首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The receptor binding of CCK analogues was determined in terms of the inhibition of [125I]CCK binding in isolated rat pancreatic acini. The inhibition curve produced by CCK-8 showed the same feature as that produced by synthetic human CCK-33. The relative potency values of CCK analogues to half-maximally inhibit specific CCK binding were calculated; CCK-8 was equal to human CCK-33, 3-fold stronger than natural porcine CCK-33 and 39, and 700-fold stronger than the unsulphated form of synthetic human CCK-33. Our data suggest that CCK-33, one of the longer molecular forms of CCK, is as important as CCK-8 in the mechanism of physiological actions of CCK.  相似文献   

2.
First incubating dispersed acini from rat pancreas with monensin, a cation ionophore that can inhibit recycling of receptors, inhibited binding of 125I-cholecystokinin 8 (125I-CCK-8) measured during a second incubation by as much as 50%. A maximal effect of monensin required 90 min of first incubation. Detectable inhibition of binding of 125I-CCK-8 occurred with 300 nM monensin, and inhibition increased progressively with concentrations of monensin up to 25 microM. Pancreatic acini possess two classes of receptors that bind 125I-CCK-8. One class has a high affinity (Kd = 461 pM) and a low capacity for CCK (512 fmol/mg DNA); the other class has a low affinity (Kd = 47 nM) and a high capacity for CCK (18 pmol/mg DNA). First incubating acini with monensin caused an 84% decrease in the number of high affinity CCK receptors with no change in the number of low affinity CCK receptors or the values of Kd for either class of receptors indicating that there is recycling of high affinity CCK receptors but not low affinity CCK receptors. First incubating acini with monensin did not alter CCK-stimulated amylase secretion indicating that in contrast to previous conclusions, occupation of low affinity CCK receptors mediates CCK-stimulated enzyme secretion. Moreover, the biphasic dose-response curve for CCK-stimulated enzyme secretion from monensin-treated acini suggests that pancreatic acini also possess a third, previously unrecognized class of very low affinity CCK receptors.  相似文献   

3.
None of six different tryptophan-modified analogues of the C-terminal octapeptide of cholecystokinin differed from the unaltered peptide in terms of their efficacies for stimulating amylase secretion from dispersed acini prepared from guinea-pig pancreas. Replacementof hydrogen with fluorine in position 5 or 6 on the indole ring of the tryptophan residue did not alter the potency with which the peptide stimulated amylase secretion; however, replacement of hydrogen by fluorine in positions 4, 5, 6, and 7 of the indole ring, of modifying or replacing the indole nitrogen caused a 30- to 300-fold decrease in potency. Changes in the ability of the peptide to stimulate amylase secretion were accompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. Our findings indicate that reducing the ability of the tryptophan residue to donate electrons produced a greater decrease in the affinity of the peptide for the cholecystokinin receptors than did abolishing the ability of tryptophan to form hydrogen bonds, and modifications that altered both abilities caused a greater decrease in affinity than did modification of only one ability. Finally, in the tryptophan residues of cholecystokinin octapeptide, tetrafluorination of the indole ring or replacing the indole nitrogen by oxygen reduced the ability of the peptide to cause residual stimulation of enzyme secretion, probably by accelerating the rate at which bound peptide dissociated from its receptors when the acini were washed and resuspended in fresh incubation solution.  相似文献   

4.
Specific insulin receptors were measured in isolated mouse pancreatic acini. Scatchard analyses revealed a high affinity binding site with a Kd of 1.67 nM and a lower affinity site with a Kd of 83 nM. Binding of insulin to these receptors was rapid, one-half maximal binding occurring at 2 min and maximal binding at 30 min. Insulin stimulated the uptake of the glucose analogue 2-deoxy-D-glucose; maximum effects were detected at 1.67 μM. Insulin, in contrast, had no direct effects on alpha-aminoisobutyric acid uptake. The finding of high affinity insulin receptors in pancreatic acinar cells supports the hypothesis that insulin may directly regulate specific functions in the exocrine pancreas.  相似文献   

