首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Microbiology - The review considers the role of purple sulfur bacteria in the global cycles of hydrogen and sulfur, as well as the ecology and physiology of these bacteria in relation to the...  相似文献   

2.
Although the polypeptides of core light-harvesting complexes (LH1) from many purple nonsulfur bacteria have been well characterized, little information is available on the polypeptides of LH1 from purple sulfur photosynthetic organisms. We present here the results of isolation and characterization of LH1 polypeptides from two purple sulfur bacteria, Thermochromatium (Tch.) tepidum and Allochromatium (Ach.) vinosum. Native LH1 complexes were extracted and purified in a reaction center (RC)-associated form with the Qy absorption at 914 nm and 889 nm for Tch. tepidum and Ach. vinosum, respectively. Three components were confirmed from reverse-phase HPLC for the LH1 apopolypeptides of Tch. tepidum. The beta-polypeptide was found to be methylated at N-terminus, and two alpha-polypeptides were identified with one of them being modified by a formyl group at the N-terminal methionine residue. Two alpha- and two beta-polypeptides were confirmed for the LH1 complex of Ach. vinosum, and their primary structures were precisely determined. Homologous and hybrid reconstitution abilities were examined using bacteriochlorophyll a and separated alpha- and beta-polypeptides. The beta-polypeptide from Tch. tepidum was capable of forming uniform structural subunit not only with the alpha-polypeptide of Tch. tepidum but also with the alpha-polypeptide from a nonsulfur bacterium Rhodospirillum rubrum. The alpha-polypeptide alone or beta-polypeptide alone appeared only to result in incomplete subunits in the reconstitution experiments.  相似文献   

3.
Kimble-Long  L.K.  Madigan  M.T. 《Photosynthetica》2002,40(4):629-632
Two species of heliobacteria along with a purple and green bacterium were tested for their ability to grow phototrophically at irradiances ranging from 0.125 to 50 W m–2. The heliobacteria were incapable of growth below 0.5 W m–2, while both the purple and green bacterium grew at significantly lower irradiances. Specific bacteriochlorophyll contents were higher for the purple and green bacteria than for the heliobacteria at all irradiances tested. Thus in distinct contrast to purple and green bacteria, heliobacteria are high-irradiance phototrophs, and this characteristic may influence their distribution in nature.  相似文献   

4.
Treatment of some sulfur bacteria (Allochromatium minutissimum, Thiorhodospira sibirica, and Ectothiorhodospira halovacuolata WN22) with dioxane results in formation of the bacteriochlorophyll form B820 in the light harvesting complex LH2. This form characterized by absorption maximum at 820 nm has the same absorption spectrum as B820 subcomplex from LH1 complex. Appearance of the B820 form was accompanied by a sharp decrease in absorption in the carotenoid region. This phenomenon observed in all LH2 complexes investigated may be attributed to formation of colorless carotenoid aggregates. This is very similar to the previously reported dissociation of the LH1 complex with carotenoids into B820 subcomplexes. Although the B820 form corresponded the bacteriochlorophyll dimer, its circular dichroism spectrum showed that pigment molecules in this dimer exhibit different interaction than those in the B820 subcomplex. The dioxane treatment of LH2 complexes isolated from Rhodopseudomonas palustris bacteria grown under normal or low intensity illumination did not result in formation of such dimers. It is suggested that bacteriochlorophyll B820 formation is related to unique structure of LH2 complexes from the sulfur bacteria.  相似文献   

