首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The disulfide bond structures established decades ago for immunoglobulins have been challenged by findings from extensive characterization of recombinant and human monoclonal IgG antibodies. Non-classical disulfide bond structure was first identified in IgG4 and later in IgG2 antibodies. Although, cysteine residues should be in the disulfide bonded states, free sulfhydryls have been detected in all subclasses of IgG antibodies. In addition, disulfide bonds are susceptible to chemical modifications, which can further generate structural variants such as IgG antibodies with trisulfide bond or thioether linkages. Trisulfide bond formation has also been observed for IgG of all subclasses. Degradation of disulfide bond through β-elimination generates free sulfhydryls disulfide and dehydroalanine. Further reaction between free sulfhydryl and dehydroalanine leads to the formation of a non-reducible cross-linked species. Hydrolysis of the dehydroalanine residue contributes substantially to antibody hinge region fragmentation. The effect of these disulfide bond variations on antibody structure, stability and biological function are discussed in this review.Key words: recombinant monoclonal antibody, disulfide bond, trisulfide bond, free sulfhydryl, dehydroalanine, thioether, aggregation  相似文献   

2.
Zu Y  Fee JA  Hirst J 《Biochemistry》2002,41(47):14054-14065
A disulfide bond, adjacent to the [2Fe-2S] cluster, is conserved in all high-potential Rieske proteins from the respiratory and photosynthetic cytochrome bc(1) and b(6)f complexes but is absent from the low-potential, bacterial dioxygenase Rieske proteins. The role of the disulfide is unclear, since cysteine mutants have resulted in only apoprotein. The high stability of the soluble Thermus thermophilus Rieske protein permits chemical reduction of the disulfide bond and characterization of the sulfhydryl (dithiol) form by protein-film voltammetry. The effect of disulfide reduction on the cluster potential is small (DeltaE(0)' 相似文献   

3.
Rabbit liver arylsulfatase A (aryl-sulfate sulfhydrolase, EC 3.1.6.1) monomers of 130 kDa contain two free sulfhydryl groups as determined by spectrophotometric titration using 5,5'-dithiobis(2-nitrobenzoate) and by labeling with the fluorescent probe 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid. Fluorescence quenching data indicate that the reactive sulfhydryl is present in proximity to one or more tryptophan residues. Chemical modification of the sulfhydryl groups does not alter the distinctive pH-dependent aggregation property of the arylsulfatase A. The free sulfhydryls of the enzyme react with numerous sulfhydryl reagents. Based on the reactions of iodoacetic acid, methyl methanethiosulfonate, 5,5'-dithiobis(2-nitrobenzoate) and 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid with the sulfhydryl groups of arylsulfatase A, it is concluded that free sulfhydryls are not essential for the enzyme activity. In contrast, the observed inactivation of the enzyme by p-hydroxymercuribenzoate or p-hydroxymercuriphenylsulfonate is probably due to a modification of a histidine residue, consistent with previous reports that histidine is near the active site of arylsulfatase A. p-Hydroxymercuribenzoate and p-hydroxymercuriphenylsulfonate are able to react both with cysteine and with histidine residues of the protein molecule.  相似文献   

4.
Eosinophil granule major basic protein 2 (MBP2 or major basic protein homolog) is a paralog of major basic protein (MBP1) and, similar to MBP1, is cytotoxic and cytostimulatory in vitro. MBP2, a small protein of 13,433 Da molecular weight, contains 10 cysteine residues. Mass spectrometry shows two cystine disulfide linkages (Cys20–Cys115 and Cys92–Cys107) and 6 cysteine residues with free sulfhydryl groups (Cys2, Cys23, Cys42, Cys43, Cys68, and Cys96). MBP2, similar to MBP1, has conserved motifs in common with C-type lectins. The disulfide bond locations are conserved among human MBP1, MBP2 and C-type lectins.  相似文献   