5.
Binding of epidermal growth factor in rat pancreatic acini   总被引:4,自引:0,他引:4  
Specific, saturable EGF receptors were demonstrated in isolated rat pancreatic acini. Binding of EGF to these receptors was one-half maximal at 20 min and maximal at 120 min. Scatchard analyses revealed a single order of binding sites with a Kd of 4.90 nM. Following binding, EGF was rapidly internalized and converted to two acidic species. EGF did not alter either basal amylase release or the rate of [3H]phenylalanine incorporation into TCA-precipitable protein. The finding of high affinity EGF receptors in pancreatic acinar cells supports the hypothesis that EGF participates in the long-term regulation of pancreatic exocrine function.  相似文献   

6.
In the C-terminal heptapeptide of cholecystokinin, replacement of the penultimate residue, aspartic acid, by β-alanine caused a 300-fold decrease in potency with which the peptide stimulated enzyme secretion, whereas replacement by glutamic acid caused a 1000-fold decrease in potency. The β-alanine-substituted peptide was approximately ten times more potent when the N terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl, and the glutamic acid-substituted peptide was approximately twice as potent when the N terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl. Changes in the ability of the peptide to stimulate amylase secretion were acompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. The magnitude of stimulation of enzyme secretion caused by a maximally effective peptide concentration was the same with each analogue as it was with the unaltered peptide. Rpelacing the aspartyl by β-alanine or glutamic acid or replacing of N-terminal t-butyloxycarbonyl moiety by benzyloxycarbonyl caused an equivalent decrease in the ability of the peptide to stimulate enzyme secretion and its ability to cause residual stimulation of enzyme secretion. In contrast, the N-terminal desamino analogue of cholecystokinin heptapeptide was ten times less potent than the unaltered peptide in stimulating amylase secretion, but 100 times less potent that the unaltered peptide in causing residual stimulation of enzyme secretion.  相似文献   

7.
In the C-terminal heptapeptide of cholecystokinin, replacement of the penultimate residue, aspartic acid, by beta-alanine caused a 300-fold decrease in the potency with which the peptide stimulated enzyme secretions, whereas replacement by glutamic acid caused a 1000-fold decrease in potency. The beta-alanine-substituted peptide was approximately ten times more potent when the n terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl, and the glutamic acid-substituted peptide was approximately twice as potent when the N terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl. Changes in the ability of the peptide to stimulate amylase secretion were accompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. The magnitude of stimulation of enzyme secretion caused by a maximally effective peptide concentration was the same with each analogue as it was with the unaltered peptide. Replacing the aspartyl residue by beta-alanine or glutamic acid or replacing the N-terminal t-butyloxycarbonyl moiety by benzyloxycarbonyl caused an equivalent decrease in the ability of the peptide to stimulate enzyme secretion and its ability to cause residual stimulation of enzyme secretion. In contrast, the N-terminal desamino analogue of cholecystokinin heptapeptide was ten times less potent than the unaltered peptide in stimulating amylase secretion, but 100 times less potent than the unaltered peptide in causing residual stimulation of enzyme secretion.  相似文献   

8.
It has recently been shown that--after chronic cholecystokinin (CCK) treatment--an adaptation of pancreatic secretory but not gastric motor function does occur. Recent studies indicate that the CCK(1)-receptor exists in two (i.e. high and low) affinity states, which could be distinguished by the CCK-analogue JMV-180. CCK occupancy of high and low affinity sites is thought to be related to the initiation of different intracellular events and consequent biological responses. Affinity states of CCK(1)-receptors on pancreas and gastrointestinal (GI) smooth muscle could be different and this can offer an explanation for the different effects of CCK on pancreatic and gastric growth. We therefore studied the affinity states of CCK(1)-receptors on isolated rat pancreatic acini and gastric smooth muscle preparations. When acini were incubated with increasing concentrations of CCK-8, a biphasic (i.e. stimulation followed by inhibition) effect on amylase release was observed. JMV-180 caused only stimulation of enzyme release and combined JMV-180 and CCK stimulation (at submaximal doses) resulted in an additive secretory response. CCK-8 induced contractions of pyloric, antral and fundic muscle in a concentration-dependent manner. The response was monophasic, reaching a plateau. JMV-180 had only a very weak effect on these preparations. On the contrary, it inhibited CCK-induced contractions in a competitive manner, the concentration-response curve to CCK being shifted to the right by the CCK analogue. Our data suggest that the affinity states of CCK(1)-receptors on rat pancreatic and gastric tissue are different. On pancreatic acini CCK(1)-receptors exist in both high- and low-affinity states whose occupation is followed by the sequence of intracellular events leading to growth. In contrast, occupation of low affinity receptors (the only ones present in the GI smooth muscle) does not lead to cell proliferation. This difference therefore explains the different adaptive response of the pancreas and the stomach to chronic CCK administration. Furthermore, different affinity states of CCK(1)-receptors may mediate different functions of the digestive tract.  相似文献   