5.
Aerobic heterotrophic bacteria containing bacteriochlorophyll were isolated from specimens from a wide variety of marine environments on the west (Shark Bay, Lake Clifton, Lake Heyward, and Perth) and east (near Townsville and Brisbane) coasts of Australia. The bacteria were found in a high proportion (10 to 30%) of the total heterotrophic bacterial strains isolated from marine algae, seagrasses, stromatolites, the epiphytes on stromatolites, seawater, and sands; in some cases they constituted up to 49% of the total. This is much higher than the previous report of 6% from Japan. A high percentage, 13%, was also found in the seawater of Hamelin Pool, at Shark Bay, where the salinity was 66%. The number of these bacteria was generally low in seawater and sands, with a few exceptions. There were no aerobic bacteriochlorophyll-containing bacteria on sponges or corals. The isolated strains were orange or pink, and most had absorption maxima around 800 and 850 to 870 nm, the latter range being the absorption of bacteriochlorophyll a in vivo. The maximum bacteriochlorophyll content was 1 nmol/mg (dry weight) of bacterial cells. Most of the bacteria did not grow phototrophically under anaerobic conditions in a broth medium containing succinate. Cells and cell extracts grown under aerobic conditions had photochemical activities such as reversible photooxidations of the reaction center and cytochrome(s). Some strains showed denitrifying activity. The optimal salinity for bacterial growth varied between strains.  相似文献   

6.
Occurrence of Purple Sulfur Bacteria in a Sewage Treatment Lagoon   总被引:1,自引:4,他引:1       下载免费PDF全文
The ecology of purple sulfur bacteria in a sewage oxidation lagoon was investigated. Chemical changes in the lagoon were investigated by monitoring biochemical oxygen demand (BOD(5)), sulfide, sulfate, phosphate, total carbohydrates, volatile acids, alkalinity, and pH. Lagoon water temperatures were observed daily. Microbial ecological relationships were deduced by enumerating coliforms, total bacteria other than anaerobes [Tryptone Glucose Extract (TGE) agar], methane formers such as Methanobacterium formicicum, sulfate reducers, purple sulfur bacteria, and algae. Finally, two strains of purple sulfur bacteria were characterized. Two populations, purple sulfur bacteria and total bacteria (TGE agar), reached maximal concentrations in the warmest part of the 1967 summer. Purple sulfur bacteria reached maximal numbers as concentrations of sulfide and volatile acids were depleted, whereas carbohydrates and alkalinity remained unchanged. Low sulfate levels, which were not limiting for sulfate reducers, may be attributable to storage of sulfur within purple sulfur bacteria. No biological, chemical, or physical agent was linked to the removal of coliforms. The increase of algae in the late summer of 1967 may have been related to the low organic content of the lagoon during this period. Although lagoon pH (7.7 to 8.2) was favorable for purple sulfur bacterial growth, temperatures and sulfides were not optimal in the lagoon for these organisms. Chromatium vinosum and Thiocapsa floridana (the predominant lagoon purple sulfur organism in 1967 and 1968) utilized certain carbohydrates, amino acids, volatile acids, and Krebs cycle intermediates. Also purple sulfur bacteria lowered BOD levels as demonstrated by the growth of T. floridana in sterilized sewage.  相似文献   

7.
A TCE-contaminated competent bedrock site in Portsmouth, NH was used to determine if a relation existed between microfracture surface geochemistry and the ecology and metabolic activity of attached microbes relative to terminal electron accepting processes (TEAPs) and TCE biodegradation. The bedrock is a metasandstone and metashale of the Silurian Kittery Formation. Eleven microfractures (MF 01-11) were extracted from cores of competent rock from 2 boreholes (BBC5 and BBC6) at depths > 21.3 m below ground. The host rock had 3 nominal pore width sizes (131.1, 1.136, and 0.109 μ m), a porosity of 0.8%, and a permeability of < 1 μ d. Microfracture surface precipitates were polycrystalline with grain sizes ranging from 10 to 100 μ m. Petrography and XRD revealed that carbonates and quartz were the dominant microfracture surface precipitates. Mineral distribution was heterogeneous at the 10 μ m scale. Oxidized and reduced iron species were identified with XPS on the microfracture precipitate surfaces. Carbon functional groups characteristic of NOM were also identified. SIMS mass fragment fingerprints suggested that TCE, PCE and/or VC were possibly adsorbed to NOM on the microfracture surfaces. Packer waters were alkaline (131–190 mg/L as CaCO3, pH 8.8 to 9.6), mildly reducing (Eh of ?208 to 160 mV, DO of 0.4 to 2.5 mg/L), with low NPDOC values (0.8–1.7 mg/L), and measurable Fe (II) (0.1 mg/L) and Fe (III) (0.02 to 0.3 mg/L). Sulfate was the dominant anion in the packer sample water (110–120 mg/L). No sulfide was detected. H 2 was present in a number of the BBC wells at the site (2.2–7.3 nM). Amplification with specific primer sets of seven microfractures from BBC5 showed the presence of bacteria, Archaea, anaerobic dehalorespirers (Dehalococcoides sp.), sulfate reducing bacteria, and iron reducing bacteria (Geobacteraceae). Redox zonation may exist relative to spatial distance from within the microfracture network to the open fracture system. The microfracture surface precipitates, frequently spatially complex and comprised of a variety of C-, Fe- and S-containing minerals, may be another region for redox zonation. Fe was the dominant microfracture surface element and active Fe cycling is suspected. However, the primer data suggest that the microfracture network may have been more reducing than the open fracture system. In this case, the microfracture network may constitute a zone where more reductive metabolic processes occur, making this system similar to biogeochemical redox zones found in other environments.  相似文献   