5.
The human mitochondrial branched chain aminotransferase isoenzyme (hBCATm) must be stored in a reducing environment to remain active. Oxidation or labeling of hBCATm with sulfhydryl reagents results in enzyme inhibition. In this study, we investigated both the structural and biochemical basis for the sensitivity of hBCATm to these reagents. In its native form, hBCATm has two reactive cysteine residues which were identified as Cys315 and Cys318 using iodinated beta-(4-hydroxyphenyl)ethyl maleimide. These are located in the large domain of the homodimer, about 10 A from the active site. The crystal structures show evidence for a thiol-thiolate hydrogen bond between Cys315 and Cys318. Under oxidizing conditions, these cysteine residues can reasonably form a disulfide bond because of the short distance between the sulfur atoms (3.09-3.46 A), requiring only a decrease of 1.1-1.5 A. In addition to Cys315 playing a structural role by anchoring Tyr173, which in the ketimine form increases access to the active site, our evidence indicates that these cysteine residues act as a redox switch in hBCATm. Electrospray ionization mass spectrometry analysis and UV-Vis spectroscopic studies of 5,5'-dithiobis(2-nitrobenzoic acid) labeled hBCATm showed that during labeling, an intrasubunit disulfide bond was formed in a significant portion of the protein. Furthermore, it was established that reaction of hBCATm with H2O2 abolished its activity and resulted in the formation of an intrasubunit disulfide bond between Cys315 and Cys318. Addition of dithiothreitol completely reversed the oxidation and restored activity. Therefore, the results demonstrate that there is redox-linked regulation of hBCATm activity by a peroxide sensitive CXXC center. Future studies will determine if this center has an in vivo role in the regulation of branched chain amino acid metabolism.  相似文献   

6.
The disulfide content of calf gamma-crystallin   总被引:5,自引:0,他引:5  
The disulfide content of calf gamma-crystallin polypeptides has been investigated. The gamma-crystallin fraction of the soluble lens proteins was separated into five distinct polypeptides and characterized by isoelectric focusing, amino acid composition, and N-terminal sequence analysis to 25 residues. It has been demonstrated that 7 cysteines are present in gamma II, 4 to 5 cysteines in gamma IIIa, gamma IIIb, and gamma IV, and 6 cysteines in gamma I (beta s). Reduction of the total gamma-crystallin fraction with DTT resulted in an increase of approximately 1 to 1.5 mol of free SH per mole of protein. This increase in sulfhydryls was demonstrated to be contributed primarily by gamma II, the major polypeptide representing 50% of the total gamma-crystallin, which showed an increase of approximately 2.5 mol of sulfhydryl per mole of protein upon reduction. Insignificant disulfide content was present in gamma III and gamma IV and only a slight amount of disulfide was found in gamma I (beta s). The observed increase in sulfhydryl content upon reduction was not due to the presence of mixed disulfides of 2-mercaptoethanol, glutathione, or cysteine. The data are consistent with approximately 1 mol of intramolecular disulfide per mole of protein being present in gamma II. X-ray crystallography of gamma II has shown that the spatial location of Cys18 and Cys22 in the tertiary structure permits disulfide bond formation. Sequence analysis of the four major polypeptides of gamma-crystallin, gamma II, gamma IIIa, gamma IIIb, and gamma IV indicates that only gamma II has both Cys18 and Cys22. Cys18 is present in gamma IIIa, gamma IIIb, and gamma IV but Cys22 is replaced by His22. It is probable that the lack of disulfide in gamma IIIa, gamma IIIb, and gamma IV is due to the absence of Cys22.  相似文献   

