共查询到20条相似文献,搜索用时 9 毫秒
1.
Hélène Kaplon 《MABS-AUSTIN》2018,10(2):183-203
The pace of antibody therapeutics development accelerated in 2017, and this faster pace is projected to continue through 2018. Notably, the annual number of antibody therapeutics granted a first approval in either the European Union (EU) or United States (US) reached double-digits (total of 10) for the first time in 2017. The 10 antibodies granted approvals are: brodalumab, dupilumab, sarilumab, guselkumab, benralizumab, ocrelizumab, inotuzumab ozogamicin, avelumab, duvalumab, and emicizumab. Brodalumab, however, had already been approved in Japan in 2016. As of December 1, 2017, nine antibody therapeutics (ibalizumab, burosumab, tildrakizumab, caplacizumab, erenumab, fremanezumab, galcanezumab, romosozumab, mogamulizumab) were in regulatory review in the EU or US, and regulatory actions on their marketing applications are expected by the end of 2018. Based on company announcements and estimated clinical study primary completion dates, and assuming the study results are positive, marketing applications for at least 12 antibody therapeutics that are now being evaluated in late-stage clinical studies may be submitted by the end of 2018. Of the 12 candidates, 8 are for non-cancer indications (lanadelumab, crizanlizumab, ravulizumab, eptinezumab, risankizumab, satralizumab, brolucizumab, PRO140) and 4 are for cancer (sacituzumab govitecan, moxetumomab pasudotox, cemiplimab, ublituximab). Additional antibody therapeutics to watch in 2018 include 19 mAbs undergoing evaluation in late-stage studies with primary completion dates in late 2017 or during 2018. Of these mAbs, 9 are for non-cancer indications (lampalizumab, roledumab, emapalumab, fasinumab, tanezumab, etrolizumab, NEOD001, gantenerumab, anifrolumab) and 10 are for cancer indications (tremelimumab, isatuximab, BCD-100, carotuximab, camrelizumab, IBI308, glembatumumab vedotin, mirvetuximab soravtansine, oportuzumab monatox, L19IL2/L19TNF). Positive clinical study results may enable marketing application submissions in 2018. Brief summaries of these antibody therapeutics are provided in this installment of the ‘Antibodies to watch’ article series. 相似文献
2.
Janice M. Reichert 《MABS-AUSTIN》2017,9(2):167-181
Over 50 investigational monoclonal antibody (mAb) therapeutics are currently undergoing evaluation in late-stage clinical studies, which is expected to drive a trend toward first marketing approvals of at least 6–9 mAbs per year in the near-term. In the United States (US), a total of 6 and 9 mAbs were granted first approvals during 2014 and 2015, respectively; all these products are also approved in the European Union (EU). As of December 1, 2016, 6 mAbs (atezolizumab, olaratumab, reslizumab, ixekizumab, bezlotoxumab, oblitoxaximab) had been granted first approvals during 2016 in either the EU or US. Brodalumab, was granted a first approval in Japan in July 2016. Regulatory actions on marketing applications for brodalumab in the EU and US are not expected until 2017. In 2017, first EU or US approvals may also be granted for at least nine mAbs (ocrelizumab, avelumab, Xilonix, inotuzumab ozogamicin, dupilumab, sirukumab, sarilumab, guselkumab, romosozumab) that are not yet approved in any country. Based on announcements of company plans for regulatory submissions and the estimated completion dates for late-stage clinical studies, and assuming the study results are positive, marketing applications for at least 6 antibody therapeutics (benralizumab, tildrakizumab, emicizumab, galcanezumab, ibalizumab, PRO-140) that are now being evaluated in late-stage clinical studies may be submitted during December 2016* or 2017. Other ‘antibodies to watch' in 2017 include 20 mAbs are undergoing evaluation in pivotal studies that have estimated primary completion dates in late 2016 or during 2017. Of these, 5 mAbs are for cancer (durvalumab, JNJ-56022473, ublituximab, anetumab ravtansine, glembatumumab vedotin) and 15 mAbs are for non-cancer indications (caplacizumab, lanadelumab, roledumab, tralokinumab, risankizumab, SA237, emapalumab, suptavumab, erenumab, eptinezumab, fremanezumab, fasinumab, tanezumab, lampalizumab, brolucizumab). Positive results from these studies may enable submission of marketing applications in 2017 or 2018, or provide justification for additional studies. *See note added in proof for update through December 31, 2016. 相似文献
3.
