首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
2.
The present study identified a novel mechanism for the effects of sanguinarine in vascular smooth muscle cells (VSMC). Sanguinarine treatment of VSMC resulted in significant growth inhibition as a result of G1-phase cell-cycle arrest mediated by induction of p27KIP1 expression, and resulted in a down-regulation of the expression of cyclins and CDKs in VSMC. Moreover, sanguinarine-induced inhibition of cell growth appeared to be linked to activation of Ras/ERK through p27KIP1-mediated G1-phase cell-cycle arrest. Overall, the unexpected effects of sanguinarine treatment in VSMC provide a theoretical basis for clinical use of therapeutic agents in the treatment of atherosclerosis.  相似文献   

3.
4.
Hepatocyte growth factor (HGF) has an anti-proliferative effect on many types of tumor cell lines and tumors in vivo. We found previously that inhibition of HGF-induced proliferation in HepG2 hepatoma cells is caused by cell cycle arrest at G1 through a high intensity ERK signal, which represses Cdk2 activity. To examine further the mechanisms of G1 arrest by HGF, we analyzed the Cdk inhibitor p16(INK4a), which has an anti-proliferative function through cell cycle arrest at G1. We found that HGF treatment drastically increased endogenous p16 levels. Knockdown of p16 with small interfering RNA reversed the arrest, indicating that the induction of p16 is required for G1 arrest by HGF. Analysis of the promoter of the human p16 gene identified the proximal Ets-binding site as a responsive element for HGF, and this responded to the high intensity ERK signal. HGF treatment of the cells led to a redistribution of p21(CIP1) and p27(KIP1) from Cdk4 to Cdk2. The redistribution was blocked by the knockdown of p16 with small interfering RNA, which restored the Cdk2 activity repressed by HGF, demonstrating the requirement of p16 induction for the redistribution and eventual repression of Cdk2 activity. Our results reveal a signaling pathway for G1 arrest induced by HGF.  相似文献   

5.
Lung carcinoma is the most common type of malignant tumors globally, and its molecular mechanisms remained unclear. With the aim to investigate the effects of microRNA (miR)-377-5p on the cell development, invasion, metastasis, and cycle of lung carcinoma, this study was performed. We evaluated miR-377-5p expression levels in lung cancer tissues and cell models. Cell viability, proliferation, migration, invasion abilities, and cell cycle distribution were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, crystal violet, transwell, and flow cytometry assay. Furthermore, expression levels of protein kinase B α subunit (AKT1) and proteins related to cell cycle and epithelial-mesenchymal transition (EMT) were assessed using Western blot analysis and quantitative real-time polymerase chain reaction. These results suggested that miR-377-5p was downregulated in vivo and in cell models, and miR-377-5p overexpression inhibited cell viability, proliferation, migration, invasion, and induced cell-cycle arrest. In addition, as a target of miR-377-5p, AKT1 alleviated the decreases of cell viability, proliferation, migration, invasion, the S-phase cells, the expression of cyclin D1, fibronectin, and vimentin, as well as the increases of the G0/G1-phase cells, the expression of Foxo1, p27 kip1, p21 Cip1 and E-cadherin when miR-377-5p overexpressed. In conclusion, miR-377-5p inhibited cell development and regulated cell cycle distribution and EMT by targeting AKT1, which provided a theoretical basis for further study of lung carcinoma therapeutics.  相似文献   

6.
7.
Mechanisms of breast cancer progression and invasion, often involve alteration of hormonal signaling, and upregulation and/or activation of signal transduction pathways that input to cell cycle regulation. Herein, we describe a rationally designed first-in-class novel small molecule inhibitor for targeting oncogenic and hormonal signaling in ER-positive breast cancer. BC-N102 treatment exhibits dose-dependent cytotoxic effects against ER+ breast cancer cell lines. BC-N102 exhibited time course- and dose-dependent cell cycle arrest via downregulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-Akt, CDK2, and CDK4 while increasing p38 mitogen-activated protein kinase (MAPK), and mineralocorticoid receptor (MR) signaling in breast cancer cell line. In addition, we found that BC-N102 suppressed breast cancer tumorigenesis in vivo and prolonged the survival of animals. Our results suggest that the proper application of BC-N102 may be a beneficial chemotherapeutic strategy for ER+ breast cancer patients.  相似文献   