8.
The fluidized sediment ecosystem off French Guiana is characterized by active physical reworking, diversity of electron acceptors and highly variable redox regime. It is well studied geochemically but little is known about specific microorganisms involved in its biogeochemistry. Based on the biogeochemical profiles and rate kinetics, several possible biotically mediated pathways of the carbon, sulfur and iron cycles were hypothesized. Enrichment studies were set up with a goal to culture microorganisms responsible for these pathways. Stable microbial consortia potentially capable of the following chemolithoautotrophic types were enriched from the environment and characterized: elemental sulfur/thiosulfate disproportionators, thiosulfate-oxidizing ferrihydrite and nitrate reducers, sulfide/ferrous sulfide oxidizers coupled with nitrate and microaerophilic iron oxidizers. Attempts to generate several enrichments (anoxic ammonia oxidation, and sulfide oxidizers with ferric iron or manganese oxide) were not successful. Heterotrophic sulfate and elemental sulfur reduction bacteria are prominent and dominate reductive sulfur transformations. We hypothesize that carbon dioxide fixation coupled with synthesis of organic matter happens mostly via sulfur disproportionation and sulfur species oxidation with iron oxidation playing a minor role.  相似文献   

9.
Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative ease of cultivation and natural transformability. This review focuses on insights into the physiology and biochemistry of the green sulfur bacteria that have been derived from the recently completed analysis of the 2.15-Mb genome of Chl. tepidum. About 40 mutants of Chl. tepidum have been generated within the last 3 years, most of which have been made based on analyses of the genome. This has allowed a nearly complete elucidation of the biosynthetic pathways for the carotenoids and BChls in Chl. tepidum, which include several novel enzymes specific for BChl c biosynthesis. Facilitating these analyses, both BChl c and carotenoid biosynthesis can be completely eliminated in Chl. tepidum. Based particularly on analyses of mutants lacking chlorosome proteins and BChl c, progress has also been made in understanding the structure and biogenesis of chlorosomes. In silico analyses of the presence and absence of genes encoding components involved in electron transfer reactions and carbon assimilation have additionally revealed some of the potential physiological capabilities, limitations, and peculiarities of Chl. tepidum. Surprisingly, some structural components and biosynthetic pathways associated with photosynthesis and energy metabolism in Chl. tepidum are more similar to those in cyanobacteria and plants than to those in other groups of photosynthetic bacteria.  相似文献   

