首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In central Europe, both brown trout Salmo trutta and European grayling Thymallus thymallus are threatened native salmonid species with high value in recreational angling and nature conservation. On the other hand, rainbow trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis are intensively stocked non-native species of high angling value but no value for nature conservation. This study tested if harvest rates of native salmonids are negatively correlated to intensive stocking and harvest rates of non-native salmonids in inland freshwater recreational fisheries. Data were collected from 250 fishing sites (river and stream stretches) over 13 years using mandatory angling logbooks. Logbooks were collected from individual anglers by the Czech Fishing Union in the regions of Prague and Central Bohemia, Czechia (central Europe) and processed by the author of this study. In result, anglers harvested 200,000 salmonids with total weight of 80 tons over 13 years. Intensive stocking of multiple salmonid species lead to slightly lower harvests of native salmonids. Inversely, intensive harvests of multiple salmonid species lead to slightly higher harvest of native salmonids. Recapture rates of stocked salmonids were relatively low (0.6%–3.7%), proving fish stocking moderately ineffective. Since the effects of non-native salmonid stocking and harvest rates on native salmonid harvest were significant but not strong, it is suggested that rivers and streams that support fishing for non-native salmonids still support fishing for native salmonids. However, this idea does not apply for fishing sites with really high intensity of non-native salmonid stocking – harvest rates of natives were very low on these fishing sites.  相似文献   

2.
Marble trout, endemic to the Adriatic drainage basin, is severely threatened by hybridisation with non-native brown trout. In the present study, we analysed 12 microsatellite DNA loci to assess genetic population structure and differentiation between sympatric phenotypic marble and brown trout at nine sampling sites in the upper Etsch/Adige River system. F ST and AMOVA analyses revealed significant genetic differentiation between marble and brown trout samples. Thus, admixture between brown and marble trout appears to be incomplete. However, factorial correspondence analysis depicted marble trout, Atlantic brown trout and intermediate genotypes. Bayesian-based individual assignment tests identified indigenous marble trout at five sampling sites. In four other samples no ‘pure’ marble trout were detected. Bidirectional, first-generation hybridisation, involving both sexes of both parental species was observed. In locations where ‘pure’ marble trout still exist, post-F1 hybridisation appears to be directed towards brown trout. This has likely slowed the rate of hybridisation between the two trout species and the decline of relic marble trout populations. Based on these results, restoration management actions are proposed, such as the abandonment of brown trout stocking activities, sharper angling policies, establishment of indigenous marble trout breeding strains and the elaboration of a conservation priority list.  相似文献   

3.
The success of stocking with hatchery-reared trout has been the subject of varied investigations for the past half-century. Percentage returns are summarised, and literature on the post-stocking movements of hatchery-reared trout is reviewed. Factors affecting the poststocking movements are considered, special attention being paid to studies on industrial rivers. Highest returns are obtained from stockings, with trout of a size suitable for angling, made during or shortly before the angling season. The majority of stocked brown trout, Salmo trutta tend to remain close to the area of stocking, but brook trout, Salvelinus fontinalis and rainbow trout, Salmo gairdneri show greater movement, usually in a down-stream direction. Greater dispersion of all species occurs if they have overwintered prior to capture or have been stocked in'cold water'or in small upstream stretches of river.  相似文献   

4.
Preserving of fish species and populations is important whether it is for exploitation or just for conservation. Management of fisheries aim to maintain fishable stocks that are attractive to anglers, and different means are performed. In this study from the River South Rena in southeastern Norway, conducted during 1991–2005, the effects of supportive stocking of hatchery reared brown trout (Salmo trutta L.) from 1996, and bag limit (BL) and catch‐release (CR) practice for the target species brown trout, from 2002, were explored. Effects of supplemental brown trout stocking was not noticeable, except from one year following a year of exceptional high number of stocked fish, actually 41% of the catches, whereas in the following years this proportion remained constant about 10%, and the catches remained high in 2003 and 2004, mainly due to increased angling success rate after BL‐CR introduction.  相似文献   

