首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first step of the bacteriorhodopsin (bR) photocycle involves the formation of a red-shifted product, K. Fourier transform infrared difference spectra of the bR570 to K630 transition at 81 K has been measured for bR containing different isotopic substitutions at the retinal Schiff base. In the case of bacteriorhodopsin containing a deuterium substitution at the Schiff base nitrogen, carbon 15, or both, we find spectral changes in the 1600-1610- and 1570-1580-cm-1 region consistent with the hypothesis that the K630 C=N stretching mode of a protonated Schiff base is located near 1609 cm-1. A similar set of Schiff base deuterium substitutions for retinal containing a 13C at the carbon 10 position strongly supports this conclusion. This assignment of the K630 C=N stretching vibration provides evidence that the bR Schiff base proton undergoes a substantial environmental change most likely due to separation from a counterion. In addition, a correlation is found between the C=N stretching frequency and the maximum wavelength of visible absorption, suggesting that movement of a counterion relative to the Schiff base proton is the main source of absorption changes in the early stages of the photocycle. Such a movement is a key prediction of several models of proton transport and energy transduction. Evidence is also presented that one or more COOH groups are involved in the formation of the K intermediate.  相似文献   

2.
In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.  相似文献   

3.
Solid-state 13C NMR spectra were employed to characterize the protonation state of tyrosine in the light-adapted (bR568) and M states of bacteriorhodopsin (bR). Difference spectra (isotopically labeled bR minus natural-abundance bR) were obtained for [4'-13C]Tyr-labeled bR, regenerated with [14-13C]retinal as an internal marker to identify the photocycle states. The [14-13C]retinal has distinct chemical shifts for bR555, for bR568, and for the M intermediate generated and thermally trapped at pH 10 in the presence of 0.3 M KCl or 0.5 M guanidine. Previous work has demonstrated that tyrosine and tyrosinate are easily distinguished on the basis of the chemical shift of the 4'-13C label and that both NMR signals are detectable in dark-adapted bR, although the tyrosinate signal is only present at pH values greater than 12. In the present work, we show that neither the light-adapted form of bR prepared at pH 7 or 10 nor the M state thermally trapped at -80 degrees C in 0.3 M KCl pH 10, or in 0.5 M guanidine pH 10, shows any detectable tyrosinate. In addition, after the M samples were briefly warmed (approximately 30 s), no tyrosinate was observed. However, small (1-2 ppm) changes in the structure or dispersion in the Tyr peak were observed in the M state phototrapped by either method. These changes were reversible when the sample was warmed, although on a time scale slower than the relaxation of the retinal back to the bR568 conformer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The structure and the photocycle of bacteriorhodopsin (bR) containing 13-cis,15-syn retinal, so-called bR548, has been studied by means of molecular dynamics simulations performed on the complete protein. The simulated structure of bR548 was obtained through isomerization of in situ retinal around both its C13-C14 and its C15-N bond starting from the simulated structure of bR568 described previously, containing all-trans,15-anti retinal. After a 50-ps equilibration, the resulting structure of bR548 was examined by replacing retinal by analogues with modified beta-ionone rings and comparing with respective observations. The photocycle of bR548 was simulated by inducing a rapid 13-cis,15-anti-->all-trans,15-syn isomerization through a 1-ps application of a potential that destabilizes the 13-cis isomer. The simulation resulted in structures consistent with the J, K, and L intermediates observed in the photocycle of bR548. The results offer an explanation of why an unprotonated retinal Schiff base intermediate, i.e., an M state, is not formed in the bR548 photocycle. The Schiff base nitrogen after photoisomerization of bR548 points to the intracellular rather than to the extracellular site. The simulations suggest also that leakage from the bR548 to the bR568 cycle arises due to an initial 13-cis,15-anti-->all-trans,15-anti photoisomerization.  相似文献   

