首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12–267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO42-, SO42-/total sulfur ratio, and Fe2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.  相似文献   

2.
The microbial diversity and community structure in twenty-one groundwater samples from high arsenic shallow aquifers of Hetao Basin, Inner Mongolia, China was investigated with an integrated approach including polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene phylogenetic analyses. A total of 25 bacterial and 32 archaeal DGGE bands were exercised for sequencing. Phylogenetic analyses showed that the bacterial DGGE bands were dominated by Proteobacteria, and the archaeal bands were dominated by Thaumarchaeota and Euryarchaeota. Based on arsenic concentrations, three samples (corresponding to low, medium, and high level of arsenic, respectively) were selected for construction of 16S rRNA gene clone libraries. A total of 912 (468 and 444 for bacteria and archaea, respectively) 16S rRNA gene clone sequences were obtained and subjected to phylogenetic analyses. The results showed that bacterial communities of these samples were dominated by Acinetobacter, Pseudomonas, Massilia, Dietzia, Planococcus, Brevundimonas, Aquabacterium and Geobacter, and archaeal communities by Nitrosophaera, Thermoprotei and Methanosaeta. The relative abundance of major groups varied as a function of changes in groundwater geochemistry. Acinetobacter, Brevundimonas, Geobacter, Thermoprotei and Methanosaeta dominated in high arsenic samples with high concentrations of methane and Fe(II), and low concentrations of SO2? 4 and NO? 3, while Pseudomonas and Nitrosophaera were abundant in low arsenic groundwater. These results imply that microbes play an important role in arsenic mobilization in the shallow aquifers of Hetao Basin, Inner Mongolia.  相似文献   

3.
The abundance, diversity, and relative distribution of sulfate-reducing bacteria (SRB) in high arsenic (As) groundwater aquifers of Hangjinhouqi County in the Hetao Basin, Inner Mongolia was investigated using denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction (qPCR) analysis of dsrB genes (encoding dissimilatory sulfite reductase beta-subunit). DGGE results revealed that SRB populations were diverse, but were mainly composed of Desulfotomaculum, Desulfobulbus, Desulfosarcina, and Desulfobacca. The abundance of Desulfobulbus was positively correlated with the ratio of Fe(II)/Fe(III). Although qPCR results showed that the dsrB gene abundance in groundwater samples ranged from below detection to 4.9 × 106 copies/L, and the highest percentage of dsrB gene copies to bacterial 16S rRNA gene copies was 2.1%. Geochemical analyses showed that As(III) content and the ratio of Fe(II) to Fe(III) increased with total As, while sulfate concentrations decreased. Interestingly, the dsrB gene abundance was positively correlated with As concentrations. These results indicate that sulfate reduction occurs simultaneously with As and Fe reduction, and might result in increased As release and mobilization when As is not incorporated into iron sulfides. This study improves our understanding of SRB and As cycling in high As groundwater systems.  相似文献   

4.
Arsenic contamination in groundwater has been reported in the Jianghan Plain of China since 2005, yet little is known about the microbial communities involved in As mobilization in this area, especially the dissimilatory arsenate-reducing bacteria (DARB) communities. Here, we conducted a cultivation-independent investigation on core sediments collected from a region with arsenic-contaminated groundwater in the Jianghan Plain to reveal the total bacteria and DARB community structures. Highly diverse As-resistant bacteria communities were found from sediment samples via high-throughput sequencing of 16S rRNA genes. Notably, we identified 27 unique arrA gene (encoding the alpha subunit of dissimilatory arsenate reductase) phylotypes, none of which was related to any previously described arrA gene sequence. This suggests a novel and unique DARB community in the sediments of the Jianghan Plain and expands our knowledge about the distribution and diversity of this group of bacteria in natural environments. Moreover, RDA and CCA demonstrated that total bacterial communities and specific functional groups are controlled by different environmental factors. Specifically, sediment pH, NH4+, total nitrogen, total Fe, total organic carbon and total phosphorus were the key factors driving total bacterial community compositions, while As significantly shaped DARB community structures. This report is the first to describe DARB communities and their correlation with environmental factors in Jianghan Plain sediments, which could give us clues about the origin of the arsenic contamination of groundwater in this region.  相似文献   

