首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous biochemical characterizations of the cholecystokinin (CCK) receptor have used the "long" probe 125I-Bolton-Hunter-CCK-33 since it was the only CCK analogue with high affinity and high specific radioactivity which possessed an amino group available for chemical cross-linking. These studies have consistently identified a major binding protein of approximately 81 kilodaltons and have identified several minor proteins which were obtained under different cross-linking conditions and in different laboratories. Because the receptor-binding region of CCK-33 (carboxyl-terminal heptapeptide) is so far removed from the radiolabel and from available amino groups (positions 1 and 11), this probe carries potential for proteolytic cleavage of label from receptor and for labeling "near neighbors" instead of the binding site. We therefore designed two "short" probes for the CCK receptor. 125I-Bolton-Hunter-Lys-Gly-CCK-8 has an epsilon-amino group available for cross-linking. 125I-Tyr-[Thr28,Nle31]CCK-25-33 has an alpha-amino group for cross-linking and has the major advantage of being labeled by oxidative means, unique for CCK derivatives. Both radioiodinated decapeptides were purified by reverse-phase high pressure liquid chromatography to yield specific radioactivity of 2,000 Ci/mmol; demonstrated saturable, specific, and high affinity binding to rat pancreatic plasma membranes; and retained full biological activity to stimulate amylase secretion. Using a variety of cross-linking methods, these probes each identified the same Mr = 85,000-95,000 protein in rat pancreatic plasmalemma, and CCK-8 competed for this labeling in a concentration-dependent manner (IC50 = 1 nM). No change in apparent mobility of this band was observed under reducing or nonreducing conditions, suggesting lack of covalent attachment to other subunits. The Mr = 85,000-95,000 species migrated differently on sodium dodecyl sulfate gels than any of the components previously identified using 125I-Bolton-Hunter-CCK-33, confirming the novel nature of this binding protein. These short probes should be very useful for further characterization of CCK receptors on this and other tissues.  相似文献   

2.
Attempts to biochemically characterize the pancreatic cholecystokinin (CCK) receptor by affinity labeling have utilized either 125I-Bolton-Hunter-CCK-33 ("long" probes) or decapeptide analogues of the carboxyl terminus of CCK ("short" probes), and covalent attachment via the amino-terminal regions of these probes. The long probe has identified a protein of Mr = 80,000 while "shorter" probes, which have their site of cross-linking closer to the receptor binding region of the probes, have labeled a distinct protein of Mr = 85,000-95,000. To extend and complement these observations, we have designed and synthesized a new probe for the CCK receptor which incorporates a photolabile p-nitrophenylalanine moiety within the theoretical receptor-binding region of the hormone, as its carboxyl-terminal residue. This "intrinsic" photoaffinity labeling probe has been shown to possess full biological activity, with potency and efficacy in stimulating amylase secretion by dispersed rat pancreatic acini similar to that of CCK-8 (CCK-26-33). When iodinated oxidatively, this probe binds rapidly, in a temperature-dependent, reversible, saturable, specific, high affinity manner to enriched pancreatic plasma membranes. In this work, we have used this probe to specifically label the CCK binding site on rat pancreatic plasma membranes. The Mr = 85,000-95,000 protein previously identified with amino-terminal cross-linking of short probes appears to be the protein labeled with this reagent as well. This provides strong evidence that this pancreatic plasma membrane protein contains the CCK-binding domain of the CCK receptor. This intrinsic photoaffinity labeling probe should be quite useful for the characterization of the active site of this receptor and for other CCK and gastrin receptors in many species.  相似文献   

3.
High affinity binding sites for [3H]adenosine in rat brain and in turkey erythrocytes can be identified by binding experiments. Displacement experiments using a number of adenosine analogs indicate that these high affinity sites do not represent the R-type adenosine receptors which mediate activation of adenylate cyclase, although the binding is theophylline sensitive. Similarly, the binding of [3H]adenosine is not to the P-site, which mediates inhibition of adenylate cyclase, since the high affinity binding persists in the presence of 2′,5′-dideoxyadenosine. Furthermore, these results remain qualitatively similar also in the presence of dipyridamole which blocks adenosine transport sites. We conclude that theophylline sensitivity does not indicate that [3H]adenosine binding sites correspond to adenosine receptors coupled to adenylate cyclase.  相似文献   

