus pasteurii , a known urease-positive organism. However, calcium carbonate was rapidly precipitated in all cultures that were supplied with urea and calcium, and X-ray diffraction analyses indicated that calcite was always the predominant carbonate polymorph produced. The correspondence between measured calcium concentrations and equilibrium predictions suggested that the rate of calcite precipitation was directly linked to the rate of urea hydrolysis. These results are promising with respect to the potential utility of this approach for in situ remediation and indicate that further evaluation of this approach under conditions more closely simulating environmental conditions is warranted.  相似文献   

12.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

13.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

14.
Experiments were carried out on isolated neurons of the thalamic nucleus lateralis dorsalis (LD) from 12-day-old rats. According to the morphological characteristics, LD neurons were classified as relay thalamo-cortical units and interneurons. The concentration of free Ca2+ ions in the cytoplasm ([Ca2+] i ) was measured by a fluorescent calcium indicator, fura-2AM. Application of 30 mM caffeine caused a transient change in the [Ca2+] i in 8 of 15 and in 6 of 11 of the thalamo-cortical units and interneurons under study, respectively. After stimulation of a cell with application of 50 mM KCl, a caffeine-induced increase in the [Ca2+] i was observed in all tested neurons. To study the contribution of Ca2+-induced Ca2+ release (CICR) to the calcium transient evoked by depolarization of the neuronal membrane, caffeine in a subthreshold concentration was pre-applied. After 50 mM KCl had been added to the medium following pre-application of 0.5 mM caffeine, the calcium transient amplitude in thalamo-cortical neurons increased by 51 ± 7% (n = 16). In interneurons this effect was not observed (n = 11). The data obtained allow us to hypothesize that CICR contributes to the depolarization-evoked calcium transient only in the relay (thalamo-cortical) neurons. Differences in the pattern of calcium signalling, which were detected in two types of neurons of the thalamic LD, can be a factor determining distinctions in the physiological characteristics of these neurons.  相似文献   

15.
Investigation of the weathering of silicate minerals is helpful to understand the process of soil development, cycling of nutrient elements, and potential applications in fixation of carbon dioxide from the atmosphere through carbonate precipitation. In this study, weathering experiments of calcium-montmorillonite were conducted using Paenibacillus sp. strain SB-6 for 70 days. The results indicated that the Si4+, Al3+, Ca2+ and Na+ concentrations in the medium of the biotic experiments were evidently higher than those of the abiotic experiments, and that Paenibacillus sp. could help the transformation of partial montmorillonite into an illite–montmorillonite mixed-layer. In the process of illitization, K+ went into the interlayer of montmorillonite and hydrated Ca2+ and Na+ released from it. In the late stage of the experiments, the Ca2+ released from montmorillonite combined with carbonate ions generated by the bacterial metabolism, forming calcite.  相似文献   

16.
Research of the entry of rare earth elements Eu3+ and La3+ into plant cell   总被引:8,自引:0,他引:8  
Whether rare earth elements can enter into plant cells remains controversial. This article discusses the ultracellular structural localization of lanthanum (La3+) and europium (Eu3+) in the intact plant cells fed by rare earth elements Eu3+ and La3+. Eu-TTA fluorescence analysis of the plasmalemma, cytoplast, and mitochondria showed that Eu3+ fluorescence intensities in such structures significantly increased. Eu3+ can directly enter or be carried by the artificial ion carrier A23187 into plant cells through the calcium ion (Ca2+) channel and then partially resume the synthesis of amaranthin in the Amaranthus caudatus growing in the dark. Locations of rare earth elements La3+ and Eu3+ in all kinds of components of cytoplasmatic organelles were determined with transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray microanalysis. The results of energy-dispersive X-ray microanalysis indicated that Eu3+ and La3+ can be absorbed into plant cells and bind to the membranes of protoplasm, chloroplast, mitochondrion, cytoplast, and karyon. These results provide experimental evidence that rare earth elements can be absorbed into plant cells, which would be the basis for interpreting physiological and biochemical effects of rare earth elements on plant cells.  相似文献   

17.
Vicia faba plants were grown under drought conditions and variously supplemented with calcium. Drought stress markedly inhibited the growth of Vicia faba plants. Ca2+ ameliorated to a large extent this inhibition; fresh weight, dry mass, chlorophyll and water contents were variably improved. Membranes were, also, negatively affected by drought stress and percentage leakage was elevated. Concomitantly, the efflux of K+ and Ca2+ was enhanced by drought but lowered by supplemental Ca2+. In addition, membranes of droughted plants were sensitive to the Ca2+ channel blockers lanthanum, nifedipine or verapamil more than those of control plants. These blockers significantly increased the efflux of K+ and Ca2+ as well as percentage leakage particularly in those of droughted plants. The above results indicated that the functioning of the calcium channels was negatively affected when Vicia faba was grown under drought conditions. However, much of the drought-induced disorders including sensitivity towards the applied calcium channel blockers could be ameliorated by supplemental Ca2+.  相似文献   