5.
Our previous solid-state 13C NMR studies on bR have been directed at characterizing the structure and protein environment of the retinal chromophore in bR568 and bR548, the two components of the dark-adapted protein. In this paper, we extend these studies by presenting solid-state NMR spectra of light-adapted bR (bR568) and examining in more detail the chemical shift anisotropy of the retinal resonances near the ionone ring and Schiff base. Magic angle spinning (MAS) 13C NMR spectra were obtained of bR568, regenerated with retinal specifically 13C labeled at positions 12-15, which allowed assignment of the resonances observed in the dark-adapted bR spectrum. Of particular interest are the assignments of the 13C-13 and 13C-15 resonances. The 13C-15 chemical resonance for bR568 (160.0 ppm) is upfield of the 13C-15 resonance for bR548 (163.3 ppm). This difference is attributed to a weaker interaction between the Schiff base and its associated counterion in bR568. The 13C-13 chemical shift for bR568 (164.8 ppm) is close to that of the all-trans-retinal protonated Schiff base (PSB) model compound (approximately 162 ppm), while the 13C-13 resonance for bR548 (168.7 ppm) is approximately 7 ppm downfield of that of the 13-cis PSB model compound. The difference in the 13C-13 chemical shift between bR568 and bR548 is opposite that expected from the corresponding 15N chemical shifts of the Schiff base nitrogen and may be due to conformational distortion of the chromophore in the C13 = C14-C15 bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The bleach continuum in the 1900-1800-cm(-1) region was reported during the photocycle of bacteriorhodopsin (bR) and was assigned to the dissociation of a polarizable proton chain during the proton release step. More recently, a broad band pass filter was used and additional infrared continua have been reported: a bleach at >2700 cm(-1), a bleach in the 2500-2150-cm(-1) region, and an absorptive behavior in the 2100-1800-cm(-1) region. To fully understand the importance of the hydrogen-bonded chains in the mechanism of the proton transport in bR, a detailed study is carried out here. Comparisons are made between the time-resolved Fourier transform infrared spectroscopy experiments on wild-type bR and its E204Q mutant (which has no early proton release), and between the changes in the continua observed in thermally or photothermally heated water (using visible light-absorbing dye) and those observed during the photocycle. The results strongly suggest that, except for the weak bleach in the 1900-1800-cm(-1) region and >2500 cm(-1), there are other infrared continua observed during the bR photocycle, which are inseparable from the changes in the absorption of the solvent water molecules that are photothermally excited via the nonradiative relaxation of the photoexcited retinal chromophore. A possible structure of the hydrogen-bonded system, giving rise to the observed bleach in the 1900-1800-cm(-1) region and the role of the polarizable proton in the proton transport is discussed.  相似文献   

7.
The bacteriorhodopsin (bR) photocycle was followed by use of time-resolved Fourier-transform infrared (FTIR) spectroscopy as a function of temperature (15-85 degrees C) as the alpha(II) --> alpha(I) conformational transition occurs. The photocycle rate increases with increasing temperature, but its efficiency is found to be drastically reduced as the transition takes place. A large shift is observed in the all-trans left arrow over right arrow 13-cis equilibrium due to the increased stability of the 13-cis isomer in alpha(I) form. This, together with the increase in the rate of dark adaptation as the temperature increases, leads to a large increase in the 13-cis isomer concentration in bR in the alpha(I) form. The fact that 13-cis retinal has a much-reduced absorption cross-section and its inability to pump protons leads to an observed large reduction in the concentration of the observed photocycle intermediates, as well as the proton gradient at a given light intensity. These results suggest that nature might have selected the alpha(II) rather than the alpha(I) form as the helical conformation in bR to stabilize the all-trans retinal isomer that is a better light absorber and is capable of pumping protons.  相似文献   

8.
Rotational resonance, a new solid-state NMR technique for determining internuclear distances, is used to measure a distance in the active site of bacteriorhodopsin (bR) that changes in different states of the protein. The experiments are targeted to the active site of bR through 13C labeling of both the retinal chromophore and the Lys side chains of the protein. The time course of the rotor-driven magnetization exchange between a pair of 13C nuclei is then observed to determine the dipolar coupling and therefore the internuclear distance. Using this approach, we have measured the distance from [14-13C]retinal to [epsilon-13C]Lys216 in dark-adapted bR in order to examine the structure of the retinal-protein linkage and its role in coupling the isomerizations of retinal to unidirectional proton transfer. This distance depends on the configuration of the intervening C=N bond. The 3.0 +/- 0.2 A distance observed in bR555 demonstrates that the C=N bond is syn, and the 4.1 +/- 0.3 A distance observed in bR568 demonstrates that the C=N bond is anti. These direct distance determinations independently confirm the configurations previously deduced from solid-state NMR chemical shift and resonance Raman vibrational spectra. The spectral selectivity of rotational resonance allows these two distances to be measured independently in a sample containing both bR555 and bR568; the presence of both states and of 25% lipid in the sample demonstrates the use of rotational resonance to measure an active site distance in a membrane protein with an effective molecular mass of about 85 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Polarized, low-temperature Fourier transform infrared (FTIR) difference spectroscopy has been used to investigate the structure of bacteriorhodopsin (bR) as it undergoes phototransitions from the light-adapted state, bR570, to the K630 and M412 intermediates. The orientations of specific retinal chromophore and protein groups relative to the membrane plane were calculated from the linear dichroism of the infrared bands, which correspond to the vibrational modes of those groups. The linear dichroism of the chromophore C=C and C-C stretching modes indicates that the long axis of the polyene chain is oriented at 20-25 degrees from the membrane plane at 250 K and that it orients more in-plane when the temperature is reduced to 81 K. The polyene plane is found to be approximately perpendicular to the membrane plane from the linear dichroism calculations of the HOOP (hydrogen out-of-plane) wags. The orientation of the transition dipole moments of chromophore vibrations in the K630 and M412 intermediates has been probed, and the dipole moment direction of the C=O bond of an aspartic acid that is protonated in the bR570----M412 transition has been measured.  相似文献   

