首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Colorectal cancer (CRC) is the second most common cancer in the world and death from CRC accounts for 8% of all cancer deaths both in men and women in the United States. CRC is life-threatening disease due to therapy resistant cancerous cells. The exact mechanisms of cell growth, survival, metastasis and inter & intracellular signaling pathways involved in CRC is still a significant challenge. Hence, investigating the signaling pathways that lead to colon carcinogenesis may give insight into the therapeutic target. In this study, the role of atypical Protein Kinase C (aPKC) on CRC was investigated by using two inhibitors of that protein class: 1) ζ-Stat (8-hydroxynaphthalene-1,3,6-trisulfonic acid) is a specific inhibitor of PKC-ζ and 2) ICA-I 5-amino-1-(2,3-dihydroxy-4-hydroxymethyl)cyclopentyl)-1H-imidazole-4-carboxamide) is a specific inhibitor of PKC-ι. The cell lines tested were CCD18CO normal colon epithelial and LOVO metastatic CRC cells. The inhibition of aPKCs did not bring any significant toxicity on CCD18CO normal colon cell line. Although PKC-ι is an oncogene in many cancers, we found the overexpression of PKC-ζ and its direct association with Rac1. Our findings suggest that the PKC-ζ may be responsible for the abnormal growth, proliferation, and migration of metastatic LOVO colon cancer cells via PKC-ζ/Rac1/Pak1/β-Catenin pathway. These results suggest the possibility of utilizing PKC-ζ inhibitor to block CRC cells growth, proliferation, and metastasis.  相似文献   

2.
Reorganization of cytoskeleton via actin remodeling is a basic step of cell locomotion. Although cell migration of normal and cancer cells can be stimulated by a variety of intra- and extra-cellular factors, all paths ultimate on the regulation of cofilin activity. Cofilin is a small actin-binding protein able to bind both forms of actin, globular and filament, and is regulated by phosphorylation at Serine 3. Following phosphorylation at serine 3 cofilin is inactive, therefore cannot bind actin molecules and cytoskeleton remodeling is impaired. The histone methyltransferase EZH2 is frequently over expressed in many tumour types including colorectal cancer (CRC). EZH2 over activity, which results in epigenetic gene-silencing, has been associated with many tumour properties including invasion, angiogenesis and metastasis but little is known about the underneath molecular mechanisms. Herein, we report that EZH2 is able to control cofilin activity and consequently cell locomotion of CRC cell lines through a non-conventional novel axis that involves integrin signaling. Indeed, we show how genetic and pharmacological inhibition (DZNep and GSK343) of EZH2 function produces hyper phosphorylation of cofilin and reduces cell migration. We previously demonstrated by chromatin immuno-precipitation that Integrin alpha 2 (ITGα2) expression is regulated by EZH2. In the present study we provide evidence that in EZH2-silenced cells the signaling activity of the de-repressed ITGα2 is able to increase cofilin phosphorylation, which in turn reduces cell migration. This study also proposes novel mechanisms that might provide new anti-metastatic strategies for CRC treatment based on the inhibition of the epigenetic factor EZH2 and/or its target gene.  相似文献   

3.
Cell migration and invasion are key processes in the metastasis of cancer, and suppression of these steps is a promising strategy for cancer therapeutics. The aim of this study was to explore small molecules for treating colorectal cancer (CRC) and to investigate their anti‐metastatic mechanisms. In this study, six CRC cell lines were used. We showed that YH‐306 significantly inhibited the migration and invasion of CRC cells in a dose‐dependent manner. In addition, YH‐306 inhibited cell adhesion and protrusion formation of HCT116 and HT‐29 CRC cells. Moreover, YH‐306 potently suppressed uninhibited proliferation in all six CRC cell lines tested and induced cell apoptosis in four cell lines. Furthermore, YH‐306 inhibited CRC colonization in vitro and suppressed CRC growth in a xenograft mouse model, as well as hepatic/pulmonary metastasis in vivo. YH‐306 suppressed the activation of focal adhesion kinase (FAK), c‐Src, paxillin, and phosphatidylinositol 3‐kinases (PI3K), Rac1 and the expression of matrix metalloproteases (MMP) 2 and MMP9. Meanwhile, YH‐306 also inhibited actin‐related protein (Arp2/3) complex‐mediated actin polymerization. Taken together, YH‐306 is a candidate drug in preventing growth and metastasis of CRC by modulating FAK signalling pathway.  相似文献   