5.
Microaerophilic, phototrophic and nitrate‐reducing Fe(II)‐oxidizers co‐exist in coastal marine and littoral freshwater sediments. However, the in situ abundance, distribution and diversity of metabolically active Fe(II)‐oxidizers remained largely unexplored. Here, we characterized the microbial community composition at the oxic‐anoxic interface of littoral freshwater (Lake Constance, Germany) and coastal marine sediments (Kalø Vig and Norsminde Fjord, Denmark) using DNA‐/RNA‐based next‐generation 16S rRNA (gene) amplicon sequencing. All three physiological groups of neutrophilic Fe(II)‐oxidizing bacteria were found to be active in marine and freshwater sediments, revealing up to 0.2% anoxygenic photoferrotrophs (e.g., Rhodopseudomonas, Rhodobacter, Chlorobium), 0.1% microaerophilic Fe(II)‐oxidizers (e.g., Mariprofundus, Hyphomonas, Gallionella) and 0.3% nitrate‐reducing Fe(II)‐oxidizers (e.g., Thiobacillus, Pseudomonas, Denitromonas, Hoeflea). Active Fe(III)‐reducing bacteria (e.g., Shewanella, Geobacter) were most abundant (up to 2.8%) in marine sediments and co‐occurred with cable bacteria (up to 4.5%). Geochemical profiles of Fe(III), Fe(II), O2, light, nitrate and total organic carbon revealed a redox stratification of the sediments and explained 75%–85% of the vertical distribution of microbial taxa, while active Fe‐cycling bacteria were found to be decoupled from geochemical gradients. We suggest that metabolic flexibility, microniches in the sediments, or interrelationships with cable bacteria might explain the distribution patterns of active Fe‐cycling bacteria.  相似文献   

6.
At Titas, Bangladesh, two aquifers of different arsenic concentrations and redox conditions were investigated to link variations in geochemistry to in situ bacterial diversity characterized by T-RFLP (terminal restriction fragment length polymorphism) and clone library analysis. While the shallow aquifer was characterized by reduced gray sediments with a higher share of easily mobilized sedimentary arsenic (2.6% was easily mobilized from 18 mg/kg of total arsenic available in sediments) and higher aqueous arsenic concentrations of 120 ± 6 μg/L (45% arsenite), the deeper aquifer consisted of brown oxidized sediments with lower aqueous arsenic concentrations, predominantly as arsenate (60 ± 6 μg/L; 3% arsenite) and a higher share of tightly bound arsenic (only 0.6% of 53 mg/kg total sorbed arsenic was easily mobilized). The bacterial communities of both aquifers were dominated by putative aerobic or denitrifying populations of Pseudomonas, Elizabethkingia and Pantoea. The shallow aquifer was more diverse in bacterial populations of aerobic, facultative and anaerobic bacteria, an observation which may be correlated to more variable geochemical conditions resulting in arsenic mobilization and re-sorption. The deeper aquifer showed higher abundance of aerobic bacterial populations including the presence of iron-oxidizing Sideroxydans possibly of importance for the sorption of arsenic on oxidized iron hydroxides. From the arsenic-affected shallow aquifer, As(III) oxidizing isolates of Comamonas and Microbacterium were obtained, which may provide information on suitable conditions for arsenic immobilization useful for future bioremediation efforts. Supplemental materials are available for this article. Go to the publisher’s online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