9.
It has recently been shown that—after chronic cholecystokinin (CCK) treatment—an adaptation of pancreatic secretory but not gastric motor function does occur. Recent studies indicate that the CCK1-receptor exists in two (i.e. high and low) affinity states, which could be distinguished by the CCK-analogue JMV-180. CCK occupancy of high and low affinity sites is thought to be related to the initiation of different intracellular events and consequent biological responses. Affinity states of CCK1-receptors on pancreas and gastrointestinal (GI) smooth muscle could be different and this can offer an explanation for the different effects of CCK on pancreatic and gastric growth. We therefore studied the affinity states of CCK1-receptors on isolated rat pancreatic acini and gastric smooth muscle preparations. When acini were incubated with increasing concentrations of CCK-8, a biphasic (i.e. stimulation followed by inhibition) effect on amylase release was observed. JMV-180 caused only stimulation of enzyme release and combined JMV-180 and CCK stimulation (at submaximal doses) resulted in an additive secretory response. CCK-8 induced contractions of pyloric, antral and fundic muscle in a concentration-dependent manner. The response was monophasic, reaching a plateau. JMV-180 had only a very weak effect on these preparations. On the contrary, it inhibited CCK-induced contractions in a competitive manner, the concentration–response curve to CCK being shifted to the right by the CCK analogue. Our data suggest that the affinity states of CCK1-receptors on rat pancreatic and gastric tissue are different. On pancreatic acini CCK1-receptors exist in both high- and low-affinity states whose occupation is followed by the sequence of intracellular events leading to growth. In contrast, occupation of low affinity receptors (the only ones present in the GI smooth muscle) does not lead to cell proliferation. This difference therefore explains the different adaptive response of the pancreas and the stomach to chronic CCK administration. Furthermore, different affinity states of CCK1-receptors may mediate different functions of the digestive tract.  相似文献   