4.
Protein kinase Cι (PKCι) is an atypical PKC isoform and participates in multiple aspects of the transformed phenotype in human cancer cells. We previously reported that frequent amplification and overexpression of PKCι were correlated with lymph node metastasis in primary esophageal squamous cell carcinomas (ESCC). In the present study, short interfering RNA-mediated silencing of PKCι revealed that this enzyme was required for cell migration, invasion, and resistance to anoikis. In vivo experiments showed that PKCι suppression decreased tumor growth in esophageal cancer xenografts and lung metastases in nude mice. At the molecular level, knockdown of PKCι in suspended ESCC cells caused a decrease in S-phase kinase-associated protein 2 (SKP2) that had been reported to promote resistance to anoikis via the PI3K/AKT pathway. AKT phosphorylation was abolished after PKCι suppression, but AKT activation could be refreshed by PKCι upregulation, suggesting that PKCι enhanced cell resistance to anoikis via the PKCι-SKP2-PI3K/AKT pathway. Addition of the proteasome inhibitor MG132 prevented the decrease of SKP2 in PKCι silenced cells, and polyubiquitin-SKP2 was elevated after PKCι depletion, showing that PKCι might regulate the expression of SKP2 through the ubiquitin-proteasome pathway in suspended cells. Furthermore, overexpression of SKP2 in PKCι-downregulated cells restored cell resistance to anoikis. Most importantly, PKCι expression significantly correlated with SKP2 in 133 ESCC tissues (P = 0.031). Taken together, our data show that PKCι promotes tumorigenicity and metastasis of human esophageal cancer and that SKP2 is a candidate downstream effector of PKCι signaling in ESCC.  相似文献   

5.
Huang S  Ouyang N  Lin L  Chen L  Wu W  Su F  Yao Y  Yao H 《PloS one》2012,7(1):e29124
The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to mediate the metastasis of many malignant tumors including breast carcinoma. Interaction between hepatocyte growth factor (HGF) and the Met receptor tyrosine kinase mediates development and progression of cancers. HGF is able to induce CXCR4 expression and contributes to tumor cell invasiveness in breast carcinoma. However, the mechanism of the CXCR4 expression modulated by c-Met-HGF axis to enhance the metastatic behavior of breast cancer cells is still unclear. In this study, we found that HGF induced functional CXCR4 receptor expression in breast cancer cells. The effect of HGF was specifically mediated by PKCζ activity. After transfection with PKCζ-siRNA, the phosphorylation of PKCζ and CXCR4 was abrogated in breast cancer cells. Interference with the activation of Rac1, a downstream target of HGF, prevented the HGF-induced increase in PKCζ activity and CXCR4 levels. The HGF-induced, LY294002-sensitive translocation of PKCζ from cytosol to plasma membrane indicated that HGF was capable of activating PKCζ, probably via phosphoinositide (PI) 3-kinases. HGF treatment also increased MT1-MMP secretion. Inhibition of PKCζ, Rac-1 and phosphatidylinositol 3-kinase may attenuate MT1-MMP expression in cells exposed to HGF. Functional manifestation of the effects of HGF revealed an increased ability for migration, chemotaxis and metastasis in MDA-MB-436 cells in vitro and in vivo. Our findings thus provided evidence that the process of HGF-induced functional CXCR4 expression may involve PI 3-kinase and atypical PKCζ. Moreover, HGF may promote the invasiveness and metastasis of breast tumor xenografts in BALB/c-nu mice via the PKCζ-mediated pathway, while suppression of PKCζ by RNA interference may abrogate cancer cell spreading.  相似文献   

6.
B Feng  TT Dong  LL Wang  HM Zhou  HC Zhao  F Dong  MH Zheng 《PloS one》2012,7(8):e43452
MicroRNAs have been implicated in the regulation of several cellular signaling pathways of colorectal cancer (CRC) cells. Although emerging evidence proves that microRNA (miR)-106a is expressed highly in primary tumor and stool samples of CRC patients; whether or not miR-106a mediates cancer metastasis is unknown. We show here that miR-106a is highly expressed in metastatic CRC cells, and regulates cancer cell migration and invasion positively in vitro and in vivo. These phenotypes do not involve confounding influences on cancer cell proliferation. MiR-106a inhibits the expression of transforming growth factor-β receptor 2 (TGFBR2), leading to increased CRC cell migration and invasion. Importantly, miR-106a expression levels in primary CRCs are correlated with clinical cancer progression. These observations indicate that miR-106a inhibits the anti-metastatic target directly and results in CRC cell migration and invasion.  相似文献   