《MABS-AUSTIN》2013,5(4):799-802
The commercial pipeline of monoclonal antibodies is highly dynamic, with a multitude of transitions occurring during the year as product candidates advance through the clinical phases and onto the market. The data presented here add to that provided in the extensive “Antibodies to watch in 2014” report published in the January/February 2014 issue of mAbs. Recent phase transition data suggest that 2014 may be a banner year for first approvals of antibody therapeutics. As of May 2014, three products, ramucirumab (Cyramza®), siltuximab (Sylvant®) and vedolizumab (EntyvioTM), had been granted first approvals in the United States, and four additional antibody therapeutics (secukinumab, dinutuximab, nivolumab, pembrolizumab) are undergoing regulatory review in either the US or the European Union. Other notable events include the start of first Phase 3 studies for seven antibody therapeutics (dupilumab, SA237, etrolizumab, MPDL3280A, bavituximab, clivatuzumab tetraxetan, blinatumomab). Relevant data for these product candidates are summarized, and metrics for antibody therapeutics development are discussed. 相似文献
4.
Janice M Reichert 《MABS-AUSTIN》2014,6(1):5-14
Since 2010, mAbs has documented the biopharmaceutical industry’s progress in transitioning antibody therapeutics to first Phase 3 clinical studies and regulatory review, and its success at gaining first marketing approvals for antibody-based products. This installment of the “Antibodies to watch” series outlines events anticipated to occur between December 2013 and the end of 2014, including first regulatory actions on marketing applications for vedolizumab, siltuximab, and ramucirumab, as well as the Fc fusion proteins Factor IX-Fc and Factor VIII-Fc; and the submission of first marketing applications for up to five therapeutics (secukinumab, ch14.18, onartuzumab, necitumumab, gevokizumab). Antibody therapeutics in Phase 3 studies are described, with an emphasis on those with study completion dates in 2014, including antibodies targeting interleukin-17a or the interleukin-17a receptor (secukinumab, ixekizumab, brodalumab), proprotein convertase subtilisin/kexin type 9 (alirocumab, evolocumab, bococizumab), and programmed death 1 receptor (lambrolizumab, nivolumab). Five antibodies with US Food and Drug Administration’s Breakthrough Therapy designation (obinutuzumab, ofatumumab, lambrolizumab, bimagrumab, daratumumab) are also discussed. 相似文献
5.
Janice M Reichert 《MABS-AUSTIN》2015,7(1):1-8
The commercial pipeline of recombinant antibody therapeutics is robust and dynamic. As of early December 2014, a total of 6 such products (vedolizumab, siltuximab, ramucirumab, pembrolizumab, nivolumab, blinatumomab) were granted first marketing approvals in 2014. As discussed in this perspective on antibodies in late-stage development, the outlook for additional approvals, potentially still in 2014 and certainly in 2015, is excellent as marketing applications for 6 antibody therapeutics (secukinumab, evolocumab, mepolizumab, dinutuximab, nivolumab, necitumumab) are undergoing a first regulatory review in the EU or US. Of the 39 novel mAbs currently in Phase 3 studies, a marketing application for one (alirocumab) may be submitted in late 2014, and marketing application submissions for at least 4 (reslizumab, ixekizumab, ocrelizumab, obiltoxaximab) are expected in 2015. Other ‘antibodies to watch’ are those in Phase 3 studies with estimated primary completion dates in late 2014 or 2015, which includes 13 for non-cancer indications (brodalumab, bimagrumab, bococizumab, MABp1, gevokizumab, dupilumab, sirukumab, sarilumab, tildrakizumab, guselkumab, epratuzumab, combination of actoxumab + bezlotoxumab, romosozumab) and 2 (racotumomab and clivatuzumab tetraxetan) undergoing evaluation as treatments for cancer. In addition to the novel antibody therapeutics mentioned, biosimilar infliximab and biosimilar trastuzumab are ‘antibodies to watch’ in 2015 because of their potential for entry into the US market and regulatory review, respectively. 相似文献
6.