5.
Comparisons of the genetic composition of brown trout Salmo trutta captured by anglers and by electrofishing based on three diagnostic microsatellite loci provided strong evidence that angling is selective in a stocked brown trout population. At two sites, anglers caught significantly younger trout and proportionally more introduced hatchery trout and hybrids than were observed in electrofishing surveys. Selective angling, in combination with a small legal catch size, may have considerably eliminated introduced trout and hybrids before spawning at the study sites, and thus may have reduced the introgression of alien genes into the local gene pool. Angling can be an important factor influencing the genetic structure of fish populations and should be taken into account in studies of introgressive hybridization in stocked fish populations and their management. In this study, demographic consequences of stocking were not assessed. Thus, even though the genetic consequences of stocking may be minimal or largely reversible through angling, resource competition between native and introduced trout, until they reach legal catch size, is expected to have a negative effect on the productivity of the indigenous trout population.  相似文献   

6.
Hybridization with introduced taxa is one of the major threats to the persistence of native biodiversity. The westslope cutthroat trout (Oncorhynchus clarkii lewisi) is found in southeastern British Columbia and southwestern Alberta, Canada, and adjacent areas of Montana, Idaho, and Washington State, USA. Through much of this area, native populations are threatened by hybridization with introduced rainbow trout (O. mykiss). We surveyed 159 samples comprising over 5,000 fish at 10 microsatellite DNA loci to assess the level of admixture between native westslope cutthroat trout (wsct) and introduced rainbow trout in southwestern Alberta. Admixture levels (qwsct of 0 = pure rainbow trout, qwsct of 1.0 = pure westslope cutthroat trout) ranged from <0.01 to 0.99 and averaged from 0.72 to 0.99 across seven drainage areas. Regression tree analyses indicated that water temperature, elevation, distance to the nearest stocking site, and distance to the nearest railway line were significant components of a model that explained 34 % of the variation across sites in qwsct across 58 localities for which habitat variables were available. Partial dependence plots indicated that admixture with rainbow trout increased with increasing water temperature and distance to the nearest railway line, but decreased with increasing elevation and distance from stocking site to sample site. Our results support the hypothesis that westslope cutthroat trout may be less susceptible to hybridization with rainbow trout in colder, higher elevation streams, and illustrate the interaction between abiotic and anthropogenic factors in influencing hybridization between native and introduced taxa.  相似文献   

7.

The nonnative lake trout (Salvelinus namaycush Walbaum, 1792) population in Lake Pend Oreille, Idaho increased exponentially during 1999–2006. This led to an unsustainable level of predation mortality on kokanee (Oncorhynchus nerka Walbaum, 1792), increased the conservation threat to native bull trout (Salvelinus confluentus Suckley, 1859), and jeopardized the popular recreational fishery for kokanee and rainbow trout (Oncorhynchus mykiss Walbaum, 1792). In response, lake trout were suppressed since 2006 using incentivized angling, gill netting, and trap netting. From 2006 through 2016, 193,982 lake trout were removed (50% by gill netting; 44% by angling; 6% by trap netting). During this period, age-8 + (adult) lake trout abundance declined by 64%, age-3 (recruit) abundance declined by 56%, and mean total annual mortality (A) was 31.1%. Lake trout did not show evidence of a density-dependent response. Kokanee did not collapse and rebounded to abundances not observed since before lake trout expansion. Bull trout abundance declined during suppression, but the population was sustained. Lake trout suppression allowed a harvest fishery for kokanee and trophy fishery for rainbow trout to be restored. We conclude that suppression can be an effective management action for mitigating effects of nonnative lake trout in a large, deep lake.

  相似文献   

8.
Crane Prairie Reservoir in the upper Deschutes River Basin has historically supported a wild population of migratory Deschutes River redband trout. Owing to its status as a premier destination for recreational angling in Oregon, the reservoir has been stocked with domesticated hatchery rainbow trout since 1955. In recent years the wild redband trout population has experienced a substantial decline. Effects on productivity related to genetic interaction with naturally spawning hatchery-origin fish (fitness risks) have not been determined. The species Oncorhynchus mykiss has been characterized with substantial genetic diversity throughout the Deschutes River Basin that further heightens the challenge of identifying specific conservation needs of wild populations. A conservation plan for Crane Prairie wild redband trout requires a better understanding of the natural reproductive success of out-of-basin hatchery trout in the reservoir tributaries, and the similarity between Crane Prairie redband trout with other extant redband trout populations in the basin. Using a suite of 17 microsatellite nuclear DNA markers, we evaluated the genetic structure among Crane Prairie Reservoir redband trout, hatchery rainbow trout, and two adjacent populations of redband trout from within the Upper Deschutes River Basin. We observed significant heterogeneity between the hatchery and wild Crane Prairie populations that may reflect differences in life histories, differential productivity and assortative mating. The genetic distinctions observed among the three redband trout populations suggest restricted gene flow and genetic drift within the upper basin. Temporally stratified sampling and larger numbers of samples will be necessary to confirm these conclusions.  相似文献   