7.
Arsenic (As) mobilization in alluvial aquifers is caused by a complex interplay of hydro-geo-microbiological activities. Nevertheless, diversity and biogeochemical significance of indigenous bacteria in Bengal Delta Plain are not well documented. We have deciphered bacterial community compositions and metabolic properties in As contaminated groundwater of West Bengal to define their role in As mobilization. Groundwater samples showed characteristic high As, low organic carbon and reducing property. Culture-independent and -dependent analyses revealed presence of diverse, yet near consistent community composition mostly represented by genera Pseudomonas, Flavobacterium, Brevundimonas, Polaromonas, Rhodococcus, Methyloversatilis and Methylotenera. Along with As-resistance and -reductase activities, abilities to metabolize a wide range carbon substrates including long chain and polyaromatic hydrocarbons and HCO3, As3+ as electron donor and As5+/Fe3+ as terminal electron acceptor during anaerobic growth were frequently observed within the cultivable bacteria. Genes encoding cytosolic As5+ reductase (arsC) and As3+ efflux/transporter [arsB and acr3(2)] were found to be more abundant than the dissimilatory As5+ reductase gene arrA. The observed metabolic characteristics showed a good agreement with the same derived from phylogenetic lineages of constituent populations. Selected bacterial strains incubated anaerobically over 300 days using natural orange sand of Pleistocene aquifer showed release of soluble As mostly as As3+ along with several other elements (Al, Fe, Mn, K, etc.). Together with the production of oxalic acid within the biotic microcosms, change in sediment composition and mineralogy indicated dissolution of orange sand coupled with As/Fe reduction. Presence of arsC gene, As5+ reductase activity and oxalic acid production by the bacteria were found to be closely related to their ability to mobilize sediment bound As. Overall observations suggest that indigenous bacteria in oligotrophic groundwater possess adequate catabolic ability to mobilize As by a cascade of reactions, mostly linked to bacterial necessity for essential nutrients and detoxification.  相似文献   

8.
As a collaborative effort to characterize a pilot test site for managed aquifer recharge (MAR), vertical and horizontal distributions of microbial communities in the river bank subsurface were investigated to assess the ecological effects after the operation of the MAR using the river water adjacent to the site. Along with a geochemical analysis, barcoded pyrosequencing was performed using the genomic DNAs extracted from the subsurface groundwater/sediment samples retrieved from three multilevel wells among the installed cluster of 14 boreholes. A total of 9 samples from 3 depths (10, 15–25, and 33 m below the ground surface) of each borehole showed higher bacterial abundance and diversity in the shallow (10 m) depths than in the deep (33 m) groundwater. In addition, there was a slight separation of the microbial communities between the depths based on the nonmetric multidimensional scaling analysis of the Yue and Clayton distance and the distance-weighted UniFrac analysis. The phylum Proteobacteria was dominant in all the samples at the sequence abundance of 64.0–97.8% with the total operational taxonomic units of 3375 at the species level, while among the total 288 genera, the genus Pseudomonas and an unclassified genus from Betaproteobacteria were the most abundant across the samples. The community separation between the shallow and the deep groundwater seemed to be correlated with depth differences, supported by differences in the dissolved oxygen (DO) concentration and oxidation-reduction potential (ORP). In the study site, unusually high values of electrical conductivity (EC) were found in the deep groundwater, but those values were unlikely to contribute to the community separation between the shallow and deep groundwater, unlike the DO and ORP values, which were found to influence the community differences.  相似文献   