10.
【目的】二甲基巯基丙酸内盐(dimethylsulfoniopropionate,DMSP)是海洋中主要的有机硫化物之一,是海洋细菌硫的主要来源,海洋细菌将其分解成"冷室气体"二甲基硫(dimethylsulfide,DMS),对调节全球气候变化和驱动地球硫循环有重要作用。本研究通过中国东海水体的现场围隔实验模拟海水富营养化对DMSP、DMS产量以及DMSP合成基因(dsyB和mmtN)和降解基因(dddP和dmdA)及相关功能细菌的影响。【方法】通过流式细胞仪计数92个围隔海水样品中微微型浮游生物的数量,采用Illumina MiSeq测序技术对海水样品中细菌的16S rRNA基因进行高通量测序,利用荧光定量PCR技术定量测定16S rRNA基因、DMSP合成及降解基因的丰度。【结果】研究发现,同时添加硝酸盐(6.00μmol/L)和磷酸盐(0.375μmol/L)能促进叶绿素a、DMSP、DMS的浓度上升。对于DMSP合成基因,只加磷酸盐能促进dsyB及Phaeobacter等相应物种的富集,虽然同时添加硝酸盐和磷酸盐使dsyB富集,但相对只加磷酸盐却不利于dsyB积累;同时添加硝酸盐和磷酸盐也抑制Alteromonas的生长,进而抑制了mmtN的富集。对于DMSP降解基因,同时加入硝酸盐和磷酸盐促进了dddP及Thalassococcus、Thalassobius、Loktanella和Shimia等物种的富集,却抑制了SAR11、Sulfitobacter等的富集,从而导致dmdA无法被富集。【结论】氮限制能更好地促进DMSP合成基因的表达,从而迫使细菌增加DMSP的合成以应对氮营养条件不足的生存环境,并进而提高DMSP脱甲基化的比例为细菌提供更多能量;而在硝酸盐和磷酸盐充足情况下,细菌相对减少DMSP的合成且更倾向于裂解DMSP产生DMS来降低硫同化的比例。本研究结果强调了海水富营养化对细菌合成与降解DMSP过程的影响。  相似文献   

11.
Molecular remains of purple sulfur bacteria (Chromatiaceae) were detected in Holocene sediment layers of a meromictic salt lake (Mahoney Lake, British Columbia, Canada). The carotenoid okenone and bacteriophaeophytin a were present in sediments up to 11,000 years old. Okenone is specific for only a few species of Chromatiaceae, including Amoebobacter purpureus, which presently predominates in the chemocline bacterial community of the lake. With a primer set specific for Chromatiaceae in combination with denaturing gradient gel electrophoresis, 16S rRNA gene sequences of four different Chromatiaceae species were retrieved from different depths of the sediment. One of the sequences, which originated from a 9,100-year-old sample, was 99.2% identical to the 16S rRNA gene sequence of A. purpureus ML1 isolated from the chemocline. Employing primers specific for A. purpureus ML1 and dot blot hybridization of the PCR products, the detection limit for A. purpureus ML1 DNA could be lowered to 0.004% of the total community DNA. With this approach the DNA of the isolate was detected in 7 of 10 sediment layers, indicating that A. purpureus ML1 constituted at least a part of the ancient purple sulfur bacterial community. The concentrations of A. purpureus DNA and okenone in the sediment were not correlated, and the ratio of DNA to okenone was much lower in the subfossil sediment layers (2.7 · 10−6) than in intact cells (1.4). This indicates that degradation rates are significantly higher for genomic DNA than for hydrocarbon cell constituents, even under anoxic conditions and at the very high sulfide concentrations present in Mahoney Lake.  相似文献   

12.
Abstract The interaction between the purple sulfur bacterium Thiocapsa roseopersicina and the green sulfur bacterium Prosthecochloris aestuarii was studied in a gradient chamber under a 16-hours light-8-hours dark regime. The effects of interaction were inferred by comparing the final outcome of a mixed culture experiment with those of the respective axenic cultures using the same inoculation densities and experimental conditions. Densities of bacteria were deduced from radiance microprofiles, and the chemical microenvironment was investigated with O2, H2S, and pH microelectrodes. P. aestuarii always formed a biofilm below the maximal oxygen penetration depth and its metabolism was strictly phototrophic. In contrast, T. roseopersicina formed a bilayer in both the mixed and the axenic culture. The top layer formed by the latter organism was exposed to oxygen, and chemotrophic sulfide oxidation took place during the dark periods, while the bottom layer grew phototrophically during the light periods only. In the mixed culture, the relative density of P. aestuarii was lower than in the axenic culture, which reflects the effects of the competition for sulfide. However, the relative density of T. roseopersicina was actually higher in the mixed culture than in the corresponding axenic culture, indicating a higher growth yield on sulfide in the mixed culture experiment. Several hypotheses are proposed to explain the effects of the interaction. Received: 15 June 1998; Accepted: 18 January 1999  相似文献   

