首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gα(i)-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands.  相似文献   

2.
The solution structure of monomeric stromal cell-derived factor-1alpha (SDF-1alpha), the natural ligand for the CXCR4 G-coupled receptor, has been solved by multidimensional heteronuclear NMR spectroscopy. The structure has a characteristic chemokine fold and is in excellent agreement with the individual subunits observed in the crystal structures of dimeric SDF-1alpha. Using various peptides derived from the N-terminal extracellular tail of the CXCR4 receptor, we show that the principal determinants of binding reside in the N-terminal 17 residues of CXCR4, with a major contribution from the first six residues. From 15N/1HN chemical shift pertubation studies we show that the interaction surface on SDF-1alpha is formed by the undersurface of the three-stranded antiparallel beta-sheet bounded by the N-terminal loop on one side and the C-terminal helix on the other. This surface overlaps with but is not identical to that mapped on several other chemokines for the binding of equivalent peptides derived from their respective receptors.  相似文献   

3.
Previous studies confirmed that stromal cell-derived factor 1 (SDF-1) was a principal regulator of retention, migration and mobilization of haematopoietic stem cells and endothelial progenitor cells (EPCs) during steady-state homeostasis and injury. CXC chemokine receptor 4 (CXCR4) has been considered as the unique receptor of SDF-1 and as the only mediator of SDF-1-induced biological effects for many years. However, recent studies found that SDF-1 could bind to not only CXCR4 but also CXC chemokine receptor 7 (CXCR7). The evidence that SDF-1 binds to the CXCR7 raises a concern how to distinguish the potential contribution of the SDF-1/CXCR7 pathway from SDF-1/CXCR4 pathway in all the processes that were previously attributed to SDF-1/CXCR4. In this study, the role of CXCR7 in EPCs was investigated in vitro. RT-PCR, Western blot and flow cytometry assay demonstrate that both CXCR4 and CXCR7 were expressed highly in EPCs. The adhesion of EPCs induced by SDF-1 was inhibited by blocking either CXCR4 or CXCR7 with their antibodies or antagonists. SDF-1 regulated the migration of EPCs via CXCR4 but not CXCR7. However, the transendothelial migration of EPCs was inhibited by either blocking of CXCR4 or CXCR7. Both CXCR7 and CXCR4 are essential for the tube formation of EPCs induced by SDF-1. These results suggested that both CXCR7 and CXCR4 are important for EPCs in response to SDF-1, indicating that CXCR7 may be another potential target molecule for angiogenesis-dependent diseases.  相似文献   

4.
The response of Toll-like receptor 4 (TLR4) to lipopolysaccharide (LPS) is thought vital for resisting infection. Since aberrant TLR4 signaling may initiate inflammatory conditions such as the sepsis syndrome, we sought a component of normal cells that might provide local control of TLR4 activation. We found that antibodies that block chemokine receptor 4 (CXCR4) function enhanced TLR4 signaling, while increased expression of CXCR4 or addition of the CXCR4 ligand SDF-1 suppressed TLR4 signaling induced by LPS. These findings suggest that CXCR4 could exert local control of TLR4 and suggest the possibility of new therapeutic approaches to suppression of TLR4 function.  相似文献   

