首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Blackcaps (Sylvia atricapilla) that breed in central Europe have usually migrated to Mediterranean or African wintering grounds. In the past several decades, a portion of this breeding population has started migrating to the British Isles to overwinter and this population has increased dramatically. Several factors, including higher annual survivorship (due to supplemental feeding and reduced migratiry distance), assortative mating, and enhanced reproductive success may be involved in this rapid population growth. As part of an intensive, long-term study of this population, we tested the hypothesis that the differences in photoperiod experienced by British-wintering versus Mediterranean-wintering blackcaps might lead to relatively early vernal (i.e., migratory and/or reproductive) physiological condition in members of the former group. We found that birds exposed to photoperiodic conditions that simulated migration to Britain to overwinter generally initiated vernal migratory activity earlier than birds held under conditions simulating migration to traditional wintering areas in central Spain. This difference, coupled with the shorter migratory distance to the British Isles, leads to significantly earlier estimated arrival dates for blackcaps that winter in Britain compared to central Spain. Bimodality in arrival times suggests that assortative mating on central European breeding grounds might occur between members of the different wintering populations. Males exposed to British-winter photoperiods showed significantly earlier testicular development than males kept under Spanish-winter photoperiods. Early arrival on the breeding grounds, coupled with accelerated reproductive condition, should lead to a relatively early reproductive effort, perhaps increasing average reproductive success. In general, these results support the hypothesis that differences in photoperiod on the wintering grounds may play an important role in the dynamic state of this population.  相似文献   

2.
Populations of migratory birds have undergone marked declines, although the causes and mechanisms remain unknown. Because environmental effects on population dynamics are mediated by the effects of ecological factors on individuals, understanding changes in individual phenotypes in response to ecological conditions is key to understanding population trends. We show that breeding individuals of a declining population of trans-Saharan migratory barn swallows, Hirundo rustica, were affected by environmental conditions, as estimated from the normalized difference vegetation index (NDVI), reflecting primary production, in their winter quarters. The breeding dates of the same individuals in consecutive breeding seasons were advanced and clutch sizes were larger after winters with high NDVI in the winter quarters. Feather moult was also affected by winter conditions, with consequences for male sexual attractiveness. Length of tail ornament was positively correlated with NDVI during the previous winter, and males with large tail ornaments reproduced earlier and had larger clutches. The mean annual breeding date of the population was earlier and breeding success was increased after favourable winters, but this result was mainly determined by a single winter with very low NDVI. Thus, ecological conditions in Africa influence individual performance and productivity in a barn swallow population.  相似文献   

3.
Because population size is sensitive to changes in adult survival, adult survival may be buffered against environmental variability. Philopatry may be adaptive in changing environments, but it could also constrain breeding habitat selection under changing conditions such as shifting predation regimes. Habitat preference and quality could become decoupled in long-lived philopatric species that evolved in stable environments when suddenly faced by increased adult predation risk, as dispersal may be triggered by past reproductive failure. We evaluated whether the Baltic eider (Somateria m. mollissima) population may currently face a predation-induced ecological trap. Eiders are philopatric and nest on open and forested islands. We hypothesized that open-nesting females would be disproportionately affected by increased predation. We compared female annual survival in these two habitats in 1996–2010. We also tested for effects of time trends, winter severity (NAO), female body condition, and habitat-specific predation pressure on survival. Our results revealed the lowest survival recorded for this species (Φ?=?0.720), and survival on open islands was significantly lower (Φ?=?0.679) than on forested islands (Φ?=?0.761). Nonetheless, only 0.7?% of females changed breeding habitat type despite ample availability of alternative islands, and breeding phenology in both habitats was similar. Female survival increased with body condition, while it was unrelated to winter climate and stable over time. Open islands had a higher predation pressure on incubating females. Breeding philopatry results in a predator-mediated ecological trap for open-nesting eiders. Our results contribute to explaining the drastic decline of the Baltic eider population.  相似文献   