13.
In meromictic Mahoney Lake, British Columbia, Canada, the heterotrophic bacterial production in the mixolimnion exceeded concomitant primary production by a factor of 7. Bacterial growth rates were correlated neither to primary production nor to the amount of chlorophyll a. Both results indicate an uncoupling of bacteria and phytoplankton. In the chemocline of the lake, an extremely dense population of the purple sulfur bacterium Amoebobacter purpureus is present year round. We investigated whether anoxygenic phototrophs are significant for the growth of aerobic bacterioplankton in the overlaying water. Bacterial growth rates in the mixolimnion were limited by inorganic phosphorus or nitrogen most of the time, and the biomass of heterotrophic bacteria did not increase until, in autumn, 86% of the cells of A. purpureus appeared in the mixolimnion because of their reduced buoyant density. The increase in heterotrophic bacterial biomass, soluble phosphorus concentrations below the detection limit, and an extraordinarily high activity of alkaline phosphatase in the mixolimnion indicate a rapid liberation of organically bound phosphorus from A. purpureus cells accompanied by a simultaneous incorporation into heterotrophic bacterioplankton. High concentrations of allochthonously derived dissolved organic carbon (mean, 60 mg of C(middot)liter(sup-1)) were measured in the lake water. In Mahoney Lake, liberation of phosphorus from upwelling purple sulfur bacteria and degradation of allochthonous dissolved organic carbon as an additional carbon source render heterotrophic bacterial production largely independent of the photosynthesis of phytoplankton. A recycling of inorganic nutrients via phototrophic bacteria also appears to be relevant in other lakes with anoxic bottom waters.  相似文献   

14.
葛晓敏  唐罗忠  王瑞华  李勇  朱玲  贾志远  丁晖 《生态学报》2018,38(14):5120-5131
大气降水是森林生态系统养分输入的主要途径之一,对养分的生物地球化学循环有着重要的意义。对13年生杨树人工林林外雨、树干流、林内雨和地表径流等水文过程中的养分特征进行了调查分析,旨在了解该生态系统的养分输入与输出规律,为杨树人工林可持续经营提供依据。结果表明,从2013年11月至2014年10月,杨树人工林生态系统林外雨量为1154.1 mm,树干流量仅占大气降水量的2.3%,15.4%的大气降水被杨树人工林的冠层截留;林内雨、树干流与大气降水量(林外雨)的动态变化规律相似。各类降水年加权平均pH值表现为林内雨林外雨树干流;各类降水的离子浓度动态变化规律基本一致,即在降水量较小的11月至次年1月份,各阴阳离子的浓度普遍较高,在降水量较大的2—9月份,阴阳离子浓度普遍较低。SO_4~(2-)-S和Ca~(2+)分别是各类降水中的主要阴离子和阳离子;整体上,树干流的离子浓度林内雨大气降水;林内雨是养分输入的主要形式,通过林内雨输入林地较多的养分离子是Ca~(2+)和K~+,分别为70.83 kg hm~(-2)a~(-1)和63.31 kg hm~(-2)a~(-1);地表径流和土壤渗漏是养分输出的主要形式,输出林地较多的离子是Cl~-和Ca~(2+),分别为196.47 kg hm~(-2)a~(-1)和123.09 kg hm~(-2)a~(-1),其次为SO_4~(2-)-S、Mg~(2+)、Na~+、K~+;NH_4~+-N和NO_3~--N的输出量不足输出离子总量的1%。所以,从水文过程看,杨树人工林生态系统无机氮(NH_4~+-N和NO_3~--N)和K~+表现为净积累,净积累量分别为10.9 kg hm~(-2)a~(-1)和56.4 kg hm~(-2)a~(-1),其他离子表现为净损失,其中Cl~-的净损失量达179.8 kg hm~(-2)a~(-1)左右,其他离子损失量50 kg hm~(-2)a~(-1)。  相似文献   