9.
SUMMARY. 1. Intensive research into the life history of brown trout started In 1948 when the Brown Trout Laboratory was opened in Pitlochry. Over the next 15 years significant contributions were made to the brown trout literature upon which the Laboratory based advice to landowners and anglers wanting to develop their fisheries. 2. Increasing pressure from the government for more work on Atlantic salmon tended to divert research funds and time away from brown trout investigations. The International Biological Programme's major study at Loch Leven from 1966 to 1972 ensured a continuing interest in trout in standing waters. Over this period little attention had been paid to trout in rivers. This changed when a number of investigations were started on the River Tweed by Edinburgh University. 3. A major constraint to brown trout conservation and management has been illegal fishing and lack of records on stocking activities and catches. The granting of Protection Orders under the Freshwater and Salmon Fisheries (Scotland) Act, 1976, has been a major incentive to increased interest in the improvement of trout fisheries. 4. Brown trout stocks have been reduced in certain areas due to the effects of afforestation, acidification, land drainage and farm wastes. Various remedial measures have been proposed and implemented. 5. To meet the increasing demands for trout fishing, many loch and reservoir fisheries are now stocked with rainbow trout in preference to brown trout. Attention should be paid to the interaction of these two species in both standing and in running waters., where fish farm escapees and inadvisable releases go unrecorded. 7. Research into the genetic effects on wild stocks from the liberation of large numbers of hatchery-reared brown trout has been lacking and probably many ‘pure’ indigenous stocks have been lost. More work in this field is essential. 8. Proposals are outlined for future brown trout research and recommendations are made for better management. Suggestions are also put forward for changes in the legislation to further protect Scottish brown trout stocks.  相似文献   

10.
Our objective was to evaluate the long-term sustainability of lake trout Salvelinus namaycush and rainbow trout Oncorhynchus mykiss populations subjected to a range of fishing mortality (F) in Lake Pend Oreille, Idaho, USA, while providing for bull trout Salvelinus confluentus and kokanee Oncorhynchus nerka recovery. In order to achieve our objective, we developed a density-dependent stochastic predator–prey simulation model for the three major predators (lake trout, rainbow trout, and bull trout) on kokanee in Lake Pend Oreille. As F increased from 0.0 to 1.0, lake trout numbers in 2015 declined 90% for gillnetting, 76% for angling, and 48% for trap netting. At fishing mortality rates observed in Lake Pend Oreille during 2006, all methods combined and angling alone suppressed the lake trout population, but not gillnetting or trap netting alone. As F increased from 0.0 to 0.3, rainbow trout numbers in 2015 declined by 38%. Abundance of adult bull trout increased by 5.8% per year during 1996–2006, after implementation of no-kill regulations, which met the Federal Recovery Plan criterion of a stable or increasing trend in abundance. By 2010, total consumption of kokanee by lake trout, rainbow trout, and bull trout would increase by 20% if fishing mortality on lake trout and rainbow trout declined by 30% from 1996 levels, and would decrease by 14% if fishing mortality on lake trout and rainbow trout increased by 30% from 1996 levels. At rates of fishing mortality exerted on lake trout and rainbow trout in 2006, the likelihood of kokanee collapse was 65% within the next decade. Therefore, fishing mortality would need to be at least 6% higher on both lake trout and rainbow trout to reduce the likelihood of kokanee collapse to 50%. We conclude that kokanee biomass is presently out of balance with predation in Lake Pend Oreille, because kokanee production cannot compensate for all predation loss. Our findings suggest that a combination of unusually high kokanee production and unusually low predation are likely needed for kokanee to survive the next decade in Lake Pend Oreille.  相似文献   