8.
9.
Oxygen (O2) concentrations in bone marrow vary from 4% in capillaries to <0.1% in subendosteum, in which hematopoietic stem cells reside in specific niches. Culture at low O2 concentrations (3, 1 and 0.1%) influences hematopoietic stem and progenitor cells survival, proliferation and differentiation, depending on their level of differentiation. Culture of human CD34+ cells at low O2 concentrations (O2 ⩽3%) maintains stem cell engraftment potential better than at 20% O2 (NOD/Scid xenograft model). In contrast, progenitors disappear from cultures at/or <1% O2 concentrations. A very low O2 concentration (0.1%) induces CD34+ quiescence in G0. The exploration of molecules and mechanisms involved in hematopoietic stem and progenitor cells'' quiescence and differentiation related to low O2 concentrations is unfeasible with primary CD34+ cells. Therefore, we performed it using murine hematopoietic nonleukemic factor-dependent cell Paterson (FDCP)-Mix progenitor cell line. The culture of the FDCP-Mix line at 0.1% O2 induced in parallel G0 quiescence and granulo-monocytic differentiation of most cells, whereas a minority of undifferentiated self-renewing cells remained in active cell cycle. Hypoxia also induced hypophosphorylation of pRb and increased the expression of p27KIP1, the two proteins that have a major role in the control of G0 and G1 to S-phase transition.  相似文献   

10.
The E2F1 gene well known is its pivotal role in regulating the entry from G1 to S phase, while the salvage antitumoral pathway which implicates it, especially in the absence of p53, is not fully characterized. We therefore attempted to identify the up‐ and down‐stream events involved in the activation of the E2F1‐dependent pro‐apoptotic pathway. For this purpose, a amonafide analogue, 7‐d (2‐(3‐(2‐(Dimethylamino)ethylamino)propyl)‐6‐(dodecylamino)‐1H‐benzo[de]isoquinoline‐1,3(2H)‐dione) was screened, which exhibited high antitumor activity against p53‐deficient human Chronic Myelogenous Leukemia (CML) K562 cells. Analysis of flow cytometry and western blots of K562 cells treated with 7‐d revealed an appreciable G2/M cycle arrest and apoptosis in a dose and time‐dependent manner via p53‐independent pathway. A striking increase in “Comet tail” formation and γ‐H2AX expression showed that DNA double strand breaks (DSB) were caused by 7‐d treatment. ATM/ATR signaling was reported to connect E2F1 induction with apoptosis in response to DNA damage. Indeed, 7‐d‐induced G2/M arrest and apoptosis were antagonized by ATM/ATR signaling inhibitor, Caffeine, which suggested that ATM/ATR signaling was activated by 7‐d treatment. Furthermore, the increased expression of E2F1, p73, and Apaf‐1 and p73 dissociation from HDM2 was induced by 7‐d treatment, however, knockout of E2F1 expression reversed p73, Apaf‐1, and p21Cip1/WAF1 expression, reactivated cell cycle progression, and inhibited 7‐d‐induced apoptosis. Altogether our results for the first time indicate that 7‐d mediates its growth inhibitory effects on CML p53‐deficient cells via the activation of an E2F1‐dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets p73, Apaf‐1, and p21Cip1/WAF1. J. Cell. Biochem. 113: 3165–3177, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
The prostaglandin E(2) (PGE(2)) G protein-coupled receptor (GPCR), EP2, plays important roles in mouse skin tumor development (Chun, K. S., Lao, H. C., Trempus, C. S., Okada, M., and Langenbach, R. (2009) Carcinogenesis 30, 1620-1627). Because keratinocyte proliferation is essential for skin tumor development, EP2-mediated signaling pathways that contribute to keratinocyte proliferation were investigated. A single topical application of the EP2 agonist, butaprost, dose-dependently increased keratinocyte replication via activation of epidermal growth factor receptor (EGFR) and PKA signaling. Because GPCR-mediated activation of EGFR can involve the formation of a GPCR-β-arrestin-Src signaling complex, the possibility of a β-arrestin1-Src complex contributing to EP2-mediated signaling in keratinocytes was investigated. Butaprost induced β-arrestin1-Src complex formation and increased both Src and EGFR activation. A role for β-arrestin1 in EP2-mediated Src and EGFR activation was demonstrated by the observation that β-arrestin1 deficiency significantly reduced Src and EGFR activation. In agreement with a β-arrestin1-Src complex contributing to EGFR activation, Src and EGFR inhibition (PP2 and AG1478, respectively) indicated that Src was upstream of EGFR. Butaprost also induced the activation of Akt, ERK1/2, and STAT3, and both β-arrestin1 deficiency and EGFR inhibition (AG1478 or gefitinib) decreased their activation. In addition to β-arrestin1-dependent EGFR activation, butaprost increased PKA activation, as measured by phospho-GSK3β (p-GSK3β) and p-cAMP-response element-binding protein formation. PKA inhibition (H89 or R(P)-adenosine-3',5'-cyclic monophosphorothioate (R(P)-cAMPS)) decreased butaprost-induced cAMP-response element-binding protein and ERK activation but did not affect EGFR activation, whereas β-arrestin1 deficiency decreased EGFR activation but did not affect butaprost-induced PKA activation, thus indicating that they were independent EP2-mediated pathways. Therefore, the results indicate that EP2 contributed to mouse keratinocyte proliferation by G protein-independent, β-arrestin1-dependent activation of EGFR and G protein-dependent activation of PKA.  相似文献   