4.
杨萍  杨永峰  杨宜男  程亚文  王立  王原 《生态学报》2023,43(22):9206-9217
鸟类栖息地会随着季节迁徙而改变,基于此对以珍稀濒危鸟类保护为主要目标的自然保护区进行动态分区管理,能够有效提高土地利用效率,协调生物多样性保护与其他生态系统服务功能利用。通过MaxEnt模型分析预测安徽升金湖国家级自然保护区鸟类繁殖季和越冬季的栖息地范围,并采用空间叠加分析方法得到动态分区方案。结果发现:繁殖季鸟类栖息地适宜性受到人口密度、丰水期土地利用类型、距居民点距离、距道路距离等环境因素的影响;越冬季鸟类受到距道路距离、人口密度、距枯水期水体距离、枯水期土地利用类型等环境因素的影响。运用ArcGIS水文工具分析出升金湖国家级自然保护区汇水单元作为其动态区划单元,根据鸟类栖息地季节性变化的特点结合分析结果叠加分析,将安徽升金湖国家级自然保护区划分为核心栖息地保护区、繁殖季栖息地保护区、越冬季栖息地保护区和一般控制区。核心栖息地保护区要进行全年严格保护,繁殖季栖息地保护区和越冬季栖息地保护区在相应鸟类栖息时段严格管控、非栖息时段可合理利用,一般控制区则全年可允许合理的行为活动。季节性动态分区方案注重解决安徽省升金湖国家级自然保护区生态环境保护和社区发展之间的矛盾问题,便于未来保护区生态保护规划决策的制定和实施,进一步丰富了以季节性栖息物种为主要保护对象的自然保护区的动态功能分区研究理论与方法体系,为制定提高自然保护区空间利用效率的生态管理策略提供了参考依据。综上,建议在升金湖国家级自然保护区生态环境保护和社区发展中,依据保护区季节性动态分区特征,实行分区管制,制定对应的生态环境保护和发展的措施。  相似文献   

5.
In many taxa, environmental changes that alter resource availability and energetics, such as climate change and land use change, are associated with changes in body size. We use wing length as a proxy for overall structural body size to examine a paradoxical trend of declining wing length within a Yellowhammer Emberiza citrinella population sampled over 21 years, in which it has been previously shown that longer wings are associated with higher survival rates. Higher temperatures during the previous winter (prior to the moult determining current wing length) explained 23% of wing length decrease within our population, but changes may also be correlated with non‐climatic environmental variation such as changes in farming mechanisms linked to food availability. We found no evidence for within‐individual wing length shrinkage with age, but our data suggested a progressive decline in the sizes of immature birds recruiting to the population. This trend was weaker, although not significantly so, among adults, suggesting that the decline in the sizes of recruits was offset by higher subsequent survival of larger birds post‐recruitment. These data suggest that ecological processes can contribute more than selection to observed phenotypic trends and highlight the importance of long‐term studies for providing longitudinal insights into population processes.  相似文献   

6.
SYNOPSIS. Winter is energetically-demanding; thermoregulatorydemands increase when food availability usually decreases. Physiologicaland behavioral adaptations, including termination of breeding,have evolved among nontropical animals to cope with winter energyshortages. Presumably, selection for mechanisms that permitphysiological and behavioral anticipation of seasonal ambientchanges have led to current seasonal breeding patterns for manypopulations. Energetically—challenging winter conditionscan directly induce death via hypothermia, starvation, or shock;surviving these demanding conditions likely evokes significantstress responses. The stress of coping with energetically-demandingconditions may increase adrenocortical steroid levels to theextent that immune function is compromised. Individuals wouldenjoy a survival advantage if seasonally-recurring stressorscould be anticipated and countered by shunting energy reservesto bolster immune function. The primary environmental cue thatpermits physiological anticipation of season is daily photoperiod,a cue that is mediated by melatonin. However, other environmentalfactors, such as low food availability and ambient temperatures,may interact with photoperiod to affect immune function anddisease processes. Laboratory studies of seasonal changes inmammalian immune function consistently report that immune functionis enhanced in short day lengths. Prolonged melatonin treatmentmimics short days, and also enhances immune function in rodents.In sum, melatonin may be part of an integrative system to coordinatereproductive, immunologic, and other physiological processesto cope successfully with energetic stressors during winter.Social factors influence immune function and changes in socialinteractions may also contribute to seasonal changes in immunefunction. The mechanisms by which social factors are transducedinto immune responses are largely unspecified. In order to understandthe optimization of immune function it is necessary to understandthe interaction of factors, on both mechanistic and functionallevels, that affect immunity.  相似文献   