Janice M. Reichert 《MABS-AUSTIN》2013,5(1):1-4
The commercial pipeline of recombinant antibody therapeutics is robust and dynamic. As of early December 2014, a total of 6 such products (vedolizumab, siltuximab, ramucirumab, pembrolizumab, nivolumab, blinatumomab) were granted first marketing approvals in 2014. As discussed in this perspective on antibodies in late-stage development, the outlook for additional approvals, potentially still in 2014 and certainly in 2015, is excellent as marketing applications for 6 antibody therapeutics (secukinumab, evolocumab, mepolizumab, dinutuximab, nivolumab, necitumumab) are undergoing a first regulatory review in the EU or US. Of the 39 novel mAbs currently in Phase 3 studies, a marketing application for one (alirocumab) may be submitted in late 2014, and marketing application submissions for at least 4 (reslizumab, ixekizumab, ocrelizumab, obiltoxaximab) are expected in 2015. Other ‘antibodies to watch’ are those in Phase 3 studies with estimated primary completion dates in late 2014 or 2015, which includes 13 for non-cancer indications (brodalumab, bimagrumab, bococizumab, MABp1, gevokizumab, dupilumab, sirukumab, sarilumab, tildrakizumab, guselkumab, epratuzumab, combination of actoxumab + bezlotoxumab, romosozumab) and 2 (racotumomab and clivatuzumab tetraxetan) undergoing evaluation as treatments for cancer. In addition to the novel antibody therapeutics mentioned, biosimilar infliximab and biosimilar trastuzumab are ‘antibodies to watch’ in 2015 because of their potential for entry into the US market and regulatory review, respectively. 相似文献
7.
Janice M. Reichert 《MABS-AUSTIN》2016,8(2):197-204
The number of novel antibody therapeutics that received first marketing approvals in 2015 met expectations, with 6 (alirocumab (Praluent®), evolocumab (Repatha®), daratumumab (Darzalex®), dinutuximab (Unituxin®), idarucizumab (Praxbind®), mepolizumab (Nucala®)) granted first approvals as of mid-November*. Seven novel antibody therapeutics (begelomab, brodalumab, elotuzumab, ixekizumab, necitumumab, obiltoxaximab, reslizumab) are in regulatory review, and thus a similar number, if not more, are projected to gain first approvals in 2016. Commercial late-stage antibody therapeutics development exceeded expectations by increasing from 39 candidates in Phase 3 studies as of late 2014 to 53 as of late 2015. Of the 53 candidates, transitions to regulatory review by the end of 2016 are projected for 8 (atezolizumab, benralizumab, bimagrumab, durvalumab, inotuzumab ozogamicin, lebrikizumab, ocrelizumab, tremelimumab). Other "antibodies to watch" include 15 candidates (bavituximab, bococizumab, dupilumab, fasinumab, fulranumab, gevokizumab, guselkumab, ibalizumab, LY2951742, onartuzumab, REGN2222, roledumab, romosozumab, sirukumab, Xilonix) undergoing evaluation in Phase 3 studies that have estimated primary completion dates in 2016. As evidenced by the antibody therapeutics discussed in this perspective, the biopharmaceutical industry has a highly active late-stage clinical pipeline that may deliver numerous new products to the global market in the near future. *See Note added in proof for updates through December 31, 2015. 相似文献
8.
9.
10.
Similar disease phenotypes are engendered as a result of the modular nature of gene networks; thus we hypothesized that all human genetic disease phenotypes appear in similar modular styles. Network representations of phenotypes make it possible to explore this hypothesis. We investigated the modularity of a network of genetic disease phenotypes. We computationally extracted phenotype modules and found that the modularity is well correlated with a physiological classification of human diseases. We also found correlations between the modularity and functional genomics as well as its connection to drug-target associations. 相似文献
11.
Carter PJ 《Experimental cell research》2011,(9):769-1269
Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies to address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies. 相似文献
12.