10.
D Xu  C Martin    K Schulten 《Biophysical journal》1996,70(1):453-460
Molecular dynamics simulations have been carried out to study the J625 and K590 intermediates of bacteriorhodopsin's (bRs) photocycle starting from a refined structure of bR568. The coupling between the electronic states of retinal and the protein matrix is characterized by the energy difference delta E(t) between the excited state and the ground state to which the protein contributes through the Coulomb interaction. Our simulations indicate that the J625 intermediate is related to a polarization of the protein matrix due to the brief (200 fs) change of retinal's charge distribution in going to the excited state and back to the ground state, and that the rise time of the K590 intermediate is determined by vibrational cooling of retinal.  相似文献   

11.
Laser flash photolysis and low-temperature absorption studies of the photocycle of orthorhombic purple membrane (o-PM) reveal the existence of the same K, L, and M intermediates as found in the native hexagonal purple membrane (h-PM). However, the 0 intermediate is missing in the o-PM. The absorption spectrum of the K intermediate of o-PM is blueshifted by ~15 nm relative to the K intermediate found in the hexagonal purple membrane. The decay relaxation time constants of M in the o-PM are higher by more than an order of magnitude than the corresponding relaxation time constants in the h-PM. Similarly to the h-PM, the decay of M depends on the pulse width of excitation. The time-independent anisotropy factor obtained in photoselection studies of the M intermediate demonstrates the complete immobility of bacteriorhodopsin (bR) within the o-PM matrix. The same anisotropy factor of 0.3 obtained for o-PM and for h-PM suggests that in both crystalline lattices the transition moment of the retinal chromophore has similar angles with the plane of the membrane. The dependence of the decay kinetics of M on its occupancy may suggest the existence of kinetic coupling between neighboring bR molecules.  相似文献   

12.
A Scatchard plot for the strongly bound Eu3+ to deionized bacteriorhodopsin (bR) was made using a method based on measuring the concentration of unbound Eu3+ from its fluorescence intensity. The results suggest that the first mole of Eu3+ added to a mole of bR is strongly bound by displacing 2-3 protons. In order to reconcile this result with the previous time-resolved fluorescence studies on Eu(3+)-regenerated bR, which showed the presence of 3 sites of comparable binding constants, one is forced to conclude that the emission from the strongly bound Eu3+ is completely quenched, e.g. by energy transfer to the retinal. For this to take place, the Eu3+ must be within a few A from the retinal, i.e. within the retinal pocket (the active site). The possible importance of this conclusion to the deprotonation mechanism of the protonated Schiff base, the switch of the proton pump in bR, is discussed.  相似文献   

13.
The pH dependence of the subpicosecond decay of the retinal photoexcited state in bacteriorhodopsin (bR) is determined in the pH range 6.8-11.3. A rapid change in the decay rate of the retinal photoexcited state is observed in the pH range 9-10, the same pH range in which a rapid change in the M412 formation kinetics was observed. This observation supports the previously proposed heterogeneity model in which parallel photocycles contribute to the observed pH dependence of the M412 formation kinetics in bR.  相似文献   