5.
趋化因子及其受体信号通路是肿瘤细胞转移的主要调控因素之一,趋化因子受体CXCR4和XCR1都被证明参与了乳腺癌的进展。本文基于膜蛋白酵母双杂交发现了XCR1-CXCR4这一尚未报道过的相互作用对,进一步通过生物发光共振能量转移技术(bioluminescence resonance energy transfer, BRET)验证并发现XCR1可以竞争性地结合CXCR4受体 (P<0.01),形成异源二聚体。在功能方面,首先通过XCR1和CXCR4瞬时转染HEK293细胞进行划痕实验,加入30 nmol/L SDF-1β后,共转组41.55%的伤口愈合率低于单转CXCR4组的58.75%,说明XCR1的共表达抑制了基质细胞衍生因子-1β(SDF-1β)/ CXC趋化因子受体4型 (CXCR4)信号通路介导的细胞运动性(P<0.05);其次,利用CXCR4-EGFP转基因HEK293细胞系,共表达XCR1后,流式细胞术检测细胞表面CXCR4受体荧光。结果显示,在30 nmol/L SDF-1β的诱导下,XCR1能够加速异源二聚体中CXCR4的内化 (P<0.05),使得内化率从14.38%上升到64.10%;最后,分别检测了控制细胞增殖的Akt和控制细胞迁移的ERK信号通路的变化。结果发现,在SDF-1β刺激10 min后,单转CXCR4组的ERK磷酸化为3.59倍,而共转染XCR1/CXCR4组ERK的磷酸化水平仅为2.08倍,二聚化使得ERK磷酸化水平下降,且激活时间缩短;而Akt的磷酸化水平几乎不受影响。本研究揭示了CXCR4和XCR1二聚化现象,以及该二聚体对CXCR4介导的细胞运动性、受体内化和ERK磷酸化的影响。提示靶向XCR1的药物可以成为CXCR4交叉脱敏的候选药物,对于抑制乳腺癌转移提供了一个可供选择的思路。  相似文献   

6.
《Cytokine》2014,65(2):121-125
Recently, we reported that extracellular ubiquitin functions as another agonist of CXC chemokine receptor (CXCR)4. Whereas the cognate CXCR4 ligand, stromal cell-derived factor (SDF)-1α, is also a CXCR7 agonist, ubiquitin does not bind to CXCR7. Because both ligands are present in the extracellular environment, co-activation of CXCR4 appears to be physiologically relevant. CXCR4 mediated effects of ubiquitin, however, are not well understood and consequences of co-activation of CXCR4 with both ligands are unknown. Utilizing proximity ligation assays and flow cytometry, we detected CXCR4, but not CXCR7, on the cell surface of THP-1 cells, which suggests that confounding effects of CXCR7 are unlikely. Time course and magnitude of reduction of cell surface CXCR4 expression were comparable after stimulation of THP-1 cells with both ligands. SDF-1α was more efficacious than ubiquitin to mobilize Ca2+. Co-stimulation of THP-1 cells with both ligands resulted in synergistic effects on Ca2+ fluxes at suboptimal ligand concentrations. Homologous desensitization of Ca2+ fluxes was detectable with both ligands. SDF-1α pre-stimulation desensitized ubiquitin induced Ca2+ fluxes, but not vice versa. Effects of SDF-1α and ubiquitin on cAMP levels, Akt and ERK1/2 phosphorylation and chemotactic responses were additive. The chemotactic activities of ubiquitin and SDF-1α were sensitive to AMD3100, pertussis toxin, U73122, LY94002 and U0126. These data suggest that CXCR4 activation with SDF-1α and ubiquitin results in partially synergistic effects on cellular signaling events and in differential effects on receptor desensitization. The ligand ratio that is present in the extracellular environment may contribute to the regulation of CXCR4 mediated functions.  相似文献   

7.
Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) have been found to be tightly correlated with the progression of prostate cancer (PC). In this study, we investigated the effects of an SDF-1α/CXCR4 inhibitor, AMD3100, on cell progression and metastasis potential of human PC cells. Human PC cell lines (LNCaP, PC3, and DU145) were cultured to detect SDF-1α/CXCR4, which showed higher SDF-1α and CXCR4 expression than the normal human prostate epithelial cell line, RWPE-1. AMD3100 was confirmed to be an inhibitor of SDF-1α, and to detect the effect of SDF-1α/CXCR4 inhibition on PC, PC cells were treated with AMD3100 or/and CXCR4 siRNA. The results suggested that inhibition of the SDF-1α/CXCR4 pathway could promote the E-cadherin level but inhibit the levels of invasion and migration of vimentin, N-cadherin and α5β1 integrin. Finally, tumor formation in nude mice was conducted, and the cell experiment results were verfied. These data show that AMD3100 suppresses epithelial–mesenchymal transition and migration of PC cells by inhibiting the SDF-1α/CXCR4 signaling pathway, which provides a clinical target in the treatment of PC.  相似文献   