7.
Population limitation in migrants   总被引:16,自引:8,他引:8  
Ian Newton 《Ibis》2004,146(2):197-226
Unlike resident bird species, the population sizes of migratory species can be influenced by conditions in more than one part of the world. Changes in the numbers of migrant birds, either long‐term or year‐to‐year, may be caused by changes in conditions in the breeding or wintering areas or both. The strongest driver of numerical change is provided in whichever area the per capita effects of adverse factors on survival or fecundity are greatest. Examples are given of some species whose numbers have changed in association with conditions in breeding areas, and of others whose numbers have changed in association with conditions in wintering areas. In a few such species, the effects of potential limiting factors have been confirmed locally by experiment. In theory, population sizes might also be limited by severe competition at restricted stopover sites, where bird densities are often high and food supplies heavily depleted, but (with one striking exception) the evidence is as yet no more than suggestive. In some species, habitats occupied in wintering and migration areas, and their associated food supplies, can influence the body condition, migration dates and subsequent breeding success of migrants. Body reserves accumulated in spring by large waterfowl serve for migration and for subsequent breeding, and females with the largest reserves are most likely to produce young. Hence, the conditions experienced by individuals in winter in one region can affect their subsequent breeding success in another region. Such effects are apparent at the level of the individual and at the level of the population. Similarly, the numbers of young produced in one region could, through density‐dependent processes, affect subsequent overall mortality in another region. Events in breeding, migration and wintering areas are thus interlinked in their effects on bird numbers. Although in the last 30–40 years the numbers of some tropical wintering birds have declined in western Europe and others in eastern North America, the causes seem to differ. In Europe, declines have mainly involved species that winter in the arid savannas of tropical Africa, which have suffered from the effects of drought and increasing desertification. In several species, annual fluctuations in numbers and adult survival rates were correlated with annual fluctuations in rainfall, and by implication in winter food supplies. In North America, by contrast, numerical declines have affected many species that breed and winter in forest, especially those eastern species favouring the forest interior. Declines have been attributed ultimately to human‐induced changes in the breeding range, particularly forest fragmentation, which have led to increases in the densities of nest predators and parasitic cowbirds. These in turn are thought to have caused declines in the breeding success of some neotropical migrants, which is now too low to offset the usual adult mortality, but as yet convincing evidence is available for only a minority of species. The breeding rates and population changes of some migratory species have been influenced by natural changes in the availability of defoliating caterpillars. In other species, tropical deforestation is likely to have played the major role in population decline, and if recent rates of tropical deforestation continue, it is likely to affect an increasing range of migratory species in the future. Not all such species are likely to be affected adversely by deforestation, however, and some may benefit from the resulting habitat changes.  相似文献   

8.
Penelope J.  Watt  Jonathan  Aams 《Journal of Zoology》1994,232(1):109-116
In some animals sex is determined after conception by environmental factors (environmental sex determination. ESD). In the amphipod Gammarus duebeni sex is reportedly determined by photoperiod: there is a higher proportion of males in broods reared under long-day than under short-day photoperiods. It has been proposed that this is an adaptive response to seasonal population dynamics. A test of the hypothesis would be to demonstrate changes in the degree to which sex is determined by the environment in populations from different latitudes with different dynamics. This study reports such a test. Environmental response is significantly less strong in a southern population with a long breeding season than in a northern one in which breeding is seasonally restricted. Moreover, the threshold of the ESD cue for male or female determination is not defined when the breeding season is weakly seasonal. There is a broad correlation between latitude (and hence breeding seasonality) and the strength of ESD response across a series of population studies. Similarities between the Gammarus system of sex determination and that of the Atlantic silverside Menidia menidia, a fish with thermal ESD, are discussed.  相似文献   