Shaoning Yang Dingqiang Lu Pingkai Ouyang 《Bioorganic & medicinal chemistry letters》2018,28(10):1731-1735
Epilepsy is a kind of disease with complicated pathogenesis. KCNQ (Kv7) is a voltage dependent potassium channel that is mostly associated with epilepsy and thus becomes an important target in the treatment of epilepsy. In this paper, a series of substituted piperidine derivatives targeting KCNQ were designed and synthesized by using scaffold hopping and active substructure hybridization. Compounds were evaluated by fluorescence-based thallium influx assay, Rb+ flow assay and electrophysiological patch-clamp assay. Results showed that some compounds possessed more potent potassium channel opening activity than Retigabine. More significantly, compound 11 was found to have good pharmacokinetic profiles in vivo. 相似文献
13.
目的:对结节性甲状腺肿患者和甲状腺癌患者术前的甲状腺球蛋白(TG)、抗甲状腺球蛋白抗体(TG-Ab)水平进行回顾性分析,并对TG、TG-Ab水平在结节性甲状腺肿、甲状腺癌诊断中的意义进行研究。方法:分别选取2011年1月-2013年12月我院收治的结节性甲状腺肿患者、甲状腺癌患者和正常健康者各60例作为本研究的观察对象,对三组观察对象TG、TG-Ab水平进行比较分析。结果:结节性甲状腺肿组、健康组患者TG阳性率分别为6.67%、8.33%,差异无统计学意义(P0.05);两组患者TG-Ab阳性率则分别为8.33%和11.67%,差异无统计学意义(P0.05)。而甲状腺癌组患者TG、TG-Ab阳性率分别为33.33%、40.00%,与其他两组比较差异具有统计学意义(P0.05)。在结节性甲状腺肿患者中,其中结节液化型TG阳性率、TG-Ab阳性率明显高于非结节液化型,差异具有统计学意义(P0.05)。在甲状腺癌患者中,其中颈部淋巴结阳性者TG阳性率、TG-Ab阳性率明显高于颈部淋巴结阴性者,差异具有统计学意义(P0.05);单结节癌灶与多结节癌灶在TG阳性率、TG-Ab阳性率差异无统计学意义(P0.05)。结论:临床上采用TG、TG-Ab阳性率测定的方法对甲状腺肿、甲状腺癌进行鉴别和确诊是比较可靠的,值得推广应用。 相似文献
14.
Daniel L. Prince Richard N. Prince 《Journal of industrial microbiology & biotechnology》1988,3(3):157-165
Summary The FDA has set limits concerning the viral and molecular contamination of monoclonal antibody products intended for human use. Industry has an obligation to be as familiar with these limits as it has been with federal requirements pertaining to pyrogens and bacteria. The assessment of risk from polynucleotides, based on molecular biologic and existing technical limitations, is discssed, as is the strategy of validating the purification of monoclonal antibodies of viral contaminants in terms of an indicator organism concept. 相似文献
15.
Juliana Santana Reis Marcos Antonio Corrêa Clovis Augusto Ribeiro Jean Leandro Dos Santos 《Bioorganic & medicinal chemistry letters》2019,29(24):126755
The incidence of skin cancers such as non-melanoma skin cancer and malignant melanoma has increased in the last few years mainly because of chronic exposure to ultraviolet (UV) radiation. Sunscreens protect the skin against harmful UV radiations; however, some limitations of these products justify the discovery of new UV filters. Novel 1,3,5-triazine derivatives (12a-h) obtained by the optimization of prototype resveratrol were synthesized and characterized. All compounds exhibited sun protection factor (SPF) and UVA protection factor (UVAPF) in the range of 3–17 and 3–13, respectively. These values were superior to resveratrol and the UV filter ethylhexyl triazone (EHT) currently available on the market. In addition, all compounds demonstrated in vitro antioxidant activity and thermal stability with the decomposition at temperatures above 236 °C. In conclusion, the novel 1,3,5-triazine derivatives have emerged as new UV filters with antioxidant effect useful to prevent skin cancer. 相似文献
16.