8.
Background: Development of functional monoclonal antibodies against intractable GPCR targets.Results: Identification of structured peptides mimicking the ligand binding site, their use in panning to enrich for a population of binders, and the subsequent challenge of this population with receptor overexpressing cells leads to functional monoclonal antibodies.Conclusion: The combination of techniques provides a successful strategic approach for the development of functional monoclonal antibodies against CXCR2 in a relatively small campaign.Significance: The presented combination of techniques might be applicable for other, notoriously difficult, GPCR targets.Summary: The CXC chemokine receptor-2 (CXCR2) is a member of the large ‘family A’ of G-protein-coupled-receptors and is overexpressed in various types of cancer cells. CXCR2 is activated by binding of a number of ligands, including interleukin 8 (IL-8) and growth-related protein α (Gro-α). Monoclonal antibodies capable of blocking the ligand-receptor interaction are therefore of therapeutic interest; however, the development of biological active antibodies against highly structured GPCR proteins is challenging. Here we present a combination of techniques that improve the discovery of functional monoclonal antibodies against the native CXCR2 receptor.The IL-8 binding site of CXCR2 was identified by screening peptide libraries with the IL-8 ligand, and then reconstructed as soluble synthetic peptides. These peptides were used as antigens to probe an antibody fragment phage display library to obtain subpopulations binding to the IL-8 binding site of CXCR2. Further enrichment of the phage population was achieved by an additional selection round with CXCR2 overexpressing cells as a different antigen source. The scFvs from the CXCR2 specific phage clones were sequenced and converted into monoclonal antibodies. The obtained antibodies bound specifically to CXCR2 expressing cells and inhibited the IL-8 and Gro-α induced ß-arrestin recruitment with IC50 values of 0.3 and 0.2 nM, respectively, and were significantly more potent than the murine monoclonal antibodies (18 and 19 nM, respectively) obtained by the classical hybridoma technique, elicited with the same peptide antigen. According to epitope mapping studies, the antibody efficacy is largely defined by N-terminal epitopes comprising the IL-8 and Gro-α binding sites. The presented strategic combination of in vitro techniques, including the use of different antigen sources, is a powerful alternative for the development of functional monoclonal antibodies by the classical hybridoma technique, and might be applicable to other GPCR targets.  相似文献   

9.
The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its G-protein-coupled receptor (GPCR) CXCR4 play fundamental roles in many physiological processes, and CXCR4 is a drug target for various diseases such as cancer metastasis and human immunodeficiency virus, type 1, infection. However, almost no structural information about the SDF-1-CXCR4 interaction is available, mainly because of the difficulties in expression, purification, and crystallization of CXCR4. In this study, an extensive investigation of the preparation of CXCR4 and optimization of the experimental conditions enables NMR analyses of the interaction between the full-length CXCR4 and SDF-1. We demonstrated that the binding of an extended surface on the SDF-1 β-sheet, 50-s loop, and N-loop to the CXCR4 extracellular region and that of the SDF-1 N terminus to the CXCR4 transmembrane region, which is critical for G-protein signaling, take place independently by methyl-utilizing transferred cross-saturation experiments along with the usage of the CXCR4-selective antagonist AMD3100. Furthermore, based upon the data, we conclude that the highly dynamic SDF-1 N terminus in the 1st step bound state plays a crucial role in efficiently searching the deeply buried binding pocket in the CXCR4 transmembrane region by the “fly-casting” mechanism. This is the first structural analyses of the interaction between a full-length GPCR and its chemokine, and our methodology would be applicable to other GPCR-ligand systems, for which the structural studies are still challenging.  相似文献   