4.
Cholecystokinin (CCK) is a peptide hormone that has a variety of physiologically important functions in the gastrointestinal tract, in which distinct high affinity receptors have been identified. We describe here the purification of the digitonin-solubilized rat pancreatic receptor as an initial step in the determination of its primary structure. Solubilization of total pancreatic membranes using 1% digitonin resulted in a single class of binding sites with a specific content of 4 pmol/mg as measured in a soluble binding assay using the nonpeptidyl CCK antagonist [3H]3S[-]-N-[2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4- benzodiazepine-3-yl]-1H-indole-2-carboxamide [( 3H]364,718). The solubilized receptor was purified using the following chromatographic steps: 1) cation exchange; 2) Ulex europaeus agglutinin-I-agarose; and 3) Sephacryl S-300. The final preparation of the purified receptor had a specific content of 8,055 pmol/mg, which represented a 9,051-fold purification from intact membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified receptor preparation under reducing conditions resulted in a predominant polypeptide with an Mr = 85,000-95,000 and minor polypeptides of Mr = 57,000 and 26,000 as determined by radiolabeling and silver staining. Solubilized pancreatic membranes were affinity labeled with the peptidyl CCK agonist 125I-D-Tyr-Gly-[(Nle28,31,6-NO2-Phe33)CCK-26-33] and chromatographed under conditions similar to those described for untreated membranes. Elution of radioactive peaks from each chromatographic column was coincident with [3H]364,718 binding activity and resulted in a labeled polypeptide having the same electrophoretic mobility as receptor derived from freshly labeled membranes and purified from untreated membranes. High performance liquid-gel exclusion chromatography of the crude digitonin-solubilized membrane preparation revealed an estimated molecular size for the [3H]364,718-binding activity of 370,000, which was consistent with the size determined by nondenaturing gel electrophoresis of the purified receptor complexed with the labeled nonpeptidyl antagonist. Binding of [3H]364,718 to the purified receptor preparation was comparable to that observed with the crude solubilized pancreatic membrane preparation; and both the homologous ligand 364,718 (Ki = 0.5 nm) and CCK-8 (Ki = 1.4 microM) competed for binding to both preparations in a similar manner.  相似文献   

5.
The binding of biologically active 125I-Bolton-Hunter-CCK-33 to bullfrog brain and pancreatic membrane particles was characterized. Both tissues exhibited time-dependent, saturable, reversible, and high affinity binding without evidence for cooperative interaction. Both bullfrog CCK receptors resembled their mammalian counterparts in having acidic pH optima for tracer binding and a Kd of about 0.5 nM. However, the receptors differed from their mammalian counterparts in that (1) the bullfrog brain membranes bound more tracer per mg protein than did the pancreatic membranes, (2) both bullfrog CCK receptors were relatively insensitive to dibutyryl cGMP, and (3) both bullfrog brain and pancreatic CCK receptors exhibited the same general specificity toward a variety of CCK and gastrin peptides. For both tissues, the relative order of receptor binding potency was CCK-8 greater than caerulein = CCK-33 greater than gastrin-17-II greater than CCK-8-ns = gastrin-17-I greater than caerulein-ns greater than gastrin-4 with the sulfated CCK peptides being 1000-fold more potent than their nonsulfated analogs. Sulfated gastrin was also relatively potent, being only 10-fold weaker than CCK-8. Gastrin-4 was 20 000-fold weaker than CCK-8 in interacting with the brain CCK receptor. The latter finding is in sharp contrast to the mammalian brain CCK receptor. We conclude that the bullfrog brain and pancreas contain similar CCK receptors of probable physiological significance and may represent an ancestral condition from which the two distinct CCK receptors present in mammalian brain and pancreas have evolved.  相似文献   