18.
During mineral growth in rat bone-marrow stromal cell cultures, gallium follows calcium pathways. The dominant phase of the cell culture mineral constitutes the poorly crystalline hydroxyapatite (HAP). This model system mimics bone mineralization in vivo. The structural characterization of the Ga environment was performed by X-ray absorption spectroscopy at the Ga K-edge. These data were compared with Ga-doped synthetic compounds (poorly crystalline hydroxyapatite, amorphous calcium phosphate and brushite) and with strontium-treated bone tissue, obtained from the same culture model. It was found that Sr2+ substitutes for Ca2+ in the HAP crystal lattice. In contrast, the replacement by Ga3+ yielded a much more disordered local environment of the probe atom in all investigated cell culture samples. The coordination of Ga ions in the cell culture minerals was similar to that of Ga3+, substituted for Ca2+, in the Ga-doped synthetic brushite (Ga-DCPD). The Ga atoms in the Ga-DCPD were coordinated by four oxygen atoms (1.90 Å) of the four phosphate groups and two oxygen atoms at 2.02 Å. Interestingly, the local environment of Ga in the cell culture minerals was not dependent on the onset of Ga treatment, the Ga concentration in the medium or the age of the mineral. Thus, it was concluded that Ga ions were incorporated into the precursor phase to the HAP mineral. Substitution for Ca2+ with Ga3+ distorted locally this brushite-like environment, which prevented the transformation of the initially deposited phase into the poorly crystalline HAP.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations ACP amorphous calcium phosphate - DCPD dicalcium phosphate dihydrate (brushite) - HAP hydroxyapatite - ED-XRF energy dispersive X-ray fluorescence - EXAFS extended X-ray absorption fine structure - Ga-ACP gallium-doped amorphous calcium phosphate - Ga-DCPD gallium-doped brushite - Ga-HAP gallium-doped hydroxyapatite - XANES X-ray absorption near edge structure - XAS X-ray absorption spectroscopy - XRD X-ray diffraction  相似文献   

19.
Summary During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca2+-stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.50 A/cm2 have been measured using the vibrating probe technique. Enzyme activity was detected using Ando's cytochemical method (Ando et al. 1981) which reveals Ca2+/Mg2+ ATPase localization at the ultrastructural level, and under high-stringency conditions with respect to calcium availability, it reveals Ca2+-stimulated ATPase. The ionic currents and Ca2+-stimulated ATPase localization have in common that important changes occur during the M-phase of the cell cycles. Minimal outward current at the vegetal pole coincides with metaphase/anaphase. Maximal inward current at the animal pole coincides with the onset of cytokinesis at that pole. Ca2+-stimulated ATPase is absent from one half of the embryo at metaphase/anaphase of the two- and four-cell stage, whereas it is present in all cells during the remaining part of the cell cycle. Since fluctuations of cytosolic free calcium concentrations appear to correlate with both karyokinesis and cytokinesis, we speculate that part of the cyclic pattern of Ca2+-stimulated ATPase localization and of the transcellular ionic currents reflects the elevation of cytosolic free calcium concentration during the M-phase. Offprint requests to: D. Zivkovic  相似文献   

20.
To provide further evidences on the role of bacterial soil species in the development of calcium carbonate deposits in soil, we isolated 36 heterotrophic bacterial strains from three soils of L'Aquila basin characterized by different CaCO3 content and tested their ability to precipitate CaCO3 when cultured on a Ca-rich medium. We found that the majority (63.89%) of these isolates could precipitate CaCO3 minerals at 27°C. The aptitude to calcification (time and crystal amount) of each calcifying strains, morphology (SEM) and mineralogy of the formed bioliths were also investigated. X-ray diffraction confirmed the production of calcite. Crystal formation was not observed in the controls. Organic matter, total N and assimilable P, cation exchange capacity and exchangeable Ca2+, Mg2+, K+, Na+, pH, total and active calcium carbonate content, electric conductivity, skeleton, sand, silt and clay fractions of each soil sample were determined and related with its microbiological parameters. We found that the CaCO3 content of soil was significatively related, in particular, to the percentage of calcifying bacterial strains (r = 0.95) and to the heterotrophic bacterial density (r = 0.98), which was found significatively related also with Ca2+ content of soil (r = ?0.97) and its CEC (r = ?0.97).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号