11.
Loch Leven, U.K., contains brown trout (Salmo trutta), eel (Anguilla anguilla), minnow (Phoxinus phoxinus), perch (Perca fluviatilis), pike (Esox lucius) and three-spined stickleback (Gasterosteus aculeatus), with brook lamprey (Lampetra planeri) and stone loach (Barbatula barbatula) also present in its tributaries. Arctic charr (Salvelinus alpinus), Atlantic salmon (Salmo salar) and flounder (Platichthys flesus) are now extinct. The brown trout population has supported a world-renowned recreational fishery for over a century, although a decline in fishery performance led to extensive stocking between 1983 and 2006, including with non-native rainbow trout (Oncorhynchus mykiss). This review combines historical information with contemporary gill-net and hydroacoustic surveys. In 2008, brown trout, perch and three-spined sticklebacks were abundant, but pike and stone loach were rare. The obstruction of migratory routes was probably responsible for the loss of Atlantic salmon and flounder, while a lowering of water level likely caused the extinction of Arctic charr and contributed to a reduction in pike abundance. Perch abundance has fluctuated markedly, being influenced by disease and eutrophication, although a reduction in nutrients and associated recovery of macrophytes are likely to have benefitted this species. Although the brown trout population has undoubtedly shown a long-term decline, individuals are currently in excellent condition.  相似文献   

12.
To infer the distribution pattern of introduced rainbow trout, Oncorhynchus mykiss, we compared abiotic factors among tributaries with and without rainbow trout in the Atsuta River, Hokkaido, Japan. Rainbow trout were present in 10 of the 24 tributaries. Stepwise logistic regression analysis indicated that the occurrence of rainbow trout was more likely in low-gradient tributaries and was negatively correlated with elevation. Our results indicate that the successful establishment of rainbow trout can be predicted using abiotic factors, including elevation and gradient.  相似文献   

13.
Hybridization of cutthroat trout and steelhead/rainbow trout is ubiquitous where they are sympatric, either naturally or owing to introductions. The ability to detect hybridization and introgression between the two species would be greatly improved by the development of more diagnostic markers validated across the two species' many phylogenetic lineages. Here, we describe 81 novel genetic markers and associated assays for discriminating the genomes of these sister species. These diagnostic nucleotide polymorphisms were discovered by sequencing of rainbow trout expressed sequence tags (ESTs) in a diverse panel of both cutthroat trout and steelhead/rainbow trout. The resulting markers were validated in a large number of lineages of both species, including all extant subspecies of cutthroat trout and most of the lineages of rainbow trout that are found in natural sympatry with cutthroat trout or used in stocking practices. Most of these markers (79%) distinguish genomic regions for all lineages of the two species, but a small number do not reliably diagnose coastal, westslope and/or other subspecies of cutthroat trout. Surveys of natural populations and hatchery strains of trout and steelhead found rare occurrences of the alternative allele, which may be due to either previous introgression or shared polymorphism. The availability of a large number of genetic markers for distinguishing genomic regions originating in these sister species will allow the detection of both recent and more distant hybridization events, facilitate the study of the evolutionary dynamics of hybridization and provide a powerful set of tools for the conservation and management of both species.  相似文献   

14.

The McCloud River Redband Trout (MRRT; Oncorhynchus mykiss stonei) is a unique subspecies of rainbow trout that inhabits the isolated Upper McCloud River of Northern California. A major threat to MRRT is introgressive hybridization with non-native rainbow trout from historical stocking and contemporary unauthorized introductions. To help address this concern, we collected RAD-sequencing data on 308 total individuals from MRRT and other California O. mykiss populations and examined population structure using Principal Component and admixture analyses. Our results are consistent with previous studies; we found that populations of MRRT in Sheepheaven, Swamp, Edson, and Moosehead creeks are nonintrogressed. Additionally, we saw no evidence of introgression in Dry Creek, and suggest further investigation to determine if it can be considered a core MRRT conservation population. Sheepheaven Creek was previously thought to be the sole historical lineage of MRRT, but our analysis identified three: Sheepheaven, Edson, and Dry creeks, all of which should be preserved. Finally, we discovered diagnostic and polymorphic SNP markers for monitoring introgression and genetic diversity in MRRT. Collectively, our results provide a valuable resource for the conservation and management of MRRT.