7.
Disulfide bond exchange among cysteine residues in epidermal growth factor (EGF)-like domains of beta3 was suggested to be involved in activation of alphaIIbbeta3. To investigate the role of specific beta3 cysteines in alphaIIbbeta3 expression and activation, we expressed in baby hamster kidney cells normal alphaIIb with normal beta3 or beta3 with single or double cysteine substitutions of nine disulfide bonds in EGF-3, EGF-4, and beta-tail domains and assessed alphaIIbbeta3 surface expression and activation state by flow cytometry using P2 or PAC-1 antibodies, respectively. Most mutants displayed reduced surface expression of alphaIIbbeta3. Disruptions of disulfide bonds in EGF-3 yielded constitutively active alphaIIbbeta3, implying that these bonds stabilize the inactive alphaIIbbeta3 conformer. Mutants of the Cys-567-Cys-581 bond in EGF-4 were inactive even after exposure to alphaIIbbeta3-activating antibodies, indicating that this bond is necessary for activating alphaIIbbeta3. Disrupting Cys-560-Cys-583 in the EGF-3/EGF-4 or Cys-608-Cys-655 in beta-tail domain resulted in alphaIIbbeta3 activation only when Cys-560 or Cys-655 of each pair was mutated but not when their partners (Cys-583, Cys-608) or both cysteines were mutated, suggesting that free sulfhydryls of Cys-583 and Cys-608 participate in alphaIIbbeta3 activation by a disulfide bond exchange-dependent mechanism. The free sulfhydryl blocker dithiobisnitrobenzoic acid inhibited 70% of anti-LIBS6 antibody-induced activation of wild-type alphaIIbbeta3 and had a smaller effect on mutants, implicating disulfide bond exchange-dependent and -independent mechanisms in alphaIIbbeta3 activation. These data suggest that different disulfide bonds in beta3 EGF and beta-tail domains play variable structural and regulatory roles in alphaIIbbeta3.  相似文献   

8.
Disulfide bond interchange has been pointed out as a considerable problem in preparing recombinant proteins from Escherichia coli cells. This has been reported in the system of reducing denaturation followed by a refolding process, where incorrectly folded molecules are sometimes produced. As the possibility of disulfide bond interchange may also arise in the cytoplasm of E. coli cells, the state of sulfhydryl groups of recombinant proteins obtained from a nonreducing and nondenaturing process should be examined. The state of sulfhydryl groups of E. coli-derived recombinant human interferon-beta 1, which had been purified under nonreducing and nondenaturing conditions, was examined by using the N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) labeling technique. Among the three cysteine residues in E. coli-derived human interferon-beta 1, the 17th cysteine was identified as being unpaired, as in the natural molecule. However, it was found that three isomers of the recombinant protein could be formed when the protein was denatured with 6 M guanidine hydrochloride. These three isomers were identified as having unpaired cysteine residues at positions 17, 31, and 141, respectively. These results indicate that disulfide bond interchange occurs in E. coli-derived recombinant human interferon-beta 1 under denaturing conditions in spite of the absence of a reducing agent.  相似文献   