7.
N-myc downstream regulated gene-1 (NDRG1) has been identified as a putative metastasis suppressor gene and proved to be a key player in cancer spreading and proliferation in our previous work. However, the effects of NDRG1 on tumor invasion and the mechanisms behind it are rarely understood. Here we provided in silico evidence that NDRG1 plays a crucial role in actin reorganization in colorectal cancer (CRC). Through in vitro experiments, we next observed filopodia formation was altered in NDRG1-modified cell lines, while cell division cycle-42 (CDC42) displayed excessive activation in NDRG1-silenced cells. Mechanistically, NDRG1 loss disrupts the binding between RhoGDIα and CDC42 and triggers the activation of CDC42 and the downstream cascades PAK1/Cofilin, thereby promotes the formation of filopodia and invasiveness of CRC. The knockdown of NDRG1 led to enhanced dissemination of CRC cells in vivo and correlates with active CDC42 expression. Using clinical sample analysis, we found an elevated level of active CDC42 in patients with advanced T stage, and it was negatively related to NDRG1 expression. In sum, these results uncover a mechanism utilized by NDRG1 to regulate CDC42 activity in coordinating cytoskeleton reorganization, which was crucial in cancer invasion.  相似文献   

8.
9.
Cofilin mediates lamellipodium extension and polarized cell migration by accelerating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by LIM kinase (LIMK)-1-mediated phosphorylation and is reactivated by cofilin phosphatase Slingshot (SSH)-1L. In this study, we show that cofilin activity is temporally and spatially regulated by LIMK1 and SSH1L in chemokine-stimulated Jurkat T cells. The knockdown of LIMK1 suppressed chemokine-induced lamellipodium formation and cell migration, whereas SSH1L knockdown produced and retained multiple lamellipodial protrusions around the cell after cell stimulation and impaired directional cell migration. Our results indicate that LIMK1 is required for cell migration by stimulating lamellipodium formation in the initial stages of cell response and that SSH1L is crucially involved in directional cell migration by restricting the membrane protrusion to one direction and locally stimulating cofilin activity in the lamellipodium in the front of the migrating cell. We propose that LIMK1- and SSH1L-mediated spatiotemporal regulation of cofilin activity is critical for chemokine-induced polarized lamellipodium formation and directional cell movement.  相似文献   

10.
11.
Liver metastasis is a major cause of mortality from colorectal cancer (CRC). However, mechanisms underlying this process are largely unknown. Osteopontin (OPN) is a secreted phosphorylated glycoprotein that is involved in tumor migration and metastasis. The role of OPN in cancer is currently unclear. In this study, OPN mRNA was examined in tissues from CRC, adjacent normal mucosa, and liver metastatic lesions using quantitative real-time PCR analysis. The protein expression of OPN and its receptors (integrin αv and CD44 v6) was detected by using an immunohistochemical (IHC) method. The role of OPN in liver metastasis was studied in established colon cancer Colo-205 and SW-480 cell lines transfected with sense- or antisense-OPN eukaryotic expression plasmids by flow cytometry and cell adhesion assay. Florescence redistribution after photobleaching (FRAP) was used to study gap functional intercellular communication (GJIC) among OPN-transfected cells. It was found that OPN was highly expressed in metastatic hepatic lesions from CRC compared to primary CRC tissue and adjacent normal mucosa. The expression of OPN mRNA in tumor tissues was significantly related with the CRC stages. OPN expression was also detected in normal hepatocytes surrounding CRC metastatic lesions. Two known receptors of OPN, integrin αv and CD44v6 proteins, were strongly expressed in hepatocytes from normal liver. CRC cells with forced OPN expression exhibited increased heterotypic adhesion with endothelial cells and weakened intercellular communication. OPN plays a significant role in CRC metastasis to liver through interaction with its receptors in hepatocytes, decreased homotypic adhesion, and enhanced heterotypic adhesion.  相似文献   

12.
13.
Stanniocalcin (STC), a glycoprotein hormone, is expressed in a wide variety of tissues to regulate Ca2+ and PO4- homeostasis. STC2, a member of STC family, has been reported to be associated with tumor development. In this study, we investigated whether the expression of STC2 is associated with migration and invasion of breast cancer cells. We found that breast cancer cell line 231 HM transfected with STC2 shRNA displayed high motility, fibroblast morphology, and enhanced cell migration and invasion. Introduction of STC2 in 231 cells reduced cell migration and invasion. In response to irradiation, silencing of STC2 in 231 HM cells reduced apoptosis, whereas overexpression of STC2 in 231 cells promoted apoptosis, compared with in control cells. Mechanistic study showed that STC2 negatively regulated PKC to control the expression of Claudin-1, which subsequently induced the expressions of EMT-related factors including ZEB1, ZO-1, Slug, Twist, and MMP9. Suppression of PKC activity by using a PKC inhibitor (Go 6983) restored the normal motility of STC2-silenced cells. Furthermore, in vivo animal assay showed that STC2 inhibited tumorigenesis and metastasis of breast cancer cells. Collectively, these results indicate that STC2 may inhibit EMT at least partially through the PKC/Claudin-1-mediated signaling in human breast cancer cells. Thus, STC2 may be exploited as a biomarker for metastasis and targeted therapy in human breast cancer.  相似文献   

