首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Expression of the pea plastocyanin gene ( PetE ) is regulated by light in both pea and transgenic tobacco plants. However, the PetE promoter with the 5' untranslated leader region does not direct light-regulated expression of the GUS reporter gene in transgenic tobacco. This suggested that sequences downstream of the translation start of the PetE gene are required for light-regulated expression. To investigate this possibility the expression of a series of chimeric gene constructs in transgenic tobacco plants was examined to assess the contributions of the promoter, the 5' untranslated leader region, the coding region and the 3' region of the PetE gene to light-regulated expression. Both the coding region and the 5' untranslated leader region of the PetE gene were found to be required for full light regulation. Full light regulation of chimeric gene constructs containing the cauliflower mosaic virus (CaMV) 35S promoter required the deletion of CaMV 5' leader and polylinker sequences from the constructs. The presence of CaMV and polylinker sequences at the 5' end of the PetE leader masked the light regulation directed by the transcribed region of the pea PetE gene.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The 3' untranslated regions of a number of cDNAs from the rumen protozoal species Entodinium caudatum were studied with a view to characterising their preference for stop codons, general length, nucleotide composition and polyadenylation signals. Unlike a number of ciliates, Entodinium caudatum uses UAA as a stop codon, rather than as a codon for glutamine. In addition, the 3' untranslated region of the message is generally less than 100 nucleotides in length, extremely A+T rich, and does not appear to utilise any of the conventional polyadenylation signals described in other organisms.  相似文献   

14.
15.
16.
We report here the identification of a cis-acting region involved in light regulation of the nuclear gene (GapB) encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana. Our results show that a 664-bp GapB promoter fragment is sufficient to confer light induction and organ-specific expression of the Escherichia coli beta-glucuronidase reporter gene (Gus) in transgenic tobacco (Nicotiana tabacum) plants. Deletion analysis indicates that the -261 to -173 upstream region of the GapB gene is essential for light induction. This region contains four direct repeats with the consensus sequence 5'-ATGAA(A/G)A-3' (Gap boxes). Deletion of all four repeats abolishes light induction completely. In addition, we have linked a 109-bp (-263 to -152) GapB upstream fragment containing the four direct repeats in two orientations to the -92 to +6 upstream sequence of the cauliflower mosaic virus 35S basal promoter. The resulting chimeric promoters are able to confer light induction and to enhance leaf-specific expression of the Gus reporter gene in transgenic tobacco plants. Based on these results we conclude that Gap boxes are essential for light regulation and organ-specific expression of the GapB gene in A. thaliana. Using gel mobility shift assays we have also identified a nuclear factor from tobacco that interacts with GapA and GapB DNA fragments containing these Gap boxes. Competition assays indicate that Gap boxes are the binding sites for this factor. Although this binding activity is present in nuclear extracts from leaves and roots of light-grown or dark-treated tobacco plants, the activity is less abundant in nuclear extracts prepared from leaves of dark-treated plants or from roots of greenhouse-grown plants. In addition, our data show that this binding factor is distinct from the GT-1 factor, which binds to Box II and Box III within the light-responsive element of the RbcS-3A gene of pea.  相似文献   

17.
18.
19.
Expression of the RNA replicase domain of tobacco mosaic virus (TMV) and certain protein-coding regions in other plant viruses, is mediated by translational readthrough of a leaky UAG stop codon. It has been proposed that normal tobacco tyrosine tRNAs are able to read the UAG codon of TMV by non-conventional base-pairing but recent findings that stop codons can also be bypassed as a result of extended translocational shifts (tRNA hopping) have encouraged a re-examination. In light of the alternatives, we investigated the sequences flanking the leaky UAG codon using an in vivo assay in which bypass of the stop codon is coupled to the transient expression of beta-glucuronidase (GUS) reporter genes in tobacco protoplasts. Analysis of GUS constructions in which codons flanking the stop were altered allowed definition of the minimal sequence required for read through as UAG-CAA-UUA. The effects of all possible single-base mutations in the codons flanking the stop indicated that 3' contexts of the form CAR-YYA confer leakiness and that the 3' context permits read through of UAA and UGA stop codons as well as UAG. Our studies demonstrate a major role for the 3' context in the read through process and do not support a model in which teh UAG is bypassed exclusively as a result of anticodon-codon interactions. No evidence for tRNA hopping was obtained. The 3' context apparently represents a unique sequence element that affects translation termination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号