  相似文献   

15.
Synopsis We examined the influence of biotic and abiotic factors on the distribution, abundance, and condition of salmonid fishes along a stream gradient. We observed a longitudinal change in fish distribution with native cutthroat trout, Oncorhynchus clarki utah, and introduced brown trout, Salmo trutta, demonstrating a distinct pattern of allopatry. Cutthroat trout dominated high elevation reaches, while reaches at lower elevations were dominated by brown trout. A transition zone between these populations was associated with lower total trout abundance, consistent changes in temperature and discharge, and differences in dietary preference. Variation in cutthroat trout abundance was best explained by a model including the abundance of brown trout and diel temperature, whereas variation in brown trout abundance was best explained by a model including the abundance of cutthroat trout and discharge. These results suggest the potential for condition-mediated competition between the two species. The results from our study can aid biologists in prioritizing conservation activities and in developing robust management strategies for cutthroat trout.  相似文献   

16.

In Slovenia, the unique watershed naturally hosting the marble trout is the So?a River, called Isonzo in Italy. In 1993–1996 molecular data established the existence of extensive hybridization with stocked Atlantic domestic lineages which is a threat for this taxon and for the economy of the country established on the angling tourism. Different management actions have been developed for restoring marble genes since 1996: banning stocking of brown trout, revising fishing regulations for anglers and testing genetically brood stock in hatchery for stocking phenotypic and pure marble fry. This long fight against hybridization was genetically surveyed using allozymes, mitochondrial sequences and microsatellites according to the available technique at each period. Despite the irregularity of genotyping along nearly fifteen years after the new management started, it appears that the proportion of domestic lineage in the river dropped regularly of about 2% each year, a positive result for conservative management measures.

  相似文献   

17.
  1. The brown trout Salmo trutta is characterised by both anadromous (sea trout) and resident populations, naturally occurring in Atlantic and Ponto-Caspian rivers. Sea trout are currently considered absent from rivers of the Mediterranean area, probably because of the non-optimal chemical–physical characteristics of the Mediterranean Sea. However, the occasional bycatch of smoltified S. trutta in the Adriatic Sea is well known among fishermen and the biological explanation of this phenomenon is still controversial. The aim of this study was to compare the genetic diversity of freshwater and marine brown trout to try to understand the factors underlying the presence of putative anadromous brown trout in the Adriatic Sea.
  2. In this study, we analysed the genetic diversity of: (1) wild brown trout collected from the Esino River (central Italy); (2) a domestic strain of brown trout used for stocking the study area; and (3) a sample of Adriatic sea trout collected near the outlet of the Esino River. Together with genetic analysis, we carried out scale analysis in order to track the freshwater/marine stages of the life cycle in the sea trout samples. The genetic characterisation was carried out by polymerase chain reaction–restriction fragment length polymorphism analysis of the mtDNA fragment ND-5/6 and the nuclear locus LDH-C1* and by genotyping 15 microsatellite loci. The genetic polymorphism obtained was used to investigate intra- and inter-population genetic diversity, rates of genetic introgression between wild and domestic samples and the origin of sea trout specimens by using assignment tests.
  3. Our genetic analyses demonstrated that the sea trout analysed in this study are from the domestic strain of Atlantic origin used in central Italy for stocking activities. The level of genetic introgression between native and domestic samples is high in the Esino River. The populations more resilient to introgressive hybridisation appeared to be those living in the portion of the river network dominated by carbonate rocks. Assignment tests (GeneClass) suggest the existence of a link between stocking efforts and the freshwater origin of the sea trout. In addition, data obtained from the analysis of scales, size measurement, and sex determination showed a pattern of smolt age, size, and sex ratio very similar to those observed in other anadromous populations.
  4. In conclusion, the present study highlighted that sea trout from the central Adriatic Sea originated from brown trout of Atlantic origin inhabiting the Esino River. Their seaward migratory behaviour could represent a consequence of an active migration instead of a passive displacement by water flow. Our results also showed that traditional stocking practices represent a negative activity for the conservation of the last Mediterranean native S. trutta populations.
  相似文献   