9.
A heterobifunctional cross-linking reagent, 125I-N-(3-iodo-4-azidophenylpropionamido-S-(2-thiopyridyl) cysteine (125-ACTP), has been synthesized. 125I-ACTP has been used to derivative reduced sulfhydryls of the retinal G protein, transducin (Gt), to form a mixed disulfide bond under mild, nondenaturing conditions (pH 7.4, 4 degrees C). The resulting disulfide was easily cleaved using reducing reagents. A 200-fold molar excess of 125I-ACTP relative to Gt resulted in the incorporation of 1-1.3 mol of the 125I-N-(3-iodo-4-azidophenylpropionamido)cysteine moiety of ACTP into Gt alpha. In contrast to 125I-ACTP, dithionitrobenzoate and dithiopyridone derivatized six sulfhydryls in native Gt. Incubation of a 10-fold molar excess of 125I-ACTP relative to Gt resulted in the derivatization of 0.75-0.9 and 0.1 mol of reduced sulfhydryls/mol Gt alpha and beta, respectively. Gt gamma was not derivatized by 125I-ACTP. Thus, Gt alpha was preferentially derivatized by 125I-ACTP. Tryptic digestion and amino acid sequencing of Gt alpha indicated that both Cys-347 near the carboxyl terminus and Cys-210 between the second and third consensus sequences forming the GTP-binding site were derivatized by 125I-ACTP in a ratio of approximately 70 and 30%, respectively. Thus, both Cys-210 and Cys-347 are labeled, even though derivatization by 125I-ACTP does not exceed 1 mol of SH/mol Gt alpha. It appears that derivatization of one sulfhydryl, either Cys-210 or Cys-347, excludes labeling of the second cysteine either by steric hindrance or induced conformational change making the second cysteine inaccessible to 125I-ACTP. Consistent with this finding was the observation that pertussis toxin-catalyzed ADP-ribosylation of Cys-347 inhibited 125I-ACTP derivatization of Cys-210. Derivatization of Gt alpha at either Cys-210 or Cys-347 by 125I-ACTP inhibited rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate binding to Gt, mimicking the effect of ADP-ribosylation of Cys-347 by pertussis toxin. ACTP contains a radioiodinated phenylazide moiety which, upon activation, can cross-link the derivatized cysteine to an adjacent polypeptide domain. Following reduction of the disulfide, the [125I] iodophenyl moiety will be transferred to the azide-inserted polypeptide. When photoactivation of the phenylazide moiety of 125I-ACTP after sulfhydryl derivatization was performed, insertion of the Cys-347 which contains Cys-210, was found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
A set of wild-type and mutant human, woodchuck, and duck hepatitis viral core proteins have been prepared and used to study the free thiol groups and the disulfide bonding pattern present within the core particle. Human (HBcAg) and woodchuck (WHcAg) core proteins contain 4 cysteine residues, whereas duck (DHcAg) core protein contains a single cysteine residue. Each of the cysteines of HBcAg has been eliminated, either singly or in combinations, by a two-step mutagenesis procedure. All of the proteins were shown to have very similar physical and immunochemical properties. All assemble into essentially identical core particle structures. Therefore disulfide bonds are not essential for core particle formation. No intra-chain disulfide bonds occur. Cys107 is a free thiol buried within the particle structure, whereas Cys48 is present partly as a free sulfhydryl which is exposed at the surface of the particle. Cys61 is always and Cys48 is partly involved in interchain disulfide bonds with the identical residues of another monomer, whereas Cys183 is always involved in a disulfide bond with the Cys183 of a different monomer. WHcAg has the same pattern of bonding, whereas DHcAg lacks any disulfide bonds, and the single free sulfhydryl, Cys153 which is equivalent to Cys107 of HBcAg, is buried.  相似文献   

11.
Cysteine residues 110 and 187 are essential for the formation of the correct bovine rhodopsin structure (Karnik, S. S., Sakmar, T. P., Chen, H.-B., and Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8459-8463). We now show that the sulfhydryl groups of these 2 cysteine residues interact to form a disulfide bond. Rhodopsin mutants containing cysteine----serine substitutions were prepared as follows. In one mutant, CysVII, all the 10 cysteine residues of rhodopsin were replaced by serines. A second mutant, CysVIII, contained only C110 and C185; a third mutant, CysIX, contained only C185 and C187 while the fourth mutant, CysX, contained only C110 and C187. Only mutant CysX formed functional rhodopsin. Mutants CysVIII and CysIX reacted with [3H]iodoacetic acid showing the presence of free sulfhydryl groups while mutant CysX was inert to this reagent. CysX reacted with cyanide ion to form a thiocyanate derivative showing the presence of a disulfide bond. The C110-C187 disulfide bond is buried in rhodopsin because reactions with disulfide reducing agents and cyanide ion require prior treatment with denaturants.  相似文献   

12.
Sulfhydryl cross-linking poly(ethylene glycol) (PEG)-peptides and glycopeptides were prepared and tested for spontaneous polymerization by disulfide bond formation when bound to plasmid DNA, resulting in stable PEG-peptide and glycopeptide DNA condensates. A 20 amino acid synthetic peptide possessing a single sulfhydryl group on the N-terminal cysteine, with two or five internal acetamidomethyl (Acm)-protected cysteine residues, was reacted with either PEG vinyl sulfone or iodoacetamide tyrosinamide triantennary N-glycan. Following RP-HPLC purification, Acm groups were removed by silver tetrafluoroborate to generate sulfhydryl cross-linking PEG-peptides and glycopeptide that were characterized by either (1)H NMR or LC-MS. Sulfhydryl cross-linking PEG-peptides and glycopeptides were found to bind to plasmid DNA and undergo disulfide cross-linking resulting in stable DNA condensates with potential utility for in vivo gene delivery.  相似文献   