6.
Monoclonal antiadenosine receptor antibodies have been raised by an auto-anti-idiotypic approach. BALB/c mice were immunized with adenosine 6-aminocaproyl-bovine serum albumin. Hybridoma cell lines were raised and lines that secreted antibodies that bound to rabbit antiadenosine antibodies were obtained. Two such monoclonal antibodies, AA18 and AA21, were studied in detail and found to be directed at adenosine receptors by the following criteria. They inhibited the binding of [3H] adenosine to rabbit antiadenosine antibodies that had binding characteristics similar to those of adenosine receptors. They bound to rat brain membranes and binding could be inhibited by N6-cyclohexyladenosine and L-N6-phenylisopropyladenosine, both adenosine receptor agonists. They also inhibited the binding of [3H]L-N6-phenylisopropyladenosine to rat brain membranes. In functional assays, they inhibited adenylate cyclase of rat brain membranes, but had no effect on adenylate cyclase of rat hepatic membranes, indicating that they mimic agonists of the A1 receptor, therefore, carrying an "internal image" of the adenosine molecule. When adenosine receptors of rat brain membranes were solubilized with 1% cholic acid, partially purified on an adenosine 6-aminocaproyl AH-Sepharose column and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, both AA18 and AA21 recognized a 62,000 band under nonreducing conditions, and a major band of 36,000 under reducing conditions. We conclude that the auto-anti-idiotypic route has yielded specific antibodies that recognize the A1 adenosine receptor.  相似文献   

7.
The effect of a single electroconvulsive shock (ECS) (30 min and 24 h after treatment) and repeated ECS (10 once-daily) on the adenosine neuromodulatory system was investigated in rat cerebral cortex, cerebellum, hippocampus, and striatum. The present study examined the adenosine A1 receptor using N6-[3H]cyclohexyladenosine ([3H]CHA), the A2 receptor using 5'-N-[3H]ethylcarboxyamidoadenosine ([ 3H]NECA), adenylate cyclase using [3H]forskolin, and the adenosine uptake site using [3H]nitrobenzylthioinosine ([3H]NBI). At 30 min after a single ECS, the Bmax of the [3H]NBI binding in striatum was increased by 20%, which is in good agreement with the well-known postictal adenosine release. The Bmax of [3H]forskolin binding in striatum and cerebellum was increased by 60 and 20%, respectively. In contrast to earlier reported changes following chemically induced seizures, [3H]CHA binding was not altered postictally. At 24 h after a single ECS, there were no changes for any ligand in any brain region. Following repeated ECS, there was a 20% increase of [3H]CHA binding sites in cerebral cortex, which lasted for at least 14 days after the last ECS. [3H]Forskolin binding in hippocampus and striatum was 20% lowered 24 h after 10 once-daily ECS but had already returned to control levels 48 h after the last treatment. Evidence is provided that the upregulated adenosine A1 receptors are coupled to guanine nucleotide binding proteins and, furthermore, that this upregulation is not paralleled by an increase in adenylate cyclase activity as labeled by [3H]forskolin.  相似文献   

8.
When rat adipocyte membranes had been labeled with [3H]GTP in the presence of a beta-adrenergic agonist, the subsequent [3H]GDP release was stimulated by beta-agonists or agonists (e.g. glucagon and secretin) of other "activatory" receptors involved in activation of adenylate cyclase, but was not stimulated by agonists (e.g. prostaglandin E1 and adenosine) of "inhibitory" receptors involved in cyclase inhibition. On the contrary, agonists of inhibitory receptors were effective in stimulating GDP release from hamster adipocyte membranes that had been labeled via inhibitory alpha 2-adrenergic receptors, but an activatory receptor agonist such as isoproterenol was not. Thus, the guanine nucleotide regulatory protein (Ni) involved in adenylate cyclase inhibition is an entity distinct from the regulatory protein (Ns) involved in cyclase activation, and multiple activatory or inhibitory receptors are coupled to a respective common pool of Ns or Ni. Preactivated cholera toxin added together with NAD enhanced GDP release from rat adipocyte membranes prelabeled with isoproterenol but was without effect on the release from hamster adipocyte membranes that had been labeled with an alpha-agonist. In sharp contrast, the active subunit of islet-activating protein, pertussis toxin, failed to alter GDP release from the former membrane but completely abolished inhibitory agonist-induced stimulation of GDP release from the latter membrane preparation in the presence of NAD. Thus, the site of action of cholera toxin is Ns, while that of islet-activating protein is Ni. The function of Ni to communicate between inhibitory receptors and adenylate cyclase was lost when it was ADP-ribosylated by islet-activating protein.  相似文献   

