首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(7):1245-1253
ABSTRACT

T-cell-dependent bispecific antibodies (TDBs) are promising cancer immunotherapies that recruit patients’ T cells to kill cancer cells. There are many TDBs in clinical trials, demonstrating their widely recognized therapeutic potential. However, their complex, multi-step mechanism of action (MoA), which includes bispecific antigen binding, T-cell activation, and target-cell killing, presents unique challenges for biological characterization and potency assay selection. Here, we describe the development of a single reporter-gene potency assay for a TDB (TDB1) that is MoA reflective and sensitive to binding of both antigens. Our reporter-gene assay measures T-cell activation using Jurkat cells engineered to express luciferase under the control of an NFkB response element. The potencies of select samples were measured both by this assay and by a flow-cytometry-based cell-killing assay using human lymphocytes as effector cells. Correlating the two sets of potency results clearly establishes our reporter-gene assay as MoA reflective. Furthermore, correlating potencies for the same panel of samples against binding data measured by binding assays for each individual arm demonstrates that the reporter-gene potency assay reflects dual-antigen binding and can detect changes in affinity for either arm. This work demonstrates that one reporter-gene assay can be used to measure the potency of TDB1 while capturing key aspects of its MoA, thus serving as a useful case study of selection and justification of reporter-gene potency assays for TDBs. Furthermore, our strategy of correlating reporter-gene potency, target-cell killing, and antigen binding for each individual arm serves as a useful example of a thorough, holistic approach to biological characterization for TDBs that can be applied to other bispecific molecules.  相似文献   

2.
Bispecific IgG production in single host cells has been a much sought-after goal to support the clinical development of these complex molecules. Current routes to single cell production of bispecific IgG include engineering heavy chains for heterodimerization and redesign of Fab arms for selective pairing of cognate heavy and light chains. Here, we describe novel designs to facilitate selective Fab arm assembly in conjunction with previously described knobs-into-holes mutations for preferential heavy chain heterodimerization. The top Fab designs for selective pairing, namely variants v10 and v11, support near quantitative assembly of bispecific IgG in single cells for multiple different antibody pairs as judged by high-resolution mass spectrometry. Single-cell and in vitro-assembled bispecific IgG have comparable physical, in vitro biological and in vivo pharmacokinetics properties. Efficient single-cell production of bispecific IgG was demonstrated for human IgG1, IgG2 and IgG4 thereby allowing the heavy chain isotype to be tailored for specific therapeutic applications. Additionally, a reverse chimeric bispecific IgG2a with humanized variable domains and mouse constant domains was generated for preclinical proof-of-concept studies in mice. Efficient production of a bispecific IgG in stably transfected mammalian (CHO) cells was shown. Individual clones with stable titer and bispecific IgG composition for >120 days were readily identified. Such long-term cell line stability is needed for commercial manufacture of bispecific IgG. The single-cell bispecific IgG designs developed here may be broadly applicable to biotechnology research, including screening bispecific IgG panels, and to support clinical development.  相似文献   

3.
Implementation of in vitro assays that correlate with in vivo human pharmacokinetics (PK) would provide desirable preclinical tools for the early selection of therapeutic monoclonal antibody (mAb) candidates with minimal non-target-related PK risk. Use of these tools minimizes the likelihood that mAbs with unfavorable PK would be advanced into costly preclinical and clinical development. In total, 42 mAbs varying in isotype and soluble versus membrane targets were tested in in vitro and in vivo studies. MAb physicochemical properties were assessed by measuring non-specific interactions (DNA- and insulin-binding ELISA), self-association (affinity-capture self-interaction nanoparticle spectroscopy) and binding to matrix-immobilized human FcRn (surface plasmon resonance and column chromatography). The range of scores obtained from each in vitro assay trended well with in vivo clearance (CL) using both human FcRn transgenic (Tg32) mouse allometrically projected human CL and observed human CL, where mAbs with high in vitro scores resulted in rapid CL in vivo. Establishing a threshold value for mAb CL in human of 0.32 mL/hr/kg enabled refinement of thresholds for each in vitro assay parameter, and using a combinatorial triage approach enabled the successful differentiation of mAbs at high risk for rapid CL (unfavorable PK) from those with low risk (favorable PK), which allowed mAbs requiring further characterization to be identified. Correlating in vitro parameters with in vivo human CL resulted in a set of in vitro tools for use in early testing that would enable selection of mAbs with the greatest likelihood of success in the clinic, allowing costly late-stage failures related to an inadequate exposure profile, toxicity or lack of efficacy to be avoided.  相似文献   

4.