14.
Constraints on the proximity of the carboxyl carbons of the Asp-85 and Asp-212 side chains to the 14-carbon of the retinal chromophore have been established for the bR(555), bR(568), and M(412) states of bacteriorhodopsin (bR) using solid-state NMR spectroscopy. These distances were examined via (13)C-(13)C magnetization exchange, which was observed in two-dimensional RF-driven recoupling (RFDR) and spin diffusion experiments. A comparison of relative RFDR cross-peak intensities with simulations of the NMR experiments yields distance measurements of 4.4 +/- 0.6 and 4.8 +/- 1.0 A for the [4-(13)C]Asp-212 to [14-(13)C]retinal distances in bR(568) and M(412), respectively. The spin diffusion data are consistent with these results and indicate that the Asp-212 to 14-C-retinal distance increases by 16 +/- 10% upon conversion to the M-state. The absence of cross-peaks from [14-(13)C]retinal to [4-(13)C]Asp-85 in all states and between any [4-(13)C]Asp residue and [14-(13)C]retinal in bR(555) indicates that these distances exceed 6.0 A. For bR(568), the NMR distance constraints are in agreement with the results from recent diffraction studies on intact membranes, while for the M state the NMR results agree with theoretical simulations employing two bound waters in the region of the Asp-85 and Asp-212 residues. The structural information provided by NMR should prove useful for refining the current understanding of the role of aspartic acid residues in the proton-pumping mechanism of bR.  相似文献   

15.
We summarize the predictions of the exciton model that was originally proposed to explain the observed biphasic band shape of its CD spectrum in the visible region of bacteriorhodopsin (bR). It is shown that to reconcile these predictions with the observed results on the linear dichroism, the retinal isomerization time and, the retinal-retinal distance, the biphasic nature of the observed CD spectrum of bR becomes itself an evidence against the exciton model because of the uncertainty principle.

Reduced bR (RbR), which retains its hexagonal structure, shows a monophasic CD spectrum with relatively small rotational strength as compared to bR. This is shown to disagree with predictions made by the exciton model. The results could best be explained in terms of retinal-protein heterogeneity leading to two or more types of bR in which their retinals suffer opposite sense of intramolecular rotational distortion along their retinal long axis. Such a retinal-protein heterogeneity disappears in reduced bR which is known to have a planar (nondistorted) retinal conjugated system, resulting in a monophasic CD with reduced rotational strength, as observed.

  相似文献   

16.
The role of Asp-212 in the proton pumping mechanism of bacteriorhodopsin (bR) has been studied by a combination of site-directed mutagenesis and Fourier transform infrared difference spectroscopy. Difference spectra were recorded at low temperature for the bR----K and bR----M photoreactions of the mutants Asp-212----Glu, Asp-212----Asn, and Asp-212----Ala. Despite an increased proportion of the 13-cis form of bR (normally associated with dark adaptation), all of the mutants exhibited a light-adapted form containing as a principal component the normal all-trans retinal chromophore. The absence of a shift in the retinal C = C stretching frequency in these mutants indicates that Asp-212 is not a major determinant of the visible absorption wavelength maximum in light-adapted bR. It is unlikely that Asp-212 is the acceptor group for the Schiff base proton since both the Asp-212----Glu and Asp-212----Ala mutants formed an M intermediate. All of the Asp-212 mutants were missing a Fourier transform infrared difference band that had been assigned previously to protonation changes of Tyr-185. These results are discussed in terms of a model in which Tyr-185 and Asp-212 form a polarizable hydrogen bond and are positioned near the C13-Schiff base portion of the chromophore. These 2 residues may be involved in stabilizing the relative orientation of the F and G helices and isomerizing the retinal in a regioselective manner about the C13 = C14 double bond.  相似文献   

17.
D Xu  M Sheves    K Schulten 《Biophysical journal》1995,69(6):2745-2760
Molecular dynamics simulations have been carried out to study the M412 intermediate of bacteriorhodopsin's (bR) photocycle. The simulations start from two simulated structures for the L550 intermediate of the photocycle, one involving a 13-cis retinal with strong torsions, the other a 13,14-dicis retinal, from which the M412 intermediate is initiated through proton transfer to Asp-85. The simulations are based on a refined structure of bR568 obtained through all-atom molecular dynamics simulations and placement of 16 waters inside the protein. The structures of the L550 intermediates were obtained through simulated photoisomerization and subsequent molecular dynamics, and simulated annealing. Our simulations reveal that the M412 intermediate actually comprises a series of conformations involving 1) a motion of retinal; 2) protein conformational changes; and 3) diffusion and reconfiguration of water in the space between the retinal Schiff base nitrogen and the Asp-96 side group. (1) turns the retinal Schiff base nitrogen from an early orientation toward Asp-85 to a late orientation toward Asp-96; (2) disconnects the hydrogen bond network between retinal and Asp-85 and tilts the helix F of bR, enlarging bR's cytoplasmic channel; (3) adds two water molecules to the three water molecules existing in the cytoplasmic channel at the bR568 stage and forms a proton conduction pathway. The conformational change (2) of the protein involves a 60 degrees bent of the cytoplasmic side of helix F and is induced through a break of a hydrogen bond between Tyr-185 and a water-side group complex in the counterion region.  相似文献   