18.
1. The conservation of salmonid inter‐ and intra‐specific diversity is a well‐known challenge, and general management guidelines and conservation processes are available. However, research demonstrating the outcomes of practical conservation actions is largely lacking. 2. We monitored the spatiotemporal genetic and demographic evolution of a native Mediterranean brown trout population in a river in the French Alps to assess the efficacy and early effects of genetic refuge (i.e. cessation of stocking) and wild trout translocation strategies. We also studied the use of angling as a tool to limit the introgression of the wild standing population. 3. We found that the rate of non‐native alleles in wild populations was age dependent, underpinning the importance of using age profiles in the design of genetic conservation studies. 4. Genetic refuge and direct translocation of wild trout resulted in a rapid and significant decrease in the percentages of non‐native alleles. Moreover, the genetic refuge strategy resulted in a significant reduction in the number of pure non‐native individuals, without changing trout densities, whilst direct translocations resulted in the establishment of dense, self‐sustaining native trout populations. Direct translocations changed the distribution of genotype categories and increased densities up to 55‐fold in 3 years. Our results also showed that angling resulted in a selective pressure on non‐native trout introduced at fry stage, whereas non‐native trout issued from natural recruitment were not affected. 5. Our study provides insights for improving the efficacy of practical conservation policies and can be used in other native freshwater fish conservation plans. Proactive measures such as direct translocation need to be implemented together with passive approaches such as genetic refuge policies. Before implementing such actions, accurate genetic and demographic studies at small geographical scales are essential to ensure that no self‐sustaining population of non‐native fish is present. To obtain rapid colonisation, we recommend introducing fish along whole river sections rather than concentrating on a few river stretches. Angling pressure can be used as an additional tool to improve restoration.  相似文献   

19.
Stocking can be an effective management and conservation tool, but it also carries the danger of eroding natural population structure, introducing non-native strains and reducing genetic diversity. Sea trout, the anadromous form of the brown trout (Salmo trutta), is a highly targeted species that is often managed by stocking. Here, we assess the present-day population genetic structure of sea trout in a backdrop of 125 years of stocking in Northern Germany. The study area is characterized by short distances between the Baltic and North Sea river watersheds, historic use of fish from both watersheds for stocking, and the creation of a potential migration corridor between the Baltic and North Sea with the opening of the Kiel Canal 120 years ago. A survey of 24 river systems with 180 SNPs indicates that moderate but highly significant population genetic structure has persisted both within and between the Baltic and North Sea. This genetic structure is characterized by (i) heterogeneous patterns of admixture between the Baltic and North Sea that do not correlate with distance from the Kiel Canal and are therefore likely due to historic stocking practises, (ii) genetic isolation by distance in the Baltic Sea at a spatial scale of <?200 km that is consistent with the homing behaviour of sea trout, and (iii) at least one genetically distinct Baltic Sea river system. In light of these results, we recommend keeping fish of North Sea and Baltic Sea origin separate for stocking, and restricting Baltic Sea translocations to neighbouring river systems.  相似文献   

20.
In the Upper Oldman River, Alberta, introduced non‐native hatchery rainbow trout (Oncorhynchus mykiss) hybridize with native westslope cutthroat trout (O. clarkii), resulting in a hybrid swarm. Rainbow trout dominate at low elevations (< 1250 m) in the river mainstem, cutthroat in high‐elevation tributaries (> 1400 m), and hybrids are numerically dominant in the mid‐elevation range. We hypothesized that metabolism of rainbow trout would exceed that of cutthroat trout, and that the elevation gradient in genetic makeup would be mirrored by a gradient in metabolic traits, with intermediate traits in the hybrid‐dominated ecotone. Metabolic traits were measured and regressed against the genetic makeup of individuals and elevation. Rainbow trout had higher oxygen consumption rates (OCRs), higher white muscle lactate dehydrogenase (LDH), and citrate synthase (CS) activity, and higher plasma acetylcholinesterase (AchE) than cutthroat trout. Hybrids had intermediate OCRs and AchE, but LDH activity as high as rainbow trout. While hybrid zones are usually modelled as a balance between cross species mating and selection against hybrids, ecotonal hybrid zones, where hybrids proliferate in intermediate habitats and have traits that appear well suited to ecotonal conditions, have been proposed for some plants and animals, and may have important implications for resource management and conservation. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 56–72.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号