12.
Costunolide (C(15)H(20)O(2)) is a sesquiterpene lactone that was isolated from many herbal medicines and it has diverse effects according to previous reports. However, the anti-cancer effects and the mechanism of actions are still unknown in breast cancer. In this study, we first observed that costunolide inhibits cell growth in a dose-and time-dependent manner. To examine the mechanism by which costunolide inhibits cell growth, we checked the effect of costunolide on apoptosis and the cell cycle. Costunolide induced apoptosis through the extrinsic pathway, including the activation of Fas, caspase-8, caspase-3, and degradation of PARP. However, did not have the same effect on the intrinsic pathway as revealed by analysis of mitochondrial membrane potential (Δψm) with JC-1 dye and expression of Bcl2 and Bax proteins level. Furthermore, costunolide induced cell cycle arrest in the G2/M phase via decrease in Cdc2, cyclin B1 and increase in p21WAF1 expression, independent of p53 pathway in p53-mutant MDA-MB-231 cells and increases Cdc2-p21WAF1 binding. In addition, costunolide had a slight induced effect on ROS generation. Among the mechanisms of p21WAF1 induction examined, costunolide-induced increase in p21WAF1 expression was related with protein stability and ROS generation. Through this study we confirm that costunolide induces G2/M cell cycle arrest and apoptotic cell death via extrinsic pathway in MDA-MB-231 cells suggesting that it could be a promising anticancer drug especially for ER-negative breast cancer.  相似文献   