9.
The groundwater system in Olkiluoto, Finland, is stratified with a mixing layer at a depth of approximately 300 m between sulphate-rich, methane-poor and sulphate-poor, methane-rich groundwaters. New sequence library data obtained by 454 pyrotag sequencing of the v4v6 16S rDNA region indicated that sulphate-reducing bacteria (SRB) dominated the mixing layer while SRB could not be detected in the deep sulphate-poor groundwater samples. With the indispensable support of the sequence data, it could be demonstrated that sulphate was the only component needed to trigger a very large community transition in deep sulphate-poor, methane-rich groundwater from a non-sulphate-reducing community comprising Hydrogenophaga, Pseudomonas, Thiobacillus, Fusibacter, and Lutibacter to a sulphate-reducing community with Desulfobacula, Desulfovibrio, Desufobulbaceae, Desulfobacterium, Desulfosporosinus, and Desulfotignum. Experiments with biofilms and planktonic microorganisms in flow cells under in situ conditions confirmed that adding sulphate to the sulphate-poor groundwater generated growth of cultivable SRB and detectable SRB-related sequences. It was also found that the 16S rDNA diversity of the biofilms was conserved over 103 d and that there was great similarity in diversity between the microorganisms in the biofilms and in the flowing groundwater. This work demonstrates that the presence/absence of only one geochemical parameter, i.e., sulphate, in the groundwater significantly influenced the diversity of the investigated subterranean microbial community.  相似文献   

10.
High arsenic concentrations in groundwater are causing a humanitarian disaster in Southeast Asia. It is generally accepted that microbial activities play a critical role in the mobilization of arsenic from the sediments, with metal‐reducing bacteria stimulated by organic carbon implicated. However, the detailed mechanisms underpinning these processes remain poorly understood. Of particular importance is the nature of the organic carbon driving the reduction of sorbed As(V) to the more mobile As(III), and the interplay between iron and sulphide minerals that can potentially immobilize both oxidation states of arsenic. Using a multidisciplinary approach, we identified the critical factors leading to arsenic release from West Bengal sediments. The results show that a cascade of redox processes was supported in the absence of high loadings of labile organic matter. Arsenic release was associated with As(V) and Fe(III) reduction, while the removal of arsenic was concomitant with sulphate reduction. The microbial populations potentially catalysing arsenic and sulphate reduction were identified by targeting the genes arrA and dsrB, and the total bacterial and archaeal communities by 16S rRNA gene analysis. Results suggest that very low concentrations of organic matter are able to support microbial arsenic mobilization via metal reduction, and subsequent arsenic mitigation through sulphate reduction. It may therefore be possible to enhance sulphate reduction through subtle manipulations to the carbon loading in such aquifers, to minimize the concentrations of arsenic in groundwaters.  相似文献   

11.
Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin.  相似文献   

12.
The functional and phylogenetic biodiversity of bacterial communities in a benzene, toluene, ethylbenzene and xylene (BTEX)-polluted groundwater was analysed. To evaluate the feasibility of using an air sparging treatment to enhance bacterial degradative capabilities, the presence of degrading microorganisms was monitored. The amplification of gene fragments corresponding to toluene monooxygenase (tmo), catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and toluene dioxygenase genes in DNA extracted directly from the groundwater samples was associated with the presence of indigenous degrading bacteria. Five months of air injection reduced species diversity in the cultivable community (as calculated by the Shannon-Weaver index), while little change was noted in the degree of biodiversity in the total bacterial community, as characterised by denaturing gradient gel electrophoresis (DGGE) analysis. BTEX-degrading strains belonged to the genera Pseudomonas, Microbacterium, Azoarcus, Mycobacterium and Bradyrhizobium. The degrading capacities of three strains in batch liquid cultures were also studied. In some of these microorganisms different pathways for toluene degradation seemed to operate simultaneously. Pseudomonas strains of the P24 operational taxonomic unit, able to grow only on catechol and not on BTEX, were the most abundant, and were present in the groundwater community at all stages of treatment, as evidenced both by cultivation approaches and by DGGE profiles. The presence of different tmo-like genes in phylogenetically distant strains of Pseudomonas, Mycobacterium and Bradyrhizobium suggested recent horizontal gene transfer in the groundwater.  相似文献   