9.
Many nontropical rodent species experience predictable annual variation in resource availability and environmental conditions. Individuals of many animal species engage in energetically expensive processes such as breeding during the spring and summer but bias investment toward processes that promote survival such as immune function during the winter. Generally, the suite of responses associated with the changing seasons can be induced by manipulating day length (photoperiod). Collared lemmings (Dicrostonyx groenlandicus) are arvicoline rodents that inhabit parts of northern Canada and Greenland. Despite the extreme conditions of winter in their native habitat, these lemmings routinely breed during the winter. In the laboratory, collared lemmings have divergent responses to photoperiod relative to other seasonally breeding rodents; short day lengths can stimulate, rather than inhibit, the reproductive system. Male and female collared lemmings were maintained for 11 weeks in 1 of 3 photoperiods (LD 22:2, LD 16:8, or LD 8:16) that induce markedly different phenotypes. Following photoperiod treatment, cell-mediated immune function as assessed by delayed-type hypersensitivity reactions was elevated in lemmings housed in LD 16:8 and LD 8:16 relative to LD 22:2. However, antibody production to a novel antigen was unaffected by photoperiod. Exposure to LD 8:16 induced weight gain, molt to a winter pelage, and in contrast to previous studies, regression of the male, but not the female, reproductive tract. In conclusion, these data indicate that components of immune function among collared lemmings are responsive to changes in day length.  相似文献   

10.
In males of several songbird species, the morphology of forebrain nuclei that control song changes seasonally. The only seasonally breeding songbird in which seasonal changes in the structure of song control nuclei have been reported not to occur is the nonmigratory Nuttall's subspecies of white-crowned sparrow. In the present study, we manipulated photoperiod and plasma testosterone concentrations in captive male white-crowned sparrows of the migratory Gambel's subspeices. Males exposed to photoperiods and plasma testosterone concentrations typical of those experienced by wild breeding males had larger song control nuclei than males held on a winter photoperiod. We also found seasonal change in stereotypy of spectral and temporal parameters of song in wild Gambel's white-crowned sparrows. We hypothesize that seasonal changes in song control nuclei may correlate with seasonal changes in song stereotypy. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Capsule: Pairs of White-throated Dippers Cinclus cinclus which defended winter territories bred earlier than non-territorial individuals, but there was no difference in reproductive success.

Aims: The effect of winter territoriality on breeding ecology has rarely been studied in resident birds. We carried out a preliminary investigation of whether winter territorial behaviour and territory size affect the timing of reproduction, breeding territory size and reproductive success in a riverine bird, the White-throated Dipper.

Methods: We monitored an individually marked population of White-throated Dippers in the UK. Wintering individuals were classified as either territorial or ‘floaters’ according to their patterns of occurrence and behaviour, and their nesting attempts were closely monitored in the subsequent months. Winter and breeding territory sizes were measured by gently ‘pushing’ birds along the river and recording the point at which they turned back.

Results: All birds defending winter territories did so in pairs, but some individuals changed partners before breeding. Territorial pairs that were together throughout the study laid eggs significantly earlier than pairs containing floaters and those comprising territorial birds that changed partners. However, there were no significant differences in clutch size, nestling mass or the number of chicks fledged. There was no relationship between winter territory length and lay date or any measure of reproductive success, although sample sizes were small. Winter territories were found to be significantly shorter than breeding territories.

Conclusion: Winter territoriality may be advantageous because breeding earlier increases the likelihood that pairs will raise a second brood, but further study is needed. Territories are shorter in winter as altitudinal migrants from upland streams increase population density on rivers, but this may also reflect seasonal changes in nutritional and energetic demands.  相似文献   