10.
A new hepatapeptide cholecystokinin (CCK) analog, JMV-180 (Boc-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester), acts as an agonist at high affinity CCK receptors on rat pancreatic acini to stimulate amylase release but unlike cholecystokinin octapeptide (CCK8) does not act on low affinity CCK receptors to inhibit amylase release (Galas, M. D., Lignon, M. F., Rodriguez, M., Mendre, C., Fulcrand, P., Laur, J., and Martinez, J. (1988) Am. J. Physiol. 254, G176-G188). To investigate the biochemical mechanisms initiated by CCK acting on each class of CCK receptor, the effects of JMV-180 and CCK8 on amylase release, Ca2+ mobilization, and phospholipid hydrolysis were studied in isolated rat pancreatic acini. When acini were loaded with the intracellular Ca2+ chelator BAPTA, amylase release stimulated by both JMV-180 and CCK8 was reduced. Measurement of 45Ca2+ efflux and cytosolic free calcium concentration ([Ca2+]i) by the fluorescence of fura-2-loaded acini in a stirred cuvette showed that JMV-180 induced a concentration-dependent increase but with a maximal response only two-thirds that induced by CCK8. When [Ca2+]i of individual fura-2-loaded acinar cells was measured by microspectrofluorometry, all concentrations of JMV-180 (1 nM-10 microM) induced repetitive transient [Ca2+]i spikes (Ca2+ oscillations). By contrast, stimulation with a high concentration of CCK8 (1 nM) caused a large increase in [CA2+]i followed by a small sustained elevation of [Ca2+]i. The measurement of inositol trisphosphate (IP3) production by both [3H]inositol labeling and 1,4,5-IP3 radioreceptor assay showed that JMV-180 had only minimal effects at 10 microM in contrast to the large increase induced by high concentrations of CCK8 (more than 1 nM). JMV-180 blocked the effect of a high concentration of CCK8 on both [Ca2+]i and 1,4,5-IP3 productions but did not affect the response to carbamylcholine. JMV-180 caused a delayed monophasic stimulation of 1,2-diacylglycerol (DAG) sustained to 60 min without the early increase in DAG observed in response to CCK8. Furthermore, JMV-180 stimulated the release of [3H]choline metabolites, primarily phosphorylated choline, from [3H]choline-labeled acini at low concentrations and to the same extent as CCK8. Since JMV-180 interacts not only with high affinity CCK receptors as an agonist but also with low affinity CCK receptors as a functional antagonist, the present results indicate that the occupancy of high affinity state receptors by CCK induces Ca2+ oscillations, DAG formation from phosphatidylcholine hydrolysis, and amylase release with minimal phosphatidylinositol 4,5-bisphosphate hydrolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Changes in the cellular content of 1,2-diacylglycerol (DAG) in isolated rat pancreatic acini in response to agonist stimulation were studied using a sensitive mass assay. When acini were stimulated by 10 nM COOH-terminal cholecystokinin-octapeptide (CCK8), the increase in DAG was biphasic, consisting of an early peak at 5 s and a second, larger, gradual increase that was maximal by 15 min. The basal level of DAG in acini was 1.04 nmol/mg of protein, which was increased to 1.24 nmol/mg of protein at 5 s and 2.76 nmol/mg of protein at 30 min. In comparison, the increase in DAG stimulated by 30 pM CCK8, a submaximal concentration for amylase release, was monophasic, increasing without an early peak but sustained to 60 min. Other Ca2+-mobilizing secretagogues such as carbamylcholine and bombesin increased DAG in acini, whereas vasoactive intestinal peptide, which acts to increase cAMP, had no effect. Phorbol ester and Ca2+ ionophore also stimulated DAG production. Analysis of the mass level of inositol 1,4,5-trisphosphate (1,4,5-IP3) showed that the generation of 1,4,5-IP3 stimulated by 10 nM CCK8 peaked at 5 s, a finding consistent with the early peak of DAG. The basal level was 4.7 pmol/mg of protein, which was increased to 144.6 pmol/mg of protein at 5 s by 10 nM CCK8. The levels of 1,4,5-IP3 then returned toward basal in contrast to the gradual and sustained increase of DAG. The dose dependencies of 1,4,5-IP3 and DAG formation at 5 s with respect to CCK8 were almost identical. This suggests that phosphatidylinositol 4,5-bisphosphate hydrolysis is a major source of the early increase in DAG but not of the sustained increase in DAG. Therefore, a possible contribution of phosphatidylcholine hydrolysis to DAG formation was examined utilizing acini prelabeled with [3H]choline. CCK8 (1 nM) maximally increased [3H]choline metabolite release by 133% of control at 30 min. Separation of these metabolites by thin layer chromatography showed that the products of CCK8-stimulated release were almost entirely phosphorylcholine, indicating the activation of a phospholipase C specific for phosphatidylcholine. By comparison, 1 nM CCK8 stimulated [3H]ethanolamine metabolite release from [3H]ethanolamine-labeled acini by only 22% of control. These data suggest that CCK stimulates both phosphatidylinositol 4,5-bisphosphate and phosphatidylcholine hydrolysis; the latter may contribute to the sustained generation of DAG and hence the maintained activation of protein kinase C.  相似文献   

12.
In mouse and rat isolated pancreatic acini, the C-terminal tetrapeptide amide of CCK (CCK4) fully mimicked the actions of the physiological octapeptide hormone (CCK8) although CCK4 was 10–100 thousand fold less potent than CCK8. Parallelism was observed for stimulation of both amylase secretion (including the submaximal secretion observed at supramaximal concentrations of agonist), and stimulation of glucose transport. Furthermore, CCK4 and CCK8 were able to comletely inhibit the binding of radioiodinated CCK33 to CCK receptors on acini. Therefore, the CCK4 sequence appears to be the minimal functional unit which possesses all of the information required to elicit the actions of CCK on the pancreas. The additional 4 amino acids present in CCK8 increase the affinity of the CCK molecule for pancreatic CCK receptors and thus enhance target organ specificity and sensitivity.  相似文献   