10.
It has been shown that deletion of the chemokine receptor, CXCR4, causes disordered angiogenesis in mouse models. In the present studies, we examined the distribution and trafficking of CXCR4 in human endothelial cells, tested their responses to the CXCR4 ligand, SDF-1, and asked whether endothelial cell CXCR4 can serve as a cell surface receptor for the binding of viruses. The results show that CXCR4 is present on endothelial cells from coronary arteries, iliac arteries and umbilical veins (HUVEC), but expression was heterogeneous, with some cells expressing CXCR4 on their surface, while others did not. Addition of SDF-1 caused a rapid decrease in CXCR4 surface expression. It also caused CXCR4-mediated activation of MAPK, release of PGI(2), endothelial migration, and the formation of capillary-like structures by endothelial cells in culture. Co-culture of HUVEC with lymphoid cells that were chronically infected with a CD4-independent/CXCR4-tropic variant of HIV-2 resulted in the formation of multinucleated syncytia. Formation of the syncytia was inhibited by each of several different CXCR4 antibodies. Thus, our findings indicate: (1) that CXCR4 is widely expressed on human endothelial cells; (2) the CXCR4 ligand, SDF-1, can evoke a wide variety of responses from human endothelial cells; and (3) CXCR4 on endothelial cells can serve as a receptor for isolates of HIV that can utilize chemokine receptors in the absence of CD4.  相似文献   

11.
Human colonic epithelial cells express CXCR4, the sole cognate receptor for the chemokine stromal cell-derived factor (SDF)-1/CXC chemokine ligand (CXCL) 12. The aim of this study was to define the mechanism and functional consequences of signaling intestinal epithelial cells through the CXCR4 chemokine receptor. CXCR4, but not SDF-1/CXCL12, was constitutively expressed by T84, HT-29, HT-29/-18C1, and Caco-2 human colon epithelial cell lines. Studies using T84 cells showed that CXCR4 was G protein-coupled in intestinal epithelial cells. Moreover, stimulation of T84 cells with SDF-1/CXCL12 inhibited cAMP production in response to the adenylyl cyclase activator forskolin, and this inhibition was abrogated by either anti-CXCR4 antibody or receptor desensitization. Studies with pertussis toxin suggested that SDF-1/CXCL12 activated negative regulation of cAMP production through G(i)alpha subunits coupled to CXCR4. Consistent with the inhibition of forskolin-stimulated cAMP production, SDF-1/CXCL12 also inhibited forskolin-induced ion transport in voltage-clamped polarized T84 cells. Taken together, these data indicate that epithelial CXCR4 can transduce functional signals in human intestinal epithelial cells that modulate important cAMP-mediated cellular functions.  相似文献   

12.
CXCR4 belongs to the family of G protein-coupled receptors and mediates the various developmental and regulatory effects of the chemokine SDF-1alpha. In addition, CXCR4 acts as a co-receptor along with CD4 for the HIV-1 viral glycoprotein gp120. Recently, there has also been a small molecule described that antagonizes both SDF-1 and gp120 binding to CXCR4. The structural and mechanistic basis for this dual recognition ability of CXCR4 is unknown largely due to the technical challenges of biochemically producing the components of the various complexes. We expressed the human CXCR4 receptor using a modified baculovirus expression vector that facilitates a single step antibody affinity purification of CXCR4 to >80% purity from Hi5 cells. The recombinant receptor undergoes N-linked glycosylation, tyrosine sulfation and is recognized by the 12G5 conformation specific antibody against human CXCR4. We are able to purify CXCR4 alone as well as complexed with its endogenous ligand SDF-1, its viral ligand gp120, and a small molecule antagonist AMD3100 by ion-exchange chromatography. We anticipate that the expression and purification scheme described in this paper will facilitate structure-function studies aimed at elucidating the molecular basis for CXCR4 recognition of its endogenous chemokine and viral ligands.  相似文献   