13.
Fibrillins are the major constituents of extracellular microfibrils. How fibrillin molecules assemble into microfibrils is not known. Sequential extractions and pulse-chase labeling of organ cultures of embryonic chick aortae revealed rapid formation of disulfide-cross-linked aggregates containing fibrillin-1. These results demonstrated that intermolecular disulfide bond formation is an initial step in the assembly process. To identify free cysteine residues available for intermolecular cross-linking, small recombinant peptides of fibrillin-1 harboring candidate cysteine residues were analyzed. Results revealed that the first four cysteine residues in the unique N terminus form intramolecular disulfide bonds. One cysteine residue (Cys(204)) in the first hybrid domain of fibrillin-1 was found to occur as a free thiol and is therefore a good candidate for intermolecular disulfide bonding in initial steps of the assembly process. Furthermore, evidence indicated that the comparable cysteine residue in fibrillin-2 (Cys(233)) also occurs as a free thiol. These free cysteine residues in fibrillins are readily available for intermolecular disulfide bond formation, as determined by reaction with Ellman's reagent. In addition to these major results, the cleavage site of the fibrillin-1 signal peptide and the N-terminal sequence of monomeric authentic fibrillin-1 from conditioned fibroblast medium were determined.  相似文献   

14.
p-Nitrophenoxycarbonyl methyl disulfide has been synthesized for use as a quantitating agent for methanethiolation of protein sulfhydryl groups. This reagent reacts specifically and quantitatively with cysteine residues of proteins to yield an unsymmetrical disulfide containing a CH3S group and concomitantly releases the chromophore, p-nitrophenol. Titration of the sulfhydryl groups of glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) with this reagent has been studied. Incorporation of CH3S as measured by the release of p-nitrophenol paralleled the loss of sulfhydryl group dependent activity of the enzyme. The enzyme was found inactive on modification of four of the eight sulfhydryl groups present in the enzyme. Stability of p-nitrophenoxycarbonyl methyl disulfide has also been studied in different buffer systems. The rate of decomposition of the p-nitrophenyl ester due to hydrolysis was found negligible below a pH of 8.0 compared to its rate of reaction with free sulfhydryl groups.  相似文献   

15.
K Maruyama  H Nagasawa  A Suzuki 《Peptides》1999,20(7):881-884
A linear peptide containing two reduced cysteine residues can be rapidly converted to its oxidized cyclic form containing an intramolecular disulfide bond by adding an excess of 2,2'-bispyridyl disulfide (2,2'-dipyridyl disulfide or 2,2'-dithiodipyridine) to conventional buffer solutions. The reactants and products are easily separated by reverse-phase chromatography. This reaction will find wide application in forming intramolecular disulfide bonds because of its selectivity for free sulfhydryl groups, quickness, safety, and applicability under acidic conditions.  相似文献   

16.
A general method by polyacrylamide gel electrophoresis for the determination of sulfhydryls and disulfides in a protein was developed. The method included a two-step alkylation procedure: the first step consisted of alkylation of the sulfhydryl groups with iodoacetic acid in the presence and absence of 8 M urea; the second step consisted of alkylation of the disulfide groups with iodoacetamide after reduction with a thiol. By high-pH urea gel electrophoresis, all the half-cystine residues in a protein could be categorized into three states: reactive sulfhydryls, nonreactive sulfhydryls, and disulfide bonded. The particular advantage of the method is that the states of half-cystines in different protein species can be analyzed independently both in isolated protein and in biological translation systems.  相似文献   

17.
Both metalloprotein and flavin-linked sulfhydryl oxidases catalyze the oxidation of thiols to disulfides with the reduction of oxygen to hydrogen peroxide. Despite earlier suggestions for a role in protein disulfide bond formation, these enzymes have received comparatively little general attention. Chicken egg white sulfhydryl oxidase utilizes an internal redox-active cystine bridge and a FAD moiety in the oxidation of a range of small molecular weight thiols such as glutathione, cysteine, and dithiothreitol. The oxidase is shown here to exhibit a high catalytic activity toward a range of reduced peptides and proteins including insulin A and B chains, lysozyme, ovalbumin, riboflavin-binding protein, and RNase. Catalytic efficiencies are up to 100-fold higher than for reduced glutathione, with typical K(m) values of about 110-330 microM/protein thiol, compared with 20 mM for glutathione. RNase activity is not significantly recovered when the cysteine residues are rapidly oxidized by sulfhydryl oxidase, but activity is efficiently restored when protein disulfide isomerase is also present. Sulfhydryl oxidase can also oxidize reduced protein disulfide isomerase directly. These data show that sulfhydryl oxidase and protein disulfide isomerase can cooperate in vitro in the generation and rearrangement of native disulfide pairings. A possible role for the oxidase in the protein secretory pathway in vivo is discussed.  相似文献   