12.
Certain populations of long‐distance migratory birds are suffering declines, which may be attributed to effects of climate change. In this article, we have analysed a long‐term (1991–2015) data set on a pied flycatcher Ficedula hypoleuca population breeding in nest‐boxes in a Mediterranean montane oak forest, exploring the trends in population size due to changes in nestling recruitment, female survival and female immigration. We have related these changes in population parameters to local climate, winter NAO index and to breeding density. During the last 25 yr the population has declined by half, mainly in association with a decrease in nestling mass and structural size which had repercussions on the probability of nestling recruitment to the population. Lower local nestling recruitment in certain years was linked to lower female immigration rate in the same years. On the other hand, the local survival of females remained stable throughout the study period. Laying date and breeding success were negatively affected by local temperatures while breeding, recruitment rate likewise by minimum temperature prior to breeding in April. As minimum April temperatures have increased across the study period, this may have affected recruitment and immigration rates negatively. On the other hand, tarsus length and body mass of nestlings were positively associated with winter NAO index, pointing to more global climatic links. Moreover, there was also a negative temporal trend in body mass of adults, implying increasingly difficult conditions for breeding. Declining recruit production in the study area could be attributed to a mismatch between the timing of arrival and breeding in the population, and the peak of food availability in this area.  相似文献   

13.
Photoperiodic control of seasonality in birds   总被引:3,自引:0,他引:3  
This review examines how birds use the annual cycle in photoperiod to ensure that seasonal events--breeding, molt, and song production--happen at the appropriate time of year. Differences in breeding strategies between birds and mammals reflect basic differences in biology. Avian breeding seasons tend to be of shorter duration and more asymmetric with respect to changes in photoperiod. Breeding seasons can occur at the same time each year (predictable) or at different times (opportunistic), depending on the food resource. In all cases, there is evidence for involvement of photoperiodic control, nonphotoperiodic control, and endogenous circannual rhythmicity. In predictable breeders (most nontropical species), photoperiod is the predominant proximate factor. Increasing photoperiods of spring stimulate secretion of gonadotropin-releasing hormone (GnRH) and consequent gonadal maturation. However, breeding ends before the return of short photoperiods. This is the consequence of a second effect of long photoperiods--the induction of photorefractoriness. This dual role of long photoperiods is required to impart the asymmetry in breeding seasons. Typically, gonadal regression through photorefractoriness is associated with a massive decrease in hypothalamic GnRH, essentially a reversal to a pre-pubertal condition. Although breeding seasons are primarily determined by photoperiodic control of GnRH neurons, prolactin may be important in determining the exact timing of gonadal regression. In tropical and opportunistic breeders, endogenous circannual rhythmicity may be more important. In such species, the reproductive system remains in a state of "readiness to breed" for a large part of the year, with nonphotic cues acting as proximate cues to time breeding. Circannual rhythmicity may result from a temporal sequence of different physiological states rather than a molecular or cellular mechanism as in circadian rhythmicity. Avian homologues of mammalian clock genes Per2, Per3, Clock, bmal1, and MOP4 have been cloned. At the molecular level, avian circadian clocks appear to function in a similar manner to those of mammals. Photoperiodic time measurement involves interaction between a circadian rhythm of photoinducibility and, unlike mammals, deep brain photoreceptors. The exact location of these remains unclear. Although the eyes and pineal generate a daily cycle in melatonin, this photoperiodic signal is not used to time seasonal breeding. Instead, photoperiodic responses appear to involve direct interaction between photoreceptors and GnRH neurons. Thyroid hormones are required in some way for this system to function. In addition to gonadal function, song production is also affected by photoperiod. Several of the nuclei involved in the song system show seasonal changes in volume, greater in spring than in the fall. The increase in volume is, in part, due to an increase in cell number as a result of neurogenesis. There is no seasonal change in the birth of neurons but rather in their survival. Testosterone and melatonin appear to work antagonistically in regulating volume.  相似文献   