13.
Choi WT  Tian S  Dong CZ  Kumar S  Liu D  Madani N  An J  Sodroski JG  Huang Z 《Journal of virology》2005,79(24):15398-15404
The chemokine receptor CXCR4 plays an important role as the receptor for the normal physiological function of stromal cell-derived factor 1alpha (SDF-1alpha) and the coreceptor for the entry of human immunodeficiency virus type 1 (HIV-1) into the cell. In a recent work (S. Tian et al., J. Virol. 79:12667-12673, 2005), we found that many residues throughout CXCR4 transmembrane (TM) and extracellular loop 2 domains are specifically involved in interaction with HIV-1 gp120, as most of these sites did not play a role in either SDF-1alpha binding or signaling. These results provided direct experimental evidence for the distinct functional sites on CXCR4 for HIV-1 and the normal ligand SDF-1alpha. To further understand the CXCR4-ligand interaction and to develop new CXCR4 inhibitors to block HIV-1 entry, we have recently generated a new family of unnatural chemokines, termed synthetically and modularly modified (SMM) chemokines, derived from the native sequence of SDF-1alpha or viral macrophage inflammatory protein II (vMIP-II). These SMM chemokines contain various de novo-designed sequence replacements and substitutions by d-amino acids and display more enhanced CXCR4 selectivity, binding affinities, and/or anti-HIV activities than natural chemokines. Using these novel CXCR4-targeting SMM chemokines as receptor probes, we conducted ligand binding site mapping experiments on a panel of site-directed mutants of CXCR4. Here, we provide the first experimental evidence demonstrating that SMM chemokines interact with many residues on CXCR4 TM and extracellular domains that are important for HIV-1 entry, but not SDF-1alpha binding or signaling. The preferential overlapping in the CXCR4 binding residues of SMM chemokines with HIV-1 over SDF-1alpha illustrates a mechanism for the potent HIV-1 inhibition by these SMM chemokines. The discovery of distinct functional sites or conformational states influenced by these receptor sites mediating different functions of the natural ligand versus the viral or synthetic ligands has important implications for drug discovery, since the sites shared by SMM chemokines and HIV-1 but not by SDF-1alpha can be targeted for the development of selective HIV-1 inhibitors devoid of interference with normal SDF-1alpha function.  相似文献   

14.
The human CXC chemokine receptor 4 (CXCR4) is a receptor for the chemokine stromal cell-derived factor (SDF-1alpha) and a co-receptor for the entry of specific strains of human immunodeficiency virus type I (HIV-1). CXCR4 is also recognized by an antagonistic chemokine, the viral macrophage inflammatory protein II (vMIP-II) encoded by human herpesvirus type VIII. SDF-1alpha or vMIP-II binding to CXCR4 can inhibit HIV-1 entry via this co-receptor. An approach combining protein structural modeling and site-directed mutagenesis was used to probe the structure-function relationship of CXCR4, and interactions with its ligands SDF-1alpha and vMIP-II and HIV-1 envelope protein gp120. Hypothetical three-dimensional structures were proposed by molecular modeling studies of the CXCR4.SDF-1alpha complex, which rationalize extensive biological information on the role of CXCR4 in its interactions with HIV-1 envelope protein gp120. With site-directed mutagenesis, we have identified that the amino acid residues Asp (D20A) and Tyr (Y21A) in the N-terminal domain and the residue Glu (E268A) in extracellular loop 3 (ECL3) are involved in ligand binding, whereas the mutation Y190A in extracellular loop 2 (ECL2) impairs the signaling mediated by SDF-1alpha. As an HIV-1 co-receptor, we found that the N-terminal domain, ECL2, and ECL3 of CXCR4 are involved in HIV-1 entry. These structural and mutational studies provide valuable information regarding the structural basis for CXCR4 activity in chemokine binding and HIV-1 viral entry, and could guide the design of novel targeted inhibitors.  相似文献   

15.
《MABS-AUSTIN》2013,5(6):1415-1424
Background: Development of functional monoclonal antibodies against intractable GPCR targets.

Results: Identification of structured peptides mimicking the ligand binding site, their use in panning to enrich for a population of binders, and the subsequent challenge of this population with receptor overexpressing cells leads to functional monoclonal antibodies.