18.
We have chemically synthesized the gene encoding bovine basic fibroblast growth factor (bFGF) and cloned it into a plasmid vector. This gene was then used as a template for site-directed mutagenesis to produce the human bFGF gene and a gene coding for an analog in which serine residues were substituted for the cysteine residues at positions 70 and 88. All three constructs were cloned and expressed in Escherichia coli and the proteins purified. The recombinant human and bovine bFGFs exhibited the potent mitogenic activity toward both fibroblasts and endothelial cells, which characterizes natural bFGF. The serine-70,88 analog and natural sequence bovine and human forms were equally active in all assays. Sulfhydryl titration of the purified recombinant bovine bFGF in 4.8 M guanidine hydrochloride indicated the presence of approximately two free sulfhydryl groups. This was consistent with the sequence analysis of peptides derived from trypsin digestion, which suggests that cysteines 70 and 88 exist in free sulfhydryl form while cysteines 26 and 93 form a disulfide bond. Circular dichroism shows that the protein has little ordered structure but is folded into a rigid tertiary configuration. Carboxymethylation of the free sulfhydryl groups resulted in no change in the mitogenic activity or conformation. These results are consistent with previous suggestions that, for tissue-derived bFGF, at least 2 of the 4 cysteines in the molecule are not involved in a disulfide bond.  相似文献   

19.
The authors in a previous report (Klausner, R. D., Kempf, C., Weinstein, J. N., Blumenthal, R., and van Renswoude, J. (1983) Biochem. J. 212, 801-810) have argued that native folding of ovalbumin occurs during translation, but not in a renaturation system of the denatured form. To re-examine the possibility, we searched for the conditions of correct oxidative refolding of denatured disulfide-reduced ovalbumin. Data of trypsin resistance, CD-spectrum, and selective reactivity of cysteine sulfhydryls revealed that the fully denatured protein can refold into the native conformation under disulfide-reduced conditions. The interconversion between the native and denatured forms was fully reversible with a free energy change for unfolding of 6.6 kcal/mol at 25 degrees C. Subsequent reoxidation under a variety of redox conditions generated only one disulfide bond in the reduced refolded protein with six cysteine sulfhydryls. Furthermore, the regenerated disulfide was found by peptide analyses to correspond to the native disulfide pairing, Cys73-Cys120. We, therefore, concluded that co-translational folding, if any, is not requisite for the correct oxidative folding of ovalbumin.  相似文献   

20.
The recombinant ovalbumin produced in Escherichia coli was purified from the cytoplasmic fraction and analyzed for its chemical and conformational properties. The recombinant ovalbumin displayed almost exactly the same circular dichroism and intrinsic tryptophan fluorescence spectra as egg white ovalbumin. As in the egg white protein, four cysteine sulfhydryls and one cystine disulfide were contained in the recombinant protein, according to the results of amino acid analyses; the disulfide bond was found by a peptide mapping analysis to correspond to the native cystine, Cys73-Cys120. According to a gel electrophoresis analysis, the presence of the disulfide bond was accounted for by specific oxidation of the corresponding cysteine residues during purification of the cytoplasmic protein. Unlike the identity in the conformational and peptide structures, none of the post-translational modifications (N-terminal acetylation, phosphorylation, and glycosylation) that are known with egg white ovalbumin were detected in the recombinant protein. The recombinant ovalbumin was transformed into a thermostabilized form in a similar manner to the transformation of egg white protein into S-ovalbumin; alkaline treatment increased the temperature for thermostability by 8.7 degrees C. These data strongly suggest that the post-translational modifications of ovalbumin are not related to the formation mechanism for S-ovalbumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号