18.
Previous solid state 13C-NMR studies of bacteriorhodopsin (bR) have inferred the C = N configuration of the retinal-lysine Schiff base linkage from the [14-13C]retinal chemical shift (1-3). Here we verify the interpretation of the [14-13C]-retinal data using the [epsilon-13C]lysine 216 resonance. The epsilon-Lys-216 chemical shifts in bR555 (48 ppm) and bR568 (53 ppm) are consistent with a C = N isomerization from syn in bR555 to anti in bR568. The M photointermediate was trapped at pH 10.0 and low temperatures by illumination of samples containing either 0.5 M guanidine-HCl or 0.1 M NaCl. In both preparations, the [epsilon-13C]Lys-216 resonance of M is 6 ppm downfield from that of bR568. This shift is attributed to deprotonation of the Schiff base nitrogen and is consistent with the idea that the M intermediate contains a C = N anti chromophore. M is the only intermediate trapped in the presence of 0.5 M guanidine-HCl, whereas a second species, X, is trapped in the presence of 0.1 M NaCl. The [epsilon-13C]Lys-216 resonance of X is coincident with the signal for bR568, indicating that X is either C = N anti and protonated or C = N syn and deprotonated.  相似文献   

19.
The structural alterations which occur in bacteriorhodopsin (bR) during dark adaptation (BR570----BR548) and the primary phototransition of the dark photocycle (BR548----KD610) have been investigated by Fourier transform infrared and UV difference spectroscopy. Possible contributions of tyrosine to the Fourier transform infrared difference spectra of these transitions were assigned by incorporating ring per-deuterated tyrosine into bR. Based on these data and UV difference measurements, we conclude that a stable tyrosinate exists in BR570 at physiological temperature and that it protonates during formation of BR548. A tyrosinate protonation has also been observed at low temperature during the primary phototransition of BR570 to the red-shifted photoproduct K630 (1). However, we now find that no tyrosine protonation change occurs during the primary phototransition of BR548 to the red-shifted intermediate KD610. Through analysis of bR containing isotopically labeled retinals, it was also determined that the chromophore of KD610 exits in a 13-trans, 15-cis configuration. On the basis of this evidence and previous studies on the structure of the chromophore in BR570, BR548, and K630, it appears that only the 13-trans,15-trans configuration of the protonated chromophore leads to a stable tyrosinate group. It is proposed that a tyrosinate residue is stabilized due to its interaction with the Schiff base positive charge in the BR570 chromophore. Isomerization of the chromophore about either the C13 = C14 or C = N bond disrupts this interaction causing a protonation of the tyrosinate.  相似文献   

20.
Formation of bacteriorhodopsin (bR) from apoprotein and retinal has been studied experimentally, but the actual pathway, including the point of entry, is little understood. Molecular dynamics simulations provide a surprisingly clear prediction. A window between bR helices E and F in the transmembrane part of the protein can be identified as an entry point for retinal. Steered molecular dynamics, performed by applying a series of external forces in the range of 200-1000 pN over a period of 0.2 ns to retinal, allows one to extract this chromophore from bR once the Schiff base bond to Lys216 is cleaved. Extraction proceeds until the retinal tail forms a hydrogen bond network with Ala144, Met145, and Ser183 side groups lining the exit/entry window. The manipulation induces a distortion with a fitted root mean square deviation of coordinates (ignoring retinal, water, and hydrogen atoms) of less than 1.9 A by the time the retinal carbonyl reaches the protein surface. The forces needed to extract retinal are due to friction and do not indicate significant potential barriers. The simulations therefore suggest a pathway for the binding of retinal. Water molecules are found to play a crucial role in the binding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号