Conclusion: The combination of techniques provides a successful strategic approach for the development of functional monoclonal antibodies against CXCR2 in a relatively small campaign.

Significance: The presented combination of techniques might be applicable for other, notoriously difficult, GPCR targets.

Summary: The CXC chemokine receptor-2 (CXCR2) is a member of the large ‘family A’ of G-protein-coupled-receptors and is overexpressed in various types of cancer cells. CXCR2 is activated by binding of a number of ligands, including interleukin 8 (IL-8) and growth-related protein α (Gro-α). Monoclonal antibodies capable of blocking the ligand-receptor interaction are therefore of therapeutic interest; however, the development of biological active antibodies against highly structured GPCR proteins is challenging. Here we present a combination of techniques that improve the discovery of functional monoclonal antibodies against the native CXCR2 receptor.

The IL-8 binding site of CXCR2 was identified by screening peptide libraries with the IL-8 ligand, and then reconstructed as soluble synthetic peptides. These peptides were used as antigens to probe an antibody fragment phage display library to obtain subpopulations binding to the IL-8 binding site of CXCR2. Further enrichment of the phage population was achieved by an additional selection round with CXCR2 overexpressing cells as a different antigen source. The scFvs from the CXCR2 specific phage clones were sequenced and converted into monoclonal antibodies. The obtained antibodies bound specifically to CXCR2 expressing cells and inhibited the IL-8 and Gro-α induced ß-arrestin recruitment with IC50 values of 0.3 and 0.2 nM, respectively, and were significantly more potent than the murine monoclonal antibodies (18 and 19 nM, respectively) obtained by the classical hybridoma technique, elicited with the same peptide antigen. According to epitope mapping studies, the antibody efficacy is largely defined by N-terminal epitopes comprising the IL-8 and Gro-α binding sites. The presented strategic combination of in vitro techniques, including the use of different antigen sources, is a powerful alternative for the development of functional monoclonal antibodies by the classical hybridoma technique, and might be applicable to other GPCR targets.  相似文献   

16.
G‐protein‐coupled receptors (GPCR) are a family of membrane‐embedded metabotropic receptors which translate extracellular ligand binding into an intracellular response. Here, we calculate the motion of several GPCR family members such as the M2 and M3 muscarinic acetylcholine receptors, the A2A adenosine receptor, the β2‐adrenergic receptor, and the CXCR4 chemokine receptor using elastic network normal modes. The normal modes reveal a dilation and a contraction of the GPCR vestibule associated with ligand passage, and activation, respectively. Contraction of the vestibule on the extracellular side is correlated with cavity formation of the G‐protein binding pocket on the intracellular side, which initiates intracellular signaling. Interestingly, the normal modes of rhodopsin do not correlate well with the motion of other GPCR family members. Electrostatic potential calculation of the GPCRs reveal a negatively charged field around the ligand binding site acting as a siphon to draw‐in positively charged ligands on the membrane surface. Altogether, these results expose the GPCR activation mechanism and show how conformational changes on the cell surface side of the receptor are allosterically translated into structural changes on the inside. Proteins 2014; 82:579–586. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Chemokines and their receptors determine the distribution of leukocytes within tissues in health and disease. We have studied the role of the constitutive chemokine receptor CXCR4 and its ligand, stromal-derived factor-1 (SDF-1) in the perivascular accumulation of T cells in rheumatoid arthritis. We show that synovial T cells, which are primed CD45RO+CD45RBdull cells and consequently not expected to express constitutive chemokine receptors, have high levels of the chemokine receptor CXCR4. Sustained expression of CXCR4 was maintained on synovial T cells by specific factors present within the synovial microenvironment. Extensive screening revealed that TGF-beta isoforms induce the expression of CXCR4 on CD4 T cells in vitro. Depletion studies using synovial fluid confirmed an important role for TGF-beta1 in the induction of CXCR4 expression in vivo. The only known ligand for CXCR4 is SDF-1. We found SDF-1 on synovial endothelial cells and showed that SDF-1 was able to induce strong integrin-mediated adhesion of synovial fluid T cells to fibronectin and ICAM-1, confirming that CXCR4 expressed on synovial T cells was functional. These results suggest that the persistent induction of CXCR4 on synovial T cells by TGF-beta1 leads to their active, SDF-1-mediated retention in a perivascular distribution within the rheumatoid synovium.  相似文献   