15.
Purple nonsulfur bacteria, Rhodospirillum rubrum and Rhodopseudomonas spheroides were found to possess coenzyme B12-dependent glutamate mutase activity. Cell-free extracts of these bacteria grown on Co2+-containing media catalyzed the conversion of glutamate to β-methylaspartate and further to mesaconate. The activity of the cell-free extracts of these organisms cultivated on Co2+-deficient media was markedly lower than that of the normal cells. Addition of coenzyme B12 to the former reaction mixture enhanced the mesaconate formation via β-methylaspartate. These results indicate the involvement of coenzyme Independent glutamate mutase of these bacteria in the dissimilation of glutamate to acetyl-CoA and pyruvate through the following pathway.

glutamate→β→methylaspartate→mesaconate→citramalate→→acetyl-CoA, pyruvate On the other hand, a greater part of glutamate was converted to α-hydroxyglutarate and succinate with the cell-free extracts of these photosynthetic bacteria. This fact, taking account of the presence of propionyl-CoA carboxylase in these bacteria, implies the participation of coenzyme B12-dependent (R)-methylmalonyl-CoA mutase in the formation of succinate via the following route.

glutamate→α-ketoglutarate→α-hydroxyglutarate→propionate→propionyl-CoA→(S)-methylmalonyl-CoA→(R)-methylmalonyl-CoA→succinyl-CoA  相似文献   

16.
冰尘是散落在冰川表面由矿物质、有机质和微生物组成的聚合体,其主要来源包括远源输送来的细粉尘和气溶胶组分、局地源的粗冰碛物及来自周围生态系统的土壤和植物碎屑等。冰尘对太阳辐射具有较强的吸收作用,可降低冰面反照率、促进冰川融化。冰尘也是迄今为止生物多样性最高的冰川表面微生物栖息地,生活着细菌、真菌、藻类等。冰尘微生物是冰川表面地球化学循环的主要驱动者,微生物分解转化冰尘内有机质,降低冰川表面反照率影响冰川物质平衡。基于冰尘的重要性,本文综述了南极、北极、青藏高原第三极冰川冰尘的物理和化学特征及其影响因素,冰尘微生物群落组成及其介导的碳氮生物地球化学循环过程,并展望了冰尘微生物研究的前景。  相似文献   

17.
Fe oxidation is often the first chemical reaction that initiates weathering and disaggregation of intact bedrock into regolith. Here we explore the use of pyrosequencing tools to test for evidence that bacteria participate in these reactions in deep regolith. We analyze regolith developed on volcaniclastic rocks of the Fajardo formation in a ridgetop within the rainforest of the Luquillo Mountains of Puerto Rico. In the 9-m-deep regolith profile, the primary minerals chlorite, feldspar, and pyroxene are detected near 8.3 m but weather to kaolinite and Fe oxides found at shallower depths. Over the regolith profile, both total and heterotrophic bacterial cell counts generally increase from the bedrock to the surface. Like other soil microbial studies, the dominant phyla detected are Proteobacteria, Acidobacteria, Planctomycetes, and Actinobacteria. Proteobacteria (α, β, γ and δ) were the most abundant at depth (6.8–9 m, 41–44%), while Acidobacteria were the most abundant at the surface (1.4–4.4 m, 37–43%). Despite the fact that Acidobacteria dominated surficial communities while Proteobacteria dominated near bedrock, the near-surface and near-bedrock communities were not statistically different in structure but were statistically different from mid-depth communities. Approximately 21% of all sequences analyzed did not match known sequences: the highest fraction of unmatched sequences was greatest at mid-depth (45% at 4.4 m). At the regolith-bedrock interface where weathering begins, several lines of evidence are consistent with biotic Fe oxidation. At that interface, iron-related bacterial activity tests and culturing indicate the presence of iron-related bacteria, and phylogenetic analyses identified sub-phyla containing known iron-oxidizing microorganisms. Cell densities of iron-oxidizers in the deep saprolite were estimated to be on the order of 105 cells g?1. Overall Fe loss was also observed at the regolith-bedrock interface, consistent with bacterial production of organic acids and leaching of Fe-organic complexes. Fe-organic species were also detected to be enriched near the bedrock-regolith interface. In this and other deep weathering profiles, chemolithoautotrophic bacteria that use Fe for energy and nitrate or oxygen as an electron acceptor may play an important role in initiating disaggregation of bedrock.  相似文献   