14.
Summary The breeding phenology of temperate wood-lice is strongly seasonal, the result of physiological constraints and precise environmental cues for reproduction. The adaptive value of such mechanisms is that the release of offspring coincides with favourable conditions for growth and survival (Willows 1984). We recorded the breeding phenology of Armadillidium vulgare (Latreille) on two grassland sites in Great Britain and found between-site and between-year variation in the onset of reproduction, the duration of reproductive activity, the release of offspring, the size of reproductive females and the number of broods per female. Between 82.7 and 97.7% of gravid females sampled were semelparous at 23 months, with the remainder iteroparous, producing a second brood after 35 months. On one site (Weeting Health) improved growth conditions during 1984 allowed some females (19.3% of gravid females sampled in that year) to produce a brood after 11 months. There was also an increase in the number of 3-year-old females found to be gravid. An experimental manipulation of the same habitat confirmed that such changes in life history tactics could be phenotypic responses. The observed phenotypic variation was sufficient to produce a range of life history tactics within a population. Mixtures of life history tactics within a population may be typical of invasive species and populations at the edge of the species range. Our results support the idea that phenotypic plasticity can be an appropriate tactic to maximise fitness in a fluctuating environment (Caswell 1983, 1989).  相似文献   

15.
Photoperiodic phenological adaptations are prevalent in many organisms living in seasonal environments. As both photoperiod and growth season length change with latitude, species undergoing latitudinal range expansion often need to synchronize their life cycle with a changing photoperiod and growth season length. Since adaptive synchronization often involves a large number of time-consuming genetic changes, behavioural plasticity might be a faster way to adjust to novel conditions. We compared behavioural and physiological traits in overwintering (diapause) preparation in three latitudinally different European Colorado potato beetle (Leptinotarsa decemlineata) populations reared under two photoperiods. Our aim was to study whether behavioural plasticity could play a role in rapid range expansion into seasonal environments. Our results show that while burrowing into the soil occurred in the southernmost studied population also under a non-diapause-inducing long photoperiod, the storage lipid content of these beetles was very low compared to the northern populations. However, similar behavioural plasticity was not found in the northern populations. Furthermore, the strongest suppression of energy metabolism was seen in pre-diapause beetles from the northernmost population. These results could indicate accelerated diapause preparation and possibly energetic adjustments due to temporal constraints imposed by a shorter, northern, growth season. Our results indicate that behavioural plasticity in burrowing may have facilitated initial range expansion of L. decemlineata in Europe. However, long-term persistence at high latitudes has required synchronization of burrowing behaviour with physiological traits. The results underline that eco-physiological life-history traits of insects, such as diapause, should be included in studies on range expansion.  相似文献   

16.
In the 1970s and 1980s, the nominate subspecies of the Lesser Black-backed Gull (Larus fuscus fuscus) showed a dramatic drop in breeding numbers on the Norwegian Coast, and in 2000, the population in some colonies was only 10–20% of the population in 1980. This decline has been attributed to the collapse in the stock of Norwegian spring spawning herring (Clupea harengus). In this study, we examined whether local climate (sea and air temperatures), winter NAO (North Atlantic Oscilliation), and the year-class strength and size of 0-group herring could predict the relative changes in breeding numbers between years, mainly after the population collapse. Breeding birds were counted in 19 of the years between 1980 and 2007 in an archipelago on the coast of Helgeland, northern Norway. The best model predicting changes in breeding numbers for the period between 1980 and 2005 (for which data on 0-group herring was available) included mean local air temperature in winter (January–March) and winter NAO, explaining 57% of the variation between years, while the other factors had little effect. When also adding the years 2006–2007 (no herring data), the best model included only mean air temperature in winter, explaining 41% of the variation. In conclusion, the high positive correlation between breeding numbers and climatic factors probably resulted from a higher availability of important fish prey after mild winters, for which 0-group herring presently may only account for a limited proportion. However, this prey might have been of much more importance prior to the population decline.  相似文献   