Background  

The ability of cytosine deaminase (CD) to convert the antifungal agent 5-fluorocytosine (5-FC) into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU) raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT) aiming to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv) format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies.  相似文献   

5.
Monoclonal antibodies (mAbs) are a rapidly growing drug class for which great efforts have been made to optimize certain molecular features to achieve the desired pharmacokinetic (PK) properties. One approach is to engineer the interactions of the mAb with the neonatal Fc receptor (FcRn) by introducing specific amino acid sequence mutations, and to assess their effect on the PK profile with in vivo studies. Indeed, FcRn protects mAbs from intracellular degradation, thereby prolongs antibody circulation time in plasma and modulates its systemic clearance. To allow more efficient and focused mAb optimization, in vitro input that helps to identify and quantitatively predict the contribution of different processes driving non-target mediated mAb clearance in vivo and supporting translational PK modeling activities is essential. With this aim, we evaluated the applicability and in vivo-relevance of an in vitro cellular FcRn-mediated transcytosis assay to explain the PK behavior of 25 mAbs in rat or monkey. The assay was able to capture species-specific differences in IgG-FcRn interactions and overall correctly ranked Fc mutants according to their in vivo clearance. However, it could not explain the PK behavior of all tested IgGs, indicating that mAb disposition in vivo is a complex interplay of additional processes besides the FcRn interaction. Overall, the transcytosis assay was considered suitable to rank mAb candidates for their FcRn-mediated clearance component before extensive in vivo testing, and represents a first step toward a multi-factorial in vivo clearance prediction approach based on in vitro data.  相似文献   

6.
《MABS-AUSTIN》2013,5(6):1149-1161
ABSTRACT

An anti-CD30 antibody-drug conjugate incorporating the antimitotic agent DM1 and a stable SMCC linker, anti-CD30-MCC-DM1, was generated as a new antitumor drug candidate for CD30-positive hematological malignancies. Here, the in vitro and in vivo pharmacologic activities of anti-CD30-MCC-DM1 (also known as F0002-ADC) were evaluated and compared with ADCETRIS (brentuximab vedotin). Pharmacokinetics (PK) and the safety profiles in cynomolgus monkeys were assessed. Anti-CD30-MCC-DM1 was effective in in vitro cell death assays using CD30-positive lymphoma cell lines. We studied the properties of anti-CD30-MCC-DM1, including binding, internalization, drug release and actions. Unlike ADCETRIS, anti-CD30-MCC-DM1 did not cause a bystander effect in this study. In vivo, anti-CD30-MCC-DM1 was found to be capable of inducing tumor regression in subcutaneous inoculation of Karpas 299 (anaplastic large cell lymphoma), HH (cutaneous T-cell lymphoma) and L428 (Hodgkin’s disease) cell models. The half-lives of 4 mg/kg and 12 mg/kg anti-CD30-MCC-DM1 were about 5 days in cynomolgus monkeys, and the tolerated dose was 30 mg/kg in non-human primates, supporting the tolerance of anti-CD30-MCC-DM1 in humans. These results suggest that anti-CD30-MCC-DM1 presents efficacy, safety and PK profiles that support its use as a valuable treatment for CD30-positive hematological malignancies.  相似文献   

7.

Background

A natural bispecific antibody, which can be produced by exchanging Fab arms of two IgG4 molecules, was first described in allergic patients receiving therapeutic injections with two distinct allergens. However, no information has been published on the production of natural bispecific antibody in animals. Even more important, establishment of an animal model is a useful approach to investigate and characterize the naturally occurring antibody.

Methodology/Principal Findings

We demonstrated that a natural bispecific antibody can also be generated in New Zealand white rabbits by immunization with synthesized conjugates. These antibodies showed bispecificity to the components that were simultaneously used to immunize the animals. We observed a trend in our test animals that female rabbits exhibited stronger bispecific antibody responses than males. The bispecific antibody was monomeric and primarily belonged to immunoglobulin (Ig) G. Moreover, bispecific antibodies were demonstrated by mixing 2 purified monospecific antibodies in vivo and in vitro.