14.
15.
Cancer/testis antigens (CTAs) are often aberrantly expressed in cancer stem cells (CSCs) which are responsible for tumor metastasis. Rec8 meiotic recombination protein (REC8), a member of CTAs, shares distinct roles in various cancers, while its contribution to CSCs and colorectal cancer (CRC) remains unclear. We found that overexpression of REC8 facilitated the migration and invasion of CRC cells (DLD-1 and SW480 cells) in vitro and promoted the liver metastasis of CRC in vivo. Moreover, REC8 is highly expressed in CRC stem-like cells and is required for the maintenance of CSC stemness. Mechanistic studies suggested that REC8 mediated through the activation of Bruton tyrosine kinase (BTK). Inhibition of BTK by ibrutinib not only suppressed the migration and invasion-promoting ability, but also declined the increased expression of p-BTK, p-Akt, β-catenin, and CSC markers upon REC8 overexpression. Importantly, high expression of REC8 in cancerous tissues was related to advanced clinical stage and lymph node metastasis of 62 CRC patients, and REC8 was enriched in the cancerous cells positive for CSC markers. Collectively, our results indicate that REC8 promotes CRC metastasis by increasing cell stemness through BTK/Akt/β-catenin pathway.  相似文献   

16.
ABSTRACT

CD142 promotes cell mobility, which contributes to carcinogenesis. However, the role of CD142 on colorectal cancer (CRC) mobility is unclear. This study showed that CD142 expression increased in CRC tissues, especially in those with invasion or metastasis. The positive sorting or overexpression of CD142 promoted the invasion and migration of CRC cells. Overall, CD142 may be responsible for CRC mobility.  相似文献   

17.
Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44− cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44− using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.  相似文献   

18.
BackgroundThe overall prognosis of colorectal cancer (CRC) patients is unsatisfactory due to cancer metastasis after operation. This study aims to investigate the clinical significance of plasma osteopontin (OPN) levels as minimally invasive, predictive, and surrogate biomarkers for prognosis of CRC patients.MethodsThis randomized study design consists of pre-operative and post-operative plasma samples from a total of 79 patients. We determined plasma levels of OPN by ELISA and examined their correlation with the clinicopathological parameters of CRC patients. The effects of endogenous and exogenous OPN on CRC metastasis were investigated by examination of the effect on regulators of epithelial to messenchymal transition and migration assay.ResultsOur findings demonstrated for the first time the clinical correlation of plasma OPN with metastasis of CRC patients. High post-operative plasma OPN level (>153.02 ng/ml) associated with development of metastasis after curative resection (p<0.001). Moreover, post-operative plasma OPN level correlated with disease-free survival of CRC patients (p=0.009) and was an independent factor for predicting development of metastasis in CRC patients after curative resection (p=0.036). Our in vitro model showed that OPN ectopic expression induced DLD1 cell migration through Snail and Twist1 overexpression and E-cadherin repression, and secretory OPN level enhanced cell migration.ConclusionsThe results of the current study suggest that post-operative plasma OPN correlated with post-operative metastasis, suggesting that it is a potential non-invasive biomarker for the development of future metastasis in CRC patients. In addition, OPN was shown to be involved in the metastatic process and thus inhibition of OPN is a potential therapeutic approach to treat CRC patients.  相似文献   

19.
MicroRNAs (miRNAs) have recently emerged as regulators of metastasis. We provide insight into the behavior of miR-221 in colorectal cancer (CRC) metastasis by showing that miR-221 is significantly upregulated in metastatic CRC cell lines and tissues. miR-221 overexpression enhances, whereas miR-221 depletion reduces CRC cell migration and invasion in vitro and metastasis in vivo. We identify RECK as a direct target of miR-221, reveal its expression to be inversely correlated with miR-221 in CRC samples and show that its re-introduction reverses miR-221-induced CRC invasiveness. Collectively, miR-221 is an oncogenic miRNA which may regulate CRC migration and invasion through targeting RECK.  相似文献   

20.
目的:研究miRNA-96在结直肠癌转移中的作用及其机制。方法:采用Transwell试验分析结直肠癌Lo Vo细胞的迁移和侵袭能力,采用荧光素报告基因及蛋白免疫印迹试验研究结直肠癌中miR-96的作用靶点。结果:miR-96抑制剂处理后下调miR-96的表达并抑制Lo Vo细胞的迁移和侵袭。荧光素报告基因试验显示RECK是miR-96的作用靶点,且RECK沉默能够部分阻碍miR-96抑制剂所导致的Lo Vo细胞迁移和侵袭减少。结论:miRNA-96可通过作用于RECK促进结直肠癌细胞转移,这可能成为治疗结直肠癌转移的新靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号