18.
Cells express distinct G protein-coupled receptor (GPCR) subtypes on their surface, allowing them to react to a corresponding variety of extracellular stimuli. Cross-regulation between different ligand-GPCR pairs is essential to generate appropriate physiological responses. GPCRs can physically affect each other''s functioning by forming heteromeric complexes, whereas cross-regulation between activated GPCRs also occurs through integration of shared intracellular signaling networks. Human herpesviruses utilize virally encoded GPCRs to hijack cellular signaling networks for their own benefit. Previously, we demonstrated that the Epstein-Barr virus-encoded GPCR BILF1 forms heterodimeric complexes with human chemokine receptors. Using a combination of bimolecular complementation and bioluminescence resonance energy transfer approaches, we now show the formation of hetero-oligomeric complexes between this viral GPCR and human CXCR4. BILF1 impaired CXCL12 binding to CXCR4 and, consequently, also CXCL12-induced signaling. In contrast, the G protein uncoupled mutant BILF1-K3.50A affected CXCL12-induced CXCR4 signaling to a much lesser extent, indicating that BILF1-mediated CXCR4 inhibition is a consequence of its constitutive activity. Co-expression of Gαi1 with BILF1 and CXCR4 restored CXCL12-induced signaling. Likewise, BILF1 formed heteromers with the human histamine H4 receptor (H4R). BILF1 inhibited histamine-induced Gαi-mediated signaling by H4R, however, without affecting histamine binding to this receptor. These data indicate that functional cross-regulation of Gαi-coupled GPCRs by BILF1 is at the level of G proteins, even though these GPCRs are assembled in hetero-oligomeric complexes.  相似文献   

19.
Migration toward pathological area is the first critical step in microglia engagement during the central nervous system (CNS) injury, although the molecular mechanisms underlying microglia mobilization have not been fully understood. Here, we report that hypoxia promotes stromal cell-derived factor-1α (SDF-1α) induced microglia migration by inducing the CXC chemokine receptor 4 (CXCR4) expression. Exposure to hypoxia significantly enhanced CXCR4 expression levels in N9 microglia cell. Then, cell migration induced by SDF-1, a CXCR4-specific ligand, was observed accelerated. Blockade of hypoxia inducible factor-1α (HIF-1α) activation by inhibitors of phosphoinositide-3-kinase (PI3K)/Akt signaling pathway abrogated both of hypoxia-induced CXCR4 up-regulation and cell-migration acceleration. These results point to a crucial role of Hypoxia-HIF-1α-CXCR4 pathway during microglia migration.  相似文献   

20.
Antagonistic antibodies targeting the G-protein C-X-C chemokine receptor 4 (CXCR4) hold promising therapeutic potential in various diseases. We report for the first time the detailed mechanism of action at a molecular level of a potent anti-CXCR4 antagonistic antibody (MEDI3185). We characterized the MEDI3185 paratope using alanine scanning on all 6 complementary-determining regions (CDRs). We also mapped its epitope using CXCR4 mutagenesis to assess the relative importance of the CXCR4 N-terminal peptide, extracellular loops (ECL) and ligand-binding pocket. We show that the interaction between MEDI3185 and CXCR4 is mediated mostly by CDR3H in MEDI3185 and ECL2 in CXCR4. The MEDI3185 epitope comprises the entire ECL2 sequence, lacks any so-called ‘hot-spot’ and is remarkably resistant to mutations. The structure of MEDI3185 variable domains was modeled, and suggested a β-strand/β-strand interaction between MEDI3185 CDR3H and CXCR4 ECL2, resulting in direct steric hindrance with CXCR4 ligand SDF-1. These findings may have important implications for designing antibody therapies against CXCR4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号