Conclusions/Significance

Our results extend the context of natural bispecific antibodies on the basis of bispecific IgG4, and may provide insights into the exploration of native bispecific antibodies in immunological diseases.  相似文献   

8.
A bacterial thermostable cellulase, the endo-1,4--D-glucanase E1 from Acidothermus cellulolyticus, was imported into chloroplasts, and an active enzyme was recovered both in vitro and in vivo. Precursor fusion proteins were synthesized with E1 or its catalytic domain, CD, fused to the transit peptide of ferredoxin or ribulose-bisphosphate carboxylase activase for stromal targeting. A spacer region of 1, 5 or 15 amino acids was included carboxy to the transit peptide. The efficiency of import and processing by the stromal processing peptidase depended on the nature of the transit peptide and the passenger protein, and increased with the length of the spacer between them. Besides finding E1 or CD in the stroma, protein was arrested in the envelope during import showing that structural features of E1 and CD, along with their proximity to the transit peptide, influence translocation. The cellulose binding domain and/or serine/proline/threoline-rich linker of E1 may impede efficient import. Significantly, most precursors for E1 and CD synthesized by in vitro translation possessed endoglucanse activity that was temperature-dependent, and required the residues AGGGY at the N-terminus of E1 and CD. Furthermore, activity was detected upon import into chloroplasts. Based on the in vitro analyses, five precursor fusion proteins were selected to determine if E1 and CD would be successfully targeted to chloroplasts in vivo. In transgenic tobacco plants, E1 and CD accumulated in both the stromal and membrane fractions and, importantly, chloroplast extracts showed endoglucanase activity.  相似文献   

9.
In recent years, the development of bispecific antibody (bsAb) has become a major trend in the biopharmaceutical industry. By simultaneously engaging 2 molcular targets, bsAbs show unique mechanisms of action that could lead to clinical benefits unattainable by conventional monoclonal antibodies. Various bsAb generation formats have been described, and several are being investigated in clinical development. However, some bsAb constructs have proven to be problematic due to their unfavorable physicochemical and pharmacokinetic properties, as well as poor manufacturing efficiencies. We describe here a new bispecific design, Fabs-in-tandem immunoglobulin (FIT-Ig), in which 2 antigen-binding fragments are fused directly in a crisscross orientation without any mutations or use of peptide linkers. This unique design provides a symmetric IgG-like bispecific molecule with correct association of 2 sets of VH/VL pairs. We show that FIT-Ig molecules exhibit favorable drug-like properties, in vitro and in vivo functions, as well as manufacturing efficiency for commercial development.  相似文献   

10.
The combination of a high-affinity antibody to a hapten, and hapten-conjugated compounds, can provide an alternative to the direct chemical cross-linking of the antibody and compounds. An optimal hapten for in vitro use is one that is absent in biological systems. For in vivo applications, additional characteristics such as pharmacological safety and physiological inertness would be beneficial. Additionally, methods for cross-linking the hapten to various chemical compounds should be available. Cotinine, a major metabolite of nicotine, is considered advantageous in these aspects. A high-affinity anti-cotinine recombinant antibody has recently become available, and can be converted into various formats, including a bispecific antibody. The bispecific anti-cotinine antibody was successfully applied to immunoblot, enzyme immunoassay, immunoaffinity purification, and pre-targeted in vivo radioimmunoimaging. The anti-cotinine IgG molecule could be complexed with aptamers to form a novel affinity unit, and extended the in vivo half-life of aptamers, opening up the possibility of applying the same strategy to therapeutic peptides and chemical compounds. [BMB Reports 2014; 47(3): 130-134]  相似文献   

11.
The similarity between a proposed biosimilar product and the reference product can be affected by many factors. This study is designed to examine whether any subtle difference in the distribution of the charge variants of an Avastin biosimilar can affect its in vitro potency and in vivo PK. Here, the acidic, basic and main peak fractions of a biosimilar product were isolated using high-performance cation-exchange chromatography and were subjected to various studies to compare their in vitro properties and in vivo PK profile. A serial of analytical methods, including size exclusion chromatography (SEC), imaged capillary isoelectric focusing (icIEF) capillary zone electrophoresis (CZE) and cation-exchange chromatography (CEX-HPLC) were also used to characterize the isolated charge variants. The kinetics constant was measured using a Biacore X100 system. The study indicates the biosimilar product has a high similarity with avastin in physicochemical properties. The potency in vitro and PK profile in rat of charge variants and biosimilar product are consistent with avastin.  相似文献   