9.
Previous study has shown that cholecystokinin (CCK) octapeptide (CCK-8) suppressed the binding of opioid receptors to the universal opioid agonist [3H]etorphine. In the present study, highly selective tritium-labeled agonists for the mu-[(tryrosyl-3,5-3H][D-Ala2,MePhe4,Gly-ol5]enkephalin ([3H]DAGO], delta- ([tyrosyl-3,5-3H][D-Pen2,5]enkephalin ([3H]DPDPE], and kappa- ([3H]U69,593) opioid receptors were used to clarify which type(s) of opioid receptor in rat brain homogenates is suppressed by CCK-8. In the competition experiments, CCK-8 suppressed the binding of [3H]DAGO and [3H]U69,593 but not that of [3H]DPDPE to the respective opioid receptor. This effect was blocked by the CCK antagonist proglumide at 1 mumol/L. In the saturation experiments, CCK-8 at concentrations of 0.1 nmol/L to 1 mumol/L decreased the Bmax of [3H]DAGO binding sites without affecting the KD; on the other hand, CCK-8 increased the KD of [3H]U69,593 binding without changing the Bmax. The results suggest that CCK-8 inhibits the binding of mu- and kappa-opioid receptors via the activation of CCK receptors.  相似文献   

10.
We have previously demonstrated that adenosine causes contraction of guinea-pig myometrium in a fashion consistent with the presence of a purinergic receptor of the A1 subtype. Incubation of guinea-pig uterine smooth muscle membranes with the stable adenosine analogue [3H]cyclohexyladenosine [( 3H]CHA) resulted in rapid, reversible association of radioligand to saturable sites. The affinity (KD) of the receptor for [3H]CHA determined from kinetic experiments (3.14 nM) is in good agreement with that determined in saturation experiments (KD = 4.5 nM). Scatchard analysis of specific [3H]CHA binding (Bmax = 79 fmol/mg protein) is consistent with a single class of binding sites for [3H]CHA. Computer analysis of competition of [3H]CHA binding by the stereoisomers of phenylisopropyl adenosine, R-PIA (KI = 5.3 nM) and S-PIA (KI = 69 nM), as well as the 5'-substituted analogue, ethylcarboxamide adenosine (NECA; KI = 4.2 nM) suggest that [3H]CHA binding occurs to a single class of receptors of the AI subtype. Contractile studies employing these agents reveal that the relative order of potency, based on ED50 values, correlates well with the relative order of competition of agonist binding, based on equilibrium binding constants. Direct assay of myometrial adenylate cyclase failed to show that adenosine receptors in this smooth muscle are coupled to adenylate cyclase. We conclude here that a smooth muscle adenosine receptor is not coupled to adenylate cyclase, yet subserves muscle contraction. These data are important in light of recent attempts to classify adenosine receptors as dual regulators of adenylate cyclase.  相似文献   