13.
The aim of this study was to analyze the bacterial community in the production line of a calcium carbonate filler production company and to investigate possible causes for bacterial presence. Throughout 2012, 24 carbonate slurry and six groundwater samples were analyzed. Pseudomonas and Microbacterium were the most frequent contaminants in the slurry, whereas Pseudomonas and Brevundimonas dominated the groundwater samples. Of the 43 different bacterial strains isolated, only five were found both in the slurry and the groundwater, indicating that the latter was not a major source of contamination. The efficacy of 54 commercial biocidal formulations was tested against an artificial bacterial consortium composed of selected slurry isolates. A formulation containing 7.5–15% (v v–1) bronopol and 1.0–2.5% (v v–1) [chloroisothiazolinone (CIT) + methylisothiazolinone (MIT)] exhibited the highest efficacy. Of the possible causes for bacterial presence, sporogenesis and biocide adsorption to carbonate particles were found to be less probable compared to bacterial adsorption to particles, and the acquisition of resistance to biocides.  相似文献   

14.
We investigated the diversity and distribution of archaeal and bacterial 16S rRNA gene sequences in deep aquifers of mid‐ to late Miocene hard shale located in the northernmost region of the Japanese archipelago. A major fault in the north‐west–south‐east (NW–SE) direction runs across the studied area. We collected three groundwater samples from boreholes on the south‐west (SW) side of the fault at depths of 296, 374 and 625 m below ground level (m.b.g.l.) and one sample from the north‐east (NE) side of the fault at a depth of 458 m.b.g.l. The groundwater samples were observed to be neutral and weakly saline. The total microbial counts after staining with acridine orange were in the order 105?106 cells mL?1 and 103 cells mL?1 in the aquifers to the SW and to the NE of the fault, respectively. A total of 407 archaeal and bacterial 16S rRNA gene sequences (204 and 203 sequences, respectively) were determined for clone libraries constructed from all groundwater samples. Phylogenetic analyses showed that the libraries constructed from the SW aquifers were generally coherent but considerably different from those constructed from the NE aquifer. All of the archaeal clone libraries from the SW aquifers were predominated by a single sequence closely related to the archaeon Methanoculleus chikugoensis, and the corresponding bacterial libraries were mostly predominated by the sequences related to Bacteroidetes, Firmicutes and δ‐Proteobacteria. In contrast, the libraries from the NE aquifer were dominated by uncultured environmental archaeal clones with no methanogen sequences and by β‐proteobacterial clones with no sequences related to Bacteroidetes and δ‐Proteobacteria. Hence, the possible coexistence of methanogens and sulphate reducers in Horonobe deep borehole (HDB) on the SW side is suggested, particularly in HDB‐6 (374 m.b.g.l.). Moreover, these organisms might play an important geochemical role in the groundwater obtained from the aquifers.  相似文献   

15.
A total of 43 groundwater samples were collected from 9 multimonitoring wells at a petrochemical site, Baoding City, North China, from June 2008 to December 2009 to investigate the biogeochemical processes and/or bacterial conmmunity using both culture-dependent and -independent methods. The results showed that aromatic hydrocarbons and chlorinated hydrocarbons were the major pollutants in the groundwater. Denitrification and iron reduction might be the main biogeochemical processes in the aquifers at this site, which seemed to transform from denitrification-dominated to iron reduction-dominated in some sections. Denaturing gradient gel electrophoresis (DGGE) revealed that the dominant bacterial groups of the groundwater were related to some oil-degrading bacteria, which can grow under denitrifying, iron-reducing and sulfate-reducing anaerobic conditions. In some serious contaminated groundwater niches, there might be sulfur cycles, as sulfur oxidizer was also abundant, which was further confirmed by 16S rRNA gene cloning analysis. The operational taxonomic units (OTUs) that highly related to Pseudomonas sp., Hydrogenophaga sp., Sphingomonas sp., Ferribacterium sp. and Sulfuricurvum Kujiense etc. were predominant in the groundwater contaminated by chlorinated hydrocarbons (CHCs), benzene, toluene, ethylbenzene, and xylenes (BTEX) and/or polycyclic aromatic hydrocarbons (PAHs), respectively. Biodiversity seemed to be undermined by oil contamination, and varied with seasons. The bacterial community in the contaminated groundwater was largely determined by the groundwater geochemistry.  相似文献   