17.
Breeding periodicity allows organisms to synchronise breeding attempts with the most favourable ecological conditions under which to raise offspring. For most animal species, ecological conditions vary seasonally and usually impose an annual breeding schedule on their populations; sub-annual breeding schedules will be rare. We use a 16-year dataset of breeding attempts by a tropical seabird, the sooty tern (Onychoprion fuscatus), on Ascension Island to provide new insights about this classical example of a population of sub-annually breeding birds that was first documented in studies 60 years previously on the same island. We confirm that the breeding interval of this population has remained consistently sub-annual. By ringing >17000 birds and re-capturing a large sample of them at equivalent breeding stages in subsequent seasons, we reveal for the first time that many individual birds also consistently breed sub-annually (i.e. that sub-annual breeding is an individual as well as a population breeding strategy). Ascension Island sooty terns appear to reduce their courtship phase markedly compared with conspecifics breeding elsewhere. Our results provide rare insights into the ecological and physiological drivers of breeding periodicity, indicating that reduction of the annual cycle to just two life-history stages, breeding and moult, is a viable life-history strategy and that moult may determine the minimum time between breeding attempts.  相似文献   

18.
A number of long day breeding rodents depend on seasonal changes in photoperiodic length to synchronize their breeding seasons with the appropriate time of the year. These relationships are particularly conspicuous in the Syrian hamster where day length is vitally important in determining periods of sexual activity and inactivity. The organ in the body whose activity is most closely attuned to the photoperiodic environment is the pineal gland. During periods of darkness the biochemical and secretory activity of the pineal is enhanced with the resultant production of antigonadotrophic principles which are strongly suppressive to reproductive physiology. In this manner, decreasing day lengths of the fall are involved with suppressing sexual capability in male and female hamsters. Throughout the winter months darkness (because of the shorter day lengths and the fact that hamsters remain underground in lightless burrows) holds the gonads in an atrophic condition and thereby prevents hamsters from breeding. As spring approaches the neuroendocrine reproductive axis becomes refractory to the inhibitory effects of darkness and the pineal gland and, as a consequence, the gonads recrudesce allowing the animals to successfully reproduce. The long days of the spring and summer serve to interrupt the refractory period so that when winter approaches shortening day lengths will again, by way of the pineal gland, induce gonadalinvolution. In this scheme both light and darkness are critically important in synchronizing the phases of the annual reproductive cycle of the hamster with the appropriate season of the year. Melatonin may be the pineal hormone which mediates the effects of darkness on reproductive physiology.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

19.
Seasonal changes in mammalian physiology and behavior are proximately controlled by the annual variation in day length. Long summer and short winter day lengths markedly alter the amplitude of endogenous circadian rhythms and may affect ultradian oscillations, but the threshold photoperiods for inducing these changes are not known. We assessed the effects of short and intermediate day lengths and changes in reproductive physiology on circadian and ultradian rhythms of locomotor activity in Siberian hamsters. Males were maintained in a long photoperiod from birth (15 h light/day; 15 L) and transferred in adulthood to 1 of 7 experimental photoperiods ranging from 14 L to 9 L. Decreases in circadian rhythm (CR) robustness, mesor and amplitude were evident in photoperiods ≤14 L, as were delays in the timing of CR acrophase and expansion of nocturnal activity duration. Nocturnal ultradian rhythms (URs) were comparably prevalent in all day lengths, but 15 L markedly inhibited the expression of light-phase URs. The period (τ'), amplitude and complexity of URs increased in day lengths ≤13 L. Among hamsters that failed to undergo gonadal regression in short day lengths (nonresponders), τ' of the dark-phase UR was longer than in photoresponsive hamsters; in 13 L the incidence and amplitude of light-phase URs were greater in hamsters that did not undergo testicular regression. Day lengths as long as 14 L were sufficient to trigger changes in the waveform of CRs without affecting UR waveform. The transition from a long- to a short-day ultradian phenotype occurred for most UR components at day lengths of 12 L-13 L, thereby establishing different thresholds for CR and UR responses to day length. At the UR-threshold photoperiod of 13 L, differences in gonadal status were largely without effect on most UR parameters.  相似文献   

20.
Pregnancy and lactation inhibited moult into winter pelage in voles maintained in short daylengths; development of a winter pelage was, however, greatly accelerated once the short-day dams weaned their litters. The presumed elevation of prolactin titres during lactation appears to mask full development and expression of pelage changes induced by short daylengths. Nest-building behaviour, by contrast, was increased in response to short photoperiods and was further augmented during lactation and may thereby facilitate thermoregulation in short-day dams that do not develop a winter pelage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号