13.
Cholecystokinin and analogues increased the uptake of 2-deoxy-D-glucose and 3-O-methylglucose into isolated mouse pancreatic acini. This uptake was mediated by a facilitated glucose transport system that was saturable, stereospecific, and was inhibited by both phloretin and cytochalasin B. In agreement with previous studies of acinar function, caerulein was more potent and pentagastrin less potent than cholecystokinin in increasing sugar transport. The cholinergic analogue carbachol mimicked the effect of caerulein; atropine completely abolished the effects of carbachol but was without influence on the effects of the polypeptide hormones. In contrast, secretion, as well as dibutyryl cyclic AMP and dibutyryl cyclic GMP, had no effect on 2-deoxy-D-glucose uptake. Two lines of evidence suggested that hormonal stimulation of this sugar transport system was related to mobilization of cellular Ca2+. First, depletion of cellular Ca2+ by incubation of acini with ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) reduced the effect of caerulein. Second, the Ca2+ ionophore A23187 mimicked the effects of caerulein on 2-deoxy-D-glucose uptake when Ca2+ was present in the medium.  相似文献   

14.
A fluorimetric method for the study of intracellular Ca++ metabolism in rat pancreatic acini is described. Following previous reports on the utilization of the new intracellularly trapped fluorescent dye fura2 in human lymphocytes, the authors point out the relevance of the cellular and fura2 concentration as critical issues for an accurate evaluation of Ca++ homeostasis. A dose-response curve to both carbamoylcholine and cholecystokinin is reported, demonstrating the ability of the cells to respond to hormonal stimulation with a transient Ca++ peak. The almost complete absence of noise in the recorded traces allow to carry out an evaluation of the intracellular mechanism related to Ca++ mobilization with a very high sensitivity.  相似文献   

15.
Simultaneous investigation of protein degradation and autophagy of isolated exocrine pancreatic cells is carried out here for the first time in a systematic way by a complex biochemical, morphological and morphometrical approach. Protein degradation proceeds with a decreasing rate of 4-1.5 per cent per h over a 4-h period indicating a comparatively low degradation capacity. Cells in freshly isolated acini do not contain autophagic vacuoles but the latter appear within an hour in vitro and their quantity remains close to a steady state during the subsequent 3 h. Both traditional inhibitors of the autophagic-lysosomal pathway, e.g. vinblastine, leupeptin, and lysosomotropic amines together with the recently introduced 3-methyladenine, inhibit degradation to a similar maximal extent, offering the possibility of the estimation of the ratio of lysosomal/non-lysosomal degradation. In pancreatic acinar cells autophagic sequestration is unaffected and protein degradation is inhibited inside secondary lysosomes by leupeptin and lysosomotropic amines, while 3-methyladenine prevents the formation of autophagosomes. Vinblastine seems to act by inhibiting the fusion of autophagosomes with lysosomes and there is no evidence for the stimulation of autophagic sequestration by vinblastine in the present system. The effect of inhibitors of protein breakdown on protein synthesis is variable and does not correlate with their influence on degradation. Amino acids strongly stimulate protein synthesis, but in contrast to what is found in liver cells, they do not seem to affect protein degradation or autophagy significantly, thus indicating major regulatory differences of these processes between pancreatic acinar cells and hepatocytes.  相似文献   

16.
The effect of human pancreatic polypeptide (HPP) on rat pancreatic acini has been studied. It was found that HPP stimulated amylase and lipase release from the acini. The secretory response of acini to HPP was dose-dependent in a sigmoidal fashion. Between 10(-9) M and 10(-8) M concentration of HPP there was a slow increase of enzyme release to about 40-60% over basal release. At concentrations of HPP above 10(-8) M there was a rapid increase of enzyme release, amounting to 4-6 times over basal release at 10(-6) M concentration of HPP. The potency of HPP compared to other secretagogues at 10(-7) M concentration was 45% of CCK, 60% of carbachol and 75% of secretin. HPP did not inhibit the effect of CCK, secretin and carbachol on amylase release. The amylase release stimulated by HPP was accompanied by an increase in 45Ca2+ efflux. Atropine or dibutyryl cyclic GMP did not influence the effect of HPP. It is concluded that HPP stimulates the release of enzymes from rat pancreatic acini and that Ca2+ may be a mediator for this secretion.  相似文献   