13.
Prasad S  Kaur J  Roy P  Kalra N  Shukla Y 《Life sciences》2007,81(17-18):1323-1331
Cancer of the prostate gland (PCA) is the most common invasive malignancy and is the second leading cause of cancer-related death in males. The polyphenolic constituents of black tea have gained considerable attention as chemopreventive agents. Many studies have shown that black tea reduces the risk of several cancer types. In the present study, we studied the effect of a black tea polyphenol, theaflavin (TF), on cellular proliferation and cell death in the human prostate cancer cell line, PC-3. We showed that TF inhibits cell proliferation in a dose- and time-dependent manner. Studies on cell cycle progression have shown that the anti-proliferative effect of TF is associated with an increase in the G2/M phase of PC-3 cells. Western blot results showed that TF-induced G2/M phase arrest was mediated through the inhibition of cyclin-regulated signaling pathways. TF induces cyclin kinase inhibitor p21(waf1/cip1) expression and inhibits cdc25C and cyclin B expression. Increased exposure time to TF caused apoptosis of PC-3 cells, which was associated with up-regulation of the pro-apoptotic proteins Bax, caspase-3 and caspase-9 and down-regulation of anti-apoptotic protein Bcl-2. The role of caspase-induced apoptosis was further confirmed by a reduction in mitochondria membrane potential and the appearance of a DNA laddering pattern. Thus, it can be concluded that TF acts as an effective anti-proliferative agent by modulating cell growth regulators in prostate cancer cells.  相似文献   

14.
Helicobacter pylori, the main cause of chronic gastritis, plays a central role in the etiology of peptic ulcer disease and gastric cancer. In vitro studies have shown that H. pylori increases gastric epithelial cell turnover, thus increasing the risk for the development of neoplastic clones. The mechanisms by which H. pylori promotes perturbation of cell proliferation are not yet elucidated. To investigate whether products released by H. pylori in culture media interfere with cell cycle progression of human gastric epithelial cells, four cell lines (MKN 28, MKN 7, MKN 74, and AGS) were incubated in the presence of H. pylori broth culture filtrate. Cell cycle analysis showed that a H. pylori-released factor(s) significantly inhibited the G1- to S-phase progression of MKN 28 and MKN 7 cell lines, with a reversible, nonlethal mechanism, independent of the expression of VacA, CagA, and/or urease. The cell cycle inhibition occurred concomitantly with an increase in p27(KIP1) protein levels, a reduction in Rb protein phosphorylation on serine residues 807-811, and a significant decrease in cyclin E-associated cdk2 activity. In contrast, the cell cycle progression of MKN 74 and AGS cell lines was not affected by the H. pylori-released factor(s). In normal human fibroblasts, G1-phase cell accumulation was concomitant with the reduction in Rb protein phosphorylation; that, however, appeared to be dependent on p21(WAF1/CIP1) rather than on p27(KIP1) protein. A preliminary characterization showed that the molecular mass of the partially purified cell cycle inhibitory factor(s) was approximately 40 kDa. These results suggest that H. pylori releases a soluble factor(s) that may affect cell cycle progression of gastric epithelial cells through elevated levels of cdk inhibitor p27(KIP1). This factor(s) might act in vivo on noncolonized distant cells, the most proliferating cells of human gastric mucosa.  相似文献   

15.
16.
As an efficient reactive oxygen species–scavenging enzyme, superoxide dismutase (SOD) has been shown to inhibit tumor growth and interfere with motility and invasiveness of cancer cells. In this study, the molecular mechanisms of cell cycle arrest when S180 tumor cells were exposed to high levels of SOD were investigated. Here, both murine sarcoma S180 tumor cells and NIH‐3T3 mouse fibroblasts were respectively treated with varying concentrations of Cu/Zn‐SOD for 24, 48 and 72 h to determine optimal dose of SOD, which was a concentration of 800 U/ml SOD for 48 h. It is found that SOD induced S180 cell cycle arrest at G1‐phase with decreasing level of superoxide production, whereas SOD had less effect on proliferation of NIH‐3T3 cells. Moreover, the expression rate of Proliferating Cell Nuclear Antigen (PCNA) in S180 tumor cells was suppressed after SOD treatment, which indicated the inhibition of DNA synthesis in S180 cells. Besides, there were significant down‐regulations of cyclin‐E and Cdk‐2 in S180 cells after SOD treatment, which contributed to the blockage of G1/S transition in S180 cell cycle. Together, our data confirmed that SOD could notably inhibit proliferation of S180 tumor cell and induce cell cycle arrest at G1‐phase by down‐regulating expressions of cyclin‐E and Cdk‐2. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号