12.
《Translational oncology》2020,13(5):100770
Extranodal nasal natural killer (NK)/T cell lymphoma (ENKTCL) is a rare but highly aggressive subtype of non-Hodgkin lymphoma (NHL). Nevertheless, despite extensive research, the estimated 5-year overall survival of affected patients remains low. Therefore, new treatment strategies are needed urgently. Recent advances in immunotherapy have the potential to broaden the applications of chimeric antigen receptor-modified T (CAR-T) cells and the bispecific T-cell engaging (BiTE) antibody. Here, we screened a panel of biomarkers including the B7-H3, CD70, TIM-3, VISTA, ICAM-1, and PD-1 in NKTCL cell lines. As a result, we found for the first time that B7-H3 was highly and homogeneously expressed in these cells. Consequently, we constructed a novel anti-B7-H3/CD3 BiTE antibody and B7-H3-redirected CAR-T cells, and evaluated their efficacy against NKTCL cel lines both in vitro and in vivo. Notably, we found that both anti-B7-H3/CD3 BiTE and B7-H3-redirected CAR-T cells effectively targeted and killed NKTCL cells in vitro, and suppressed the growth of NKTCL tumors in NSG mouse models. Thus, B7-H3 might be a promising therapeutic target for treating patients with NKTCL tumors.  相似文献   

13.
The in vitro syntheses of IgM and IgG anti-tetanus toxoid antibody by human peripheral blood leukocytes were compared prior to and at various intervals following in vivo booster immunization with soluble tetanus toxoid. Prior to booster immunization, the in vitro synthesis of IgG anti-tetanus toxoid antibody by combinations of B cells and irradiated T lymphocytes was negligible following pokeweed mitogen stimulation. Within 2 weeks after booster immunization, the quantity of IgG anti-tetanus toxoid antibody synthesized in vitro increased 5- to 20-fold. There was no comparable increase in total IgG synthesis. In contrast to the synthesis of IgG antibody, in vitro synthesis of IgM anti-tetanus toxoid antibody occurred prior to booster immunization and did not increase significantly following booster immunization. This dichotomy in anti-tetanus antibody production was further demonstrated in an individual with common variable hypogammaglobulinemia whose lymphocytes synthesized normal quantities of total IgG, IgM, and IgM anti-tetanus toxoid antibody in vitro, but failed to synthesize IgG anti-tetanus antibody following in vivo booster immunization.  相似文献   

14.
15.
《Cytotherapy》2022,24(2):161-171
Background aimsThe authors describe here a novel therapeutic strategy combining a bispecific antibody (bsAb) with cytokine-induced killer (CIK) cells.MethodsThe authors have designed, produced and purified a novel tetravalent IgG1-like CD20 × CD5 bsAb called BL-01. The bsAb is composed of a fused heavy chain and two free light chains that pair correctly to the heavy chain sequences thanks to complementary mutations in the monoclonal antibody 2 CH1/CL sequences.ResultsThe authors show that BL-01 can bind specifically to CD20 and CD5 with an affinity of 4–6 nM, demonstrating correct pairing of two light chains to the fused heavy chain. The CD20 × CD5 BL-01 bsAb has a functional human IgG1 Fc and can induce up to 65% complement-dependent cytotoxicity of a CD20+ lymphoma cell line in the presence of human complement, similar to anti-CD20 rituximab. The bsAb also induces significant natural killer cell activation and antibody-dependent cytotoxicity of up to 25% as well as up to 65% phagocytosis by human macrophages in the presence of CD20+ tumor cells. The BL-01 bsAb binds to CD20 and CD5 simultaneously and can redirect CIK cells in vitro to kill CD20+ targets, increasing the cytotoxicity of CIK cells by about 3-fold. The authors finally show that the CD20 × CD5 BL-01 bsAb synergizes with CIK cells in vivo in controlling tumor growth and prolonging survival of nonobese diabetic/severe combined immunodeficiency mice inoculated with a patient-derived, aggressive diffuse large B-cell lymphoma xenograft.ConclusionsThe authors suggest that the efficacy of bsAb in vivo is due to the combined activation of innate immunity by Fc and redirection of CIK cells to kill the tumor target.  相似文献   