11.
We investigated the importance of sulfation of gastrin or cholecystokinin (CCK) on influencing their affinity for gastrin or CCK receptors by comparing the abilities of sulfated gastrin-17 (gastrin-17-II), desulfated gastrin-17 (gastrin-17-I), CCK-8 and desulfated CCK-8 [des(SO3)CCK-8] to interact with CCK or gastrin receptors on guinea pig pancreatic acini. For inhibiting binding of 125I-gastrin to gastrin receptors, gastrin-17-II (Kd 0.08 nM) greater than CCK-8 (Kd 0.4 nM) greater than gastrin-17-I (Kd 1.5 nM) greater than des(SO3)CCK-8 (Kd 28 nM). For inhibiting binding of 125I-Bolton Hunter-labeled CCK-8 to CCK receptors the relative potencies were: CCK-8 much greater than des(SO3)CCK-8 = gastrin-17-II greater than gastrin-17-I. Each peptide interacted with both high and low affinity CCK binding sites. The relative abilities of each peptide to interact with high affinity CCK receptors showed a close correlation with their abilities to cause half-maximal stimulation of enzyme secretion. These results demonstrate that, in contrast to older studies, sulfation of both CCK and gastrin increase their affinities for both gastrin and CCK receptors. Moreover, the gastrin receptor is relatively insensitive to the position of the sulfate moiety, whereas the CCK receptor is extremely sensitive to both the presence and exact position of the sulfate moiety.  相似文献   

12.
Adenosine acting through membrane-bound A1 receptors is capable of inhibiting the enzyme adenylate cyclase. A1 adenosine receptors from rat cerebral cortex have been solubilized in high yield and in an active form with the detergent digitonin. The solubilized receptors bind the agonist radioligand (-)-N6-3-[125I] iodo-4-hydroxyphenylisopropyl)adenosine (HPIA) with the same high affinity, demonstrate the same agonist and antagonist potency series and stereo-specificity as the membrane-bound A1 receptor. In addition to maintaining high affinity agonist binding, soluble A1 receptors' affinity for agonists is still modulated by guanine nucleotides. This result contrasts with other adenylate cyclase coupled receptors (beta 2, alpha 2, D2) wherein high affinity agonist binding is lost subsequent to solubilization. To investigate the molecular basis for this difference, solubilized A1 receptors which were labeled with [125I]HPIA either prior to or subsequent to solubilization, were compared by sucrose density gradient centrifugation. Both labeled species demonstrated exactly the same sedimentation properties and display guanine nucleotide sensitivity. This suggests that the same guanine nucleotide-sensitive receptor complex formed in membranes in stable to solubilization and can form a high affinity agonist complex in soluble preparation. The molecular mechanism responsible for the stable receptor complex in this system compared to the beta 2, alpha 2, and D2 systems remains to be determined.  相似文献   

13.
Specific photoaffinity labelling of inhibitory adenosine receptors   总被引:2,自引:0,他引:2  
N6(L-phenylisopropyl)adenosine (L-PIA) and N6(3-iodo-4-azido benzyl)-adenosine (IAzBA) inhibit the adenylate cyclase activity in synaptic membranes of chick cerebellum via Ri adenosine receptors. [3H]L-PIA and [125I]AzBA bind to these membranes with Kd values of approximately 1 nM and Bmax values of approximately 1000 fmol/mg protein. Photolysis of [125I]AzBA bound to synaptic membranes results in the specific incorporation of radioactivity into a protein with Mr = 36,000. This photoincorporation is blocked by simultaneous exposure to L-PIA, theophylline, an adenosine receptor antagonist, or Gpp(NH)p, but not by cytosine, suggesting that the 36,000 dalton protein is the Ri adenosine receptor or a subunit of the receptor that contains the adenosine binding site.  相似文献   

14.
Brain CCK receptors are structurally distinct from pancreas CCK receptors   总被引:3,自引:0,他引:3  
Brain and pancreas cholecystokinin (CCK) receptors differ markedly in their selectivity for CCK analogs. To determine the size and subunit structure of the brain CCK receptor and compare it to that of the pancreas, 125I-CCK33 was covalently cross-linked with ultraviolet light to its receptor on mouse brain particles and purified pancreatic plasma membranes. When CCK was crosslinked to brain membranes, a single consistent major labeled protein band of Mr = 55,000 was observed in both the presence and the absence of DTT. These data with brain receptors contrast to results with pancreatic receptors where two bands of Mr = 120,000 and 80,000 are labeled in the absence and presence of DTT, respectively. These studies indicate, therefore, that the brain and pancreas CCK receptors are structurally and functionally distinct.  相似文献   