16.
Abstract The Eastern Snake River Plain aquifer has hydrologically distinct zones in basalt flow units and interbedded sediments. The zones that differ markedly in physical features (e.g., porosity and permeability) have similar groundwater chemistries. The primary objective of this study was to determine whether intervals within the aquifer that contrast on the basis of permeability have distinct communities of unattached microorganisms based on functional attributes. Aquifer sampling was conducted using a submersible pump to obtain whole-well (w) samples, and a straddle-packer pump (SPP) to obtain samples from specific aquifer intervals that were vertically distributed in the open borehole. The SPP intervals ranged from 4.6 to 6.1 m in length and were located from 142 to 198 m below land surface. A community-level physiological profile (CLPP) was used to determine functional characteristics of the microbial community in the groundwater samples based on the community response to 95 sole organic carbon sources. Surface soil samples at the site were analyzed in a similar manner for comparison. The total bacterial population in the groundwater samples was determined using acridine orange direct counts. Principal components analysis (PCA) of the CLPP dataset distinguished between surface soil and aquifer microbial communities. Soils scored low in the respiration of polymers, esters, and amines and high in bromosuccinate, when compared to aquifer samples. The W samples were distinct from SPP samples. The 180- to 198-m interval, with the lowest hydraulic conductivity of all intervals, yielded samples that grouped together by PCA and cluster analysis. Direct counts varied between 104 and 105 cells ml−1, and showed no relationship to the depth of the sample or to the hydraulic conductivity of the sample interval. Differences between microbial communities based on respired carbon compounds were discerned in separate, hydrologically distinct intervals within the borehole, although these differences were slight. Differences among aquifer intervals were less apparent than differences between surface soils and groundwater, and may be related to variations in hydrologic properties over the intervals sampled. The results suggest that free-living microbial communities in basalt aquifers, as characterized by CLPP are relatively unaffected by wide ranges in hydraulic conductivity when other abiotic factors are essentially equal. Received: 14 December 1995; Revised: 12 April 1996  相似文献   

17.
Culture-independent PCR–denaturing gradient gel electrophoresis (DGGE) was employed to assess the composition of diazotroph species from the sediments of three mangrove ecosystem sites in Sanya, Hainan Island, China. A strategy of removing humic acids prior to DNA extraction was conducted, then total community DNA was extracted using the soil DNA kit successfully for nifH PCR amplification, which simplified the current procedure and resulted in good DGGE profiles. The results revealed a novel nitrogen-fixing bacterial profile and fundamental diazotrophic biodiversity in mangrove sediments, as reflected by the numerous bands present DGGE patterns. Canonical correspondence analysis (CCA) revealed that the sediments organic carbon concentration and available soil potassium accounted for a significant amount of the variability in the nitrogen-fixing bacterial community composition. The predominant DGGE bands were sequenced, yielding 31 different nifH sequences, which were used in phylogenetic reconstructions. Most sequences were from Proteobacteria, e.g. α, γ, β, δ-subdivisions, and characterized by sequences of members of genera Azotobacter, Desulfuromonas, Sphingomonas, Geobacter, Pseudomonas, Bradyrhizobium and Derxia. These results significantly expand our knowledge of the nitrogen-fixing bacterial diversity of the mangrove environment.  相似文献   