16.
The main aim of our study is to determine the significance of the stromal microenvironment in the malignant behavior of prostate cancer. The stroma-derived growth factors/cytokines and hyaluronan act in autocrine/paracrine ways with their receptors, including receptor-tyrosine kinases and CD44 variants (CD44v), to potentiate and support tumor epithelial cell survival. Overexpression of hyaluronan, CD44v9 variants, and stroma-derived growth factors/cytokines are specific features in many cancers, including prostate cancer. Androgen/androgen receptor interaction has a critical role in regulating prostate cancer growth. Our previous study showed that 1) that increased synthesis of hyaluronan in normal epithelial cells promotes expression of CD44 variants; 2) hyaluronan interaction with CD44v6-v9 promotes activation of receptor-tyrosine kinase, which stimulates phosphatidylinositol 3-kinase-induced cell survival pathways; and 3) CD44v6/short hairpin RNA reduces colon tumor growth in vivo (Misra, S., Hascall, V. C., De Giovanni, C., Markwald, R. R., and Ghatak, S. (2009) J. Biol. Chem. 284, 12432–12446). Our results now show that hepatocyte growth factor synthesized by myofibroblasts associated with prostate cancer cells induces activation of HGF-receptor/cMet and stimulates hyaluronan/CD44v9 signaling. This, in turn, stabilizes the androgen receptor functions in prostate cancer cells. The stroma-derived HGF induces a lipid raft-associated signaling complex that contains CD44v9, cMet/phosphatidylinositol 3-kinase, HSP90 and androgen receptor. CD44v9/short hairpin RNA reverses the assembly of these components in the complex and inhibits androgen receptor function. Our results provide new insight into the hyaluronan/CD44v9-regulated androgen receptor function and the consequent malignant activities in prostate cancer cells. The present study describes a physiologically relevant in vitro model for studying the molecular mechanisms by which stroma-derived HGF and hyaluronan influence androgen receptor and CD44 functions in the secretory epithelia during prostate carcinogenesis.  相似文献   

17.
Through a linker containing thiocarbomate bound to the 7-N position of mitomycin C (MMC), conjugates with a monoclonal antibody to CD10 (NL-1) were prepared, and their antitumor activities were examined. All five conjugates, except one, showedin vitro cytotoxity to two CD10+ lymphoid cell lines superior to MMC. The conjugate displaying the highest cytotoxicity was selected and further tested against three CD10+ and two CD10 lymphoid cell linesin vitro. The conjugate with NL-1 antibody demonstrated higher cytotoxic activity against CD10+ tumor cells than the control conjugate with normal immunoglobulin, while there was no significant difference, when tested against CD10 tumors. The cytotoxic activity of the NL-1 conjugate to CD10+ tumors was significantly blocked by NL-1 antibody. In vivo antitumor activity of the NL-1 conjugate was then tested against a CD10+ tumor transplanted to nude mice, and side effects were recorded. The NL-1 conjugate (4 mg/kg) showed anin vivo antitumor effect similar to MMC (2 mg/kg), which is at nearly maximal tolerable dose; the latter induced decreases in numbers of leukocytes and platelets, while the former did not, suggesting less side effect by the NL-1 conjugate. Since MMC demonstrates a broad spectrum of antitumor activity, the conjugate, as such, may be applicable for the treatment of cancer patients.  相似文献   

18.

Background  

Porcine reproductive and respiratory syndrome virus (PRRSV) causes major economic losses in the pig industry worldwide. In vivo, the virus infects a subpopulation of tissue macrophages. In vitro, PRRSV only replicates in primary pig macrophages and African green monkey kidney derived cells, such as Marc-145. The latter is currently used for vaccine production. However, since virus entry in Marc-145 cells is different compared to entry in primary macrophages, specific epitopes associated with virus entry could potentially alter upon growth on Marc-145 cells. To avoid this, we constructed CHO and PK15 cell lines recombinantly expressing the PRRSV receptors involved in virus entry into macrophages, sialoadhesin (Sn) and CD163 (CHOSn-CD163 and PK15Sn-CD163) and evaluated their potential for production of PRRSV.  相似文献   

19.
Optimisation of compound pharmacokinetics (PK) is an integral part of drug discovery and development. Animal in vivo PK data as well as human and animal in vitro systems are routinely utilised to evaluate PK in humans. In recent years machine learning and artificial intelligence (AI) emerged as a major tool for modelling of in vivo animal and human PK, enabling prediction from chemical structure early in drug discovery, and therefore offering opportunities to guide the design and prioritisation of molecules based on relevant in vivo properties and, ultimately, predicting human PK at the point of design. This review presents recent advances in machine learning and AI models for in vivo animal and human PK for small-molecule compounds as well as some examples for antibody therapeutics.  相似文献   

20.
Abstract

A variety of immunomodulatory effects have previously been attributed to haptoglobin (Hp). These are supposed to be partly mediated through binding of Hp to CD11b. In the present study, we assessed its effects on T-helper (Th) cytokine production following both in vitro and in vivo stimulation of T-cells. Hp exhibits a dose-dependent inhibitory effect on human T lymphocyte release of the Th2 cytokines (IL-4, IL-5, IL-10 and IL-13) in vitro, whereas it has no clear effect on Th1 cytokine (IL-2 and IFN-γ) release. When administered an anti-CD3 monoclonal antibody, Hp knockout mice produced more IL-4 and less IFN-γ than did their wild-type litter-mates. Our findings imply that Hp may be regarded as a regulator of the Th1/Th2 balance in both human and murine immune systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号