15.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

16.
PACAP (pituitary adenylate-cyclase-activating peptide)-binding receptors were investigated in membranes from the rat pancreatic acinar cell line, AR 4-2J, the rat hippocampus and the human neuroblastoma cell line NB-OK, by 125I-PACAP(1-27) (amino acid residues 1-27 of N-terminal amidated PACAP) binding and adenylate cyclase activation. The relative binding of 125I-PACAP(1-27) to the receptor, and ability to activate adenylate cyclase were PACAP greater than or equal to PACAP(1-27) greater than PACAP(2-38) greater than PACAP(1-9)-VIP(10-28)(PACAP-VIP) greater than PACAP(2-27) greater than [Ser9,Tyr13]VIP greater than [Tyr13]VIP greater than or equal to [Ser9]VIP greater than or equal to VIP(1-23)-PACAP(24-27)(VIP-PACAP) greater than VIP (vasoactive intestinal peptide). The N-terminal moiety of PACAP(1-27) was more important than the three amino acids at the C-terminus for 125I-PACAP(1-27)-binding site recognition. For rat pancreatic 125I-VIP-binding sites tested with 125I-VIP, the order of binding affinity was PACAP = PACAP(1-27) greater than or equal to VIP = [Ser9]VIP = [Tyr13]VIP = [Ser9,Try13]VIP greater than or equal to PACAP-VIP greater than or equal to VIP-PACAP greater than PACAP(2-38) = PACAP(2-27). Pancreatic 125I-VIP-binding sites, when compared to 125I-PACAP(1-27)-binding sites, showed little specificity and only weak coupling, so that PACAP and VIP-PACAP acted only as partial VIP agonists on adenylate cyclase.  相似文献   

17.
(1) Vasoactive intestinal peptide (VIP), secretin, and C-terminal octapeptide of cholecystokinin (CCK-8) receptors were identified in rat pancreatic plasma membranes by the ability of these peptides to stimulate adenylate cyclase activity. The membrane preparation procedure was conducted through a series of steps including discontinuous sucrose density gradient fractionation. 5 mM β-mercaptoethanol was added stepwise. Membrane preparations obtained stepwise were preincubated for 10 min at 25°C in the presence of various concentrations of β-mercaptoethanol or dithiothreitol before assaying adenylate cyclase. The use of the reducing agents exerted no effect on p[NH]ppG-, NaF-, and CCK-8- stimulated activities. By contrast, stimulation of adenylate cyclase by low VIP concentrations was specifically altered when β-mercaptoethanol was used during tissue homogeneization at 5°C. (2) In addition, both VIP and secretin responses were highly sensitive towards a preincubation of 10 min at 25°C in the presence of dithiothreitol. (3) These results were likely to reflect alterations at the receptor level. 125I-VIP binding was, indeed, reduced after dithiothreitol preincubation, low concentrations of the thiol reagent decreasing the apparent number of high-affinity VIP receptors and higher dithiothreitol concentrations reducing the affinity of VIP receptors.  相似文献   

18.
The existence of specific receptors for the two PACAPs (Pituitary Adenylate Cyclase Activating Peptides of 27 and 38 amino acids) was previously demonstrated on membranes from the pancreatic acinar cell line AR 4-2J (Buscail et al., FEBS Lett. 202, 77-81, 1990) by [125I]PACAP-27 binding. Here we demonstrate, by comparing Scatchard analysis of saturation curves and competition binding curves obtained with [125I]PACAP-27 and [125I]PACAP-38 as radioligands, the coexistence of two classes of receptors: 1/PACAP-A receptors that recognize PACAP-27 and PACAP-38 with the same high affinity (Kd 0.3 nM) and 2/PACAP-B receptors that recognize PACAP-38 with a high affinity (Kd 0.3 nM) and PACAP-27 with a lower affinity (Kd 30 nM). These two receptors are coupled to adenylate cyclase but can be clearly distinguished by the ability of PACAP(6-27) to specifically inhibit PACAP-27 adenylate cyclase activation.  相似文献   