Jingheng Ning Qi Wu Zhenguo Liu Jianhui Wang 《Journal of receptor and signal transduction research》2016,36(1):37-44
Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of non-small cell lung cancer (NSCLC). However, a large number of in-frame deletion, insertion and duplication mutations in the EGFR tyrosine kinase (TK) domain have been observed to alter drug response to such a kinase target. Thus, a systematic investigation of the intermolecular interactions between the clinical small-molecule agents and various EGFR in-frame mutants would help to establish a complete picture of drug response to kinase mutations in lung cancer, and to design new EGFR inhibitors with high potency and selectivity to target drug-resistant mutants. Here, we describe a combined pipeline to explore the drug response of five representative EGFR inhibitors, including three FDA-approved agents (gefitinib, erlotinib and lapatinib) and two compounds under clinical development (AEE788 and TAK-285) to a number of clinically relevant EGFR in-frame mutations, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying drug resistance and sensitivity to EGFR in-frame mutations. It was found that the insertion and duplication mutations in exon 20 can generally cause drug resistance to EGFR due to the reduced size of kinase’s active pocket, while deletion mutations in exon 19 associate closely with increased inhibitor sensitivity to EGFR by establishing additional non-bonded interactions across complex interface, including hydrogen bonds, cation–π interactions and hydrophobic contacts. 相似文献
17.
Michal Brylinski Misagh Naderi Rajiv Gandhi Govindaraj Jeffrey Lemoine 《Journal of molecular biology》2018,430(15):2266-2273
About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is available through the Open Science Framework at https://osf.io/qdjup/. 相似文献
18.
《Endocrine practice》2021,27(5):396-400
ObjectiveTo report a case series of thyroid cancer patients in whom false positive results in immunometric assays for thyroglobulin (TgIMA) were caused by heterophilic antibody interference, describe the clinical scenario in which this interference should be suspected, and recommend methods to demonstrate the interference.MethodsThree patients with unexpectedly elevated thyroglobulin results (range, 1.6-75 ng/mL) were studied. In the first patient, thyroglobulin was elevated despite the presence of Tg antibody. In the second patient, suppressed thyroglobulin was higher than a recent stimulated thyroglobulin. In the third patient, thyroglobulin became detectable years after treatment and did not change after thyroid-stimulating hormone stimulation. TgIMA concentration determination was compared to determination by a mass spectrometry method (TgMS). Thyroglobulin was also remeasured after preabsorption with heterophile antibody blocking reagents and after serial dilutions.ResultsIn all cases, thyroglobulin was undetectable by TgMS. In 2 of 3 patients, dilutions provided nonlinear thyroglobulin results. After blocking agent preabsorption, thyroglobulin dropped by 35%, 45%, and 91% in the 3 samples.ConclusionFalse positive thyroglobulin concentrations from heterophilic antibody interference have significant impact on the management of thyroid cancer. Here we show that TgMS assays can be used to rule out heterophilic antibody interference. This interference should be suspected when a detectable thyroglobulin by TgIMA does not respond to thyroid-stimulating hormone or is discordant from the clinical assessment. 相似文献
19.
Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. 相似文献
20.
Eva Rodríguez-Suárez Justyna Siwy Petra Zürbig Harald Mischak 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(5):884-898
The success of clinical proteome analysis should be assessed based on the clinical impact following implementation of findings. Although there have been several technological advancements in mass spectrometry in the last years, these have not resulted in similar advancements in clinical proteomics. In addition, application of proteomic biomarkers in clinical diagnostics and practical improvement in the disease management is extremely rare. In this review, we discuss the relevant issues associated with identification of robust biomarkers of clinical value. Urine appears to be an ideal source of biomarkers, for theoretical, methodological, and practical reasons. Therefore, this review is focused on the search for biomarkers in urine within the last decade. Urine can be used for non-invasive assessment of a variety of diseases including those affecting the urogenital tract and also other pathologies such as cardiovascular disease or appendicitis. We also discuss the importance of data validation, an essential step in translating biomarkers into the clinical practice. Furthermore, we examine several examples of apparently successful proteomic biomarker discovery studies and their implications for disease diagnosis, prognosis, and therapy evaluation. We also discuss some current challenges in this field and reflect on future research prospects. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. 相似文献