17.
E K Matthews  Z J Cui 《FEBS letters》1989,256(1-2):29-32
The halogenated fluorescein derivative, rose bengal, upon photon activation, elicits amylase secretion from isolated, perifused pancreatic acini. This effect is due to production of highly reactive singlet delta oxygen which can permeabilize the cell membrane and may also react chemically with secretagogue receptors, or other functional components of the membrane such as the G-proteins. The profile of photodynamically induced amylase secretion is anion-dependent: it becomes biphasic when the chloride ion is substituted by the glutamate ion, an effect attributed to the action of glutamate on the ionic transport systems of the zymogen granule membrane.  相似文献   

18.
The Ca2+ chelators, EGTA and BAPTA, have been introduced into intact, isolated rat pancreatic acini using a hypotonic swelling method. This resulted in complete inhibition of amylase release, stimulated by carbamylcholine at a submaximal concentration and 82 - 85% inhibition at maximal concentrations. Acini swollen in the absence of Ca2+ chelators showed similar secretory responses to those of unswollen acini. Treatment of unswollen acini with chelators inhibited the maximum response to carbamylcholine by only 23%. The inhibitory effect of intracellular chelators was not due to ATP depletion or a lowering of the total cell Ca2+ content. Thus, these results provide the first direct demonstration that an increase in intracellular Ca2+ concentration is necessary for the stimulation of enzyme release from pancreatic acinar cells.  相似文献   

19.
Adenosine triphosphatase activity which is Mg2+-dependent and stimulated by submicromolar concentrations of Ca2+ (as Ca . ATP) was identified in the total particulate fraction of rat pancreatic acini. Half-maximal activity (V0.5) is obtained at 100.1 +/- 6 nM Ca . ATP with a Hill coefficient of 2.2 +/- 0.1 (mean +/- S.E.; n = 4). Maximal activity was 75 +/- 19 pmol of Pi released from ATP minute-1 microgram of membrane protein-1 (mean +/- S.E.; n = 7). High affinity Ca2+-ATPase activity was unaffected by ouabain, Na+, K+, La3+, and added calmodulin. Activity was slightly reduced by ruthenium red (0.1 mM) and by oligomycin (80 micrograms/ml) but was reduced almost 50% by the phenothiazine derivative fluphenazine in a dose-related and Ca2+-dependent manner. Hydrolysis of p-nitrophenyl phosphate was 9% of the rate of ATP hydrolysis and was independent of Ca2+ concentration. However, ADP, GTP, UTP, and ITP were hydrolyzed at 76-93% the rate that ATP was hydrolyzed with V0.5 values and Hill coefficients similar to those of Ca . ATP. We conclude that rat pancreatic acini contain an enzyme for active Ca2+ translocation: ATPase activity that is Mg2+-dependent and stimulated by submicromolar concentrations of Ca . ATP. Substrate hydrolysis appears to involve positive cooperative interactions of multiple ligand-binding sites and may be regulated in part by calmodulin.  相似文献   

20.
This study examines the influence of ovariectomy and administration of a pharmacologic dose of estradiol on amylase release from isolated-dispersed rat pancreatic acini and cholecystokinin receptors on rat acinar cell membranes. Rats were sham ovariectomized (intact) or ovariectomized (Ovx) and 21 day timed release pellets containing either estradiol (2.5 mg) or vehicle, were implanted subcutaneously. Eighteen days later, pancreatic acini were isolated from rats by collagenase digestion and differential centrifugation. Total cellular amylase, basal and cholecystokinin octapeptide (CCK8) stimulated amylase release and CCK membrane receptors were measured. Acini isolated from estradiol treated Ovx rats had significantly greater total cellular amylase, compared to acini isolated from either intact or Ovx rats. The amplitude of both total stimulated amylase release and percent total stimulated amylase release were significantly greater for acini isolated from vehicle treated Ovx rats, than acini isolated from either intact or estradiol treated Ovx rats. The magnitude of percent total amylase release of acini isolated from estradiol treated Ovx rats was significantly lower than that of acini isolated from intact rats. Cholecystokinin receptor concentration was significantly greater on membranes prepared from vehicle treated Ovx rats, compared to membranes prepared from either intact or estradiol treated Ovx rats. These data indicate that ovariectomy is associated with increased responsiveness of pancreatic acini to CCK stimulation, while chronic estradiol treatment of ovariectomized rats is associated with increased total cellular amylase and decreased acinar cell responsiveness to CCK8. Estrogen mediated alterations in acinar cell amylase content and amylase release may play a role in estrogen related pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号