19.
Adenosine, acting via A1 adenosine receptors, can inhibit adenylate cyclase activity in adipocytes. To assess the effects of chronic adenosine agonist exposure on the A1 adenosine receptor system of adipocytes, rats were infused with (-)-phenylisopropyladenosine or vehicle for 6 days and membranes were prepared. Basal as well as isoproterenol-, sodium fluoride-, and forskolin-stimulated adenylate cyclase activities were significantly increased (approximately 2-fold) in membranes from treated animals. (-)-Phenylisopropyladenosine-mediated inhibition of forskolin-stimulated adenylate cyclase activity was significantly (p = 0.0001) attenuated in membranes from treated rats (20.1 +/- 2.1% inhibition) versus controls (31.6 +/- 2.3% inhibition). Prostaglandin E1-induced inhibition of forskolin-stimulated adenylate cyclase activity was also attenuated: 11.7 +/- 3.6 versus 23.2 +/- 4.6% (p = 0.001). Using the A1 adenosine receptor agonist radioligand (-)-N6-(3-[125I]iodo-4-hydroxyphenylisopropyl)adenosine, 32% fewer high affinity binding sites were detected in membranes from treated animals (p less than 0.04). Photoaffinity labeling with N6-2-(3-[125I]iodo-4-azidophenyl)ethyladenosine revealed no gross difference in receptor structure. The number of beta-adrenergic receptors as well as the percentage of receptors in the high affinity state as assessed by (-)-3-[125I]iodocyanopindolol binding were the same in both groups. In membranes from treated rats, the amount of [alpha-32P]NAD incorporated by pertussis toxin into the alpha subunit of the inhibitory guanine nucleotide regulatory protein (Ni) was decreased by 37 +/- 11%. Concurrently, the quantity of label incorporated by cholera toxin into the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Ns) was increased by 44 +/- 14% in treated membranes. Finally, the capacity of Ns solubilized from treated membranes to stimulate adenylate cyclase activity when reconstituted into cyc- S49 lymphoma cell membranes was enhanced by approximately 50% compared to control. Thus, heterologous desensitization, manifested by a diminished capacity to inhibit adenylate cyclase and an enhanced responsiveness to stimulatory effectors, can be induced in the A1 adenosine receptor-adenylate cyclase system of adipocytes. A decrease in Ni alpha subunit concomitant with an increase in Ns alpha subunit quantity and activity may represent the biochemical mechanism of desensitization in this system.  相似文献   

20.
Solubilization and characterization of CCK receptors from mouse pancreas   总被引:3,自引:0,他引:3  
To study the characteristics of the CCK receptor, plasma membranes were prepared from mouse pancreatic acini, and CCK receptors solubilized with 1% digitonin. To measure hormone binding, the solubilized receptors were incubated with 125I-CCK at 4 degrees C and the hormone-receptor complex was precipitated with 10% polyethylene glycol. Specific 125I-CCK binding by the solubilized CCK receptor was compared to that by the plasma membrane-bound CCK receptor. Both the solubilized and the membrane-bound receptor displayed optimal binding at an acidic pH (between 6.0 and 7.0) and showed a similar sensitivity to monovalent and divalent cations. The solubilized receptors preserved their relative specificity for CCK molecules: CCK-8 greater than CCK-33 greater than desulfated CCK-8 greater than CCK-4. However, the soluble CCK receptor had a lower binding affinity than plasma membrane-bound receptor. Solubilized receptors preserved their relative specificity for inhibitors of CCK binding and action: dibutyryl cyclic GMP greater than N-CBZ-tryptophan greater than proglumide. Solubilized receptors had affinities for these antagonists that were similar to receptors on intact plasma membranes. These data indicate, therefore, that the specific binding properties of the CCK receptor are inherent to the solubilized glycoprotein molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号