18.
Fire is an extensively used wetland management tool in both tropical and temperate areas, but its effects on wetlands are not well understood. The purpose of this paper is to review the effects of fire on wetland hydrology, biogeochemical cycling and vegetation composition, including primary effects that take place during the fire such as combustion of plant material, loss of volatile substances to the atmosphere and deposition of ash on the soil surface, and secondary effects such as alteration of soil pH as a result of ash deposition, exposure of the soil surface to solar radiation, and increased availability of nutrients. Several of the secondary effects are most dramatic immediately after a fire, but become progressively modulated by newly stimulated vegetation growth. The findings suggest that the effects of fire depend upon a wetland's characteristics, including its climatic and hydrological context, as well as upon interactions with other disturbances such as grazing. Thus, similar fire regimes may have dramatically different outcomes. Where knowledge gaps were identified, some general predictions are offered, drawing from comparable ecosystems such as mesic grasslands. These predictions provide potential hypotheses for further research.  相似文献   

19.
The effect of growing Rhodopseudomonas (Rps.) acidophila and Rps. palustris in the presence of different concentrations of the carotenoid (Car) biosynthetic inhibitor diphenylamine (DPA) has been investigated. Growth with sub-maximal concentrations of DPA induces Car limitation. The exact response to DPA is species dependent. However, both Rps. acidophila and Rps. palustris respond by preferentially incorporating the limiting amount of coloured Cars into their LH2 complexes at the expense of the RC-LH1 complexes. As inhibition by DPA becomes more severe there is an increase in the percentage of Cars with reduced numbers of conjugated C=C bonds. The effect of this changed Car composition on the structure and function of the antenna complexes has been investigated using absorption, fluorescence, CD and Raman spectroscopies. The results show that although the presence of Car molecules is important for the stability of the LH2 complexes that the overall native structure can be maintained by the presence of many different Cars.  相似文献   

20.
Although studies have investigated the effects of metal-based nanoparticles (MNPs) on soil biogeochemical processes, the results obtained thus far are highly variable. Moreover, we do not yet understand how the impact of MNPs is affected by experimental design and environmental conditions. Herein, we conducted a global analysis to synthesize the effects of MNPs on 17 variables associated with soil nitrogen (N) cycling from 62 studies. Our results showed that MNPs generally exerted inhibitory effects on N-cycling process rates, N-related enzyme activities, and microbial variables. The response of soil N cycling varied with MNP type, and exposure dose was the most decisive factor for the variations in the responses of N-cycling process rates and enzyme activities. Notably, Ag/Ag2S and CuO had dose-dependent inhibitory effects on ammonia oxidation rates, while CuO and Zn/ZnO showed hormetic effects on nitrification and denitrification rates, respectively. Other experimental design factors (e.g., MNP size and exposure duration) also regulated the effect of MNPs on soil N cycling, and specific MNPs, such as Ag/Ag2S, exerted stronger effects during long-term (>28 days) exposure. Environmental conditions, including soil pH, organic carbon, texture, and presence/absence of plants, significantly influenced MNP toxicity. For instance, the effects of Ag/Ag2S on the ammonia oxidation rate and the activity of leucine aminopeptidase were more potent in acid (pH <6), organic matter-limited (organic carbon content ≤10 g kg−1), and coarser soils. Overall, these results provide new insights into the general mechanisms by which MNPs alter soil N processes in different environments and underscore the urgent need to perform multivariate and long-term in situ trials in simulated natural environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号