18.
In uranium-contaminated aquifers co-contaminated with nitrate, denitrifiers play a critical role in bioremediation. Six strains of denitrifying bacteria belonging to Rhizobium, Pseudomonas, and Castellaniella were isolated from the Oak Ridge Integrated Field Research Challenge Site (OR-IFRC), where biostimulation of acidic (pH 3.5–6.5), nitrate-contaminated (up to 140 mM) groundwater occurred. Three isolates were characterized in regards to nitrite tolerance, denitrification kinetic parameters, and growth on different denitrification intermediates. Kinetic and growth experiments showed that Pseudomonas str. GN33#1 reduced NO? 3 most rapidly (Vmax = 15.8 μmol e?·min?1·mg protein?1) and had the fastest generation time (gt) on NO? 3 (2.6 h). Castellaniella str. 4.5A2 was the most low pH and NO? 2 tolerant and grew rapidly on NO? 2 (gt = 4.0 h). Rhizobium str. GN32#2 was also tolerant of low pH values and reduced NO? 2 rapidly (Vmax = 10.6 μmol e?·min?1·mg protein?1) but was far less NO? 2 tolerant than Castellaniella str. 4.5A2. Growth of and denitrification by these three strains incubated together and individually were measured in OR-IFRC groundwater at pHs 5 and 7 to determine whether they cooperate or compete during denitrification. Mixed assemblages reduced NO? 3 more rapidly and more completely than any individual isolate over the course of the experiment. The results described in this article demonstrate 1) that this synthetic assemblage comprised of three physiologically distinct denitrifying bacterial isolates cooperate to achieve more complete levels of denitrification and 2) the importance of pH- and nitrite-tolerant bacteria such as Castellaniella str. 4.5A2 in minimizing NO? 2 accumulation in high-NO? 3 groundwater during bioremediation. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   

19.
Biogeochemical and microbiological characterization of marine sediments taken from the Yellow Sea of South Korea was carried out. One hundred and thirty six bacterial strains were isolated, characterized and phylogenetic relationship was evaluated. The gene sequences of 16S rDNA regions were examined to study the phylogenetic analysis of bacterial community in the marine sediments. Among 136 isolates, 5 bacterial isolates were identified as novel members, remaining 131 isolates were fall into 5 major linkages of bacterial phyla represented as follows: Firmicutes,, -@Proteobacteria, High G + C and Bacteroidetes. Bacterial community in sediments mainly dominated by Firmicute (58.77%) and followed by @-Proteobacteria (38.16%). @-Proteobacteria domain highly diverged and mainly consists of the genera Vibrio, Marinobacterium, Photobacterium, Pseudoalteromonas, Oceanisphaera, Halomonas, Alteromonas, Stenotrophomas and Pseudomonas. Total N and Organic matter content in Yellow Sea of South Korea were relatively high. The Total-N content in the sediments was varied from 177.31 to 1974.96 (mg/kg) and organic matter ranged from 0.82 to 4.23 (g/100 g−1). The current research work provides clear explanation obtained for the phylogenetic affiliation of the culturable bacterial community in sediments of South Korean Yellow Sea and revealed the relationship with biogeochemical characteristics of the sediments.  相似文献   

20.
Phenol is a commonly found organic pollutant in industrial wastewaters. Its ecotoxicological significance is well known and, therefore, the compound is often required to be removed prior to discharge. In this study, plant-bacterial synergism was established in floating treatment wetlands (FTWs) in an attempt to maximize the removal of phenol from contaminated water. A common wetland plant, Typha domingensis, was vegetated on a floating mat and augmented with three phenol-degrading bacterial strains, Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, to develop FTWs for the remediation of water contaminated with phenol. All of the strains are known to have phenol-reducing properties, and grow well in FTWs. Results showed that T. domingensis was able to remove a small amount of phenol from the contaminated water; however, bacterial augmentation enhanced the removal potential significantly, i.e., 0.146 g/m2/day vs. 0.166 g/m2/day, respectively. Plant biomass also increased in the presence of bacterial consortia; and inoculated bacteria displayed successful colonization/survival in the rhizosphere, root interior and shoot interior of the plant. Similarly, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and total organic carbon (TOC) was achieved by the combined application of plants and bacteria. The study demonstrates that the plant-bacterial synergism in a FTW may be a more effective approach for the remediation of phenol-contaminated water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号