首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracisternal injection of the TRH analog RX 77368 (p-Glu-His-(3,3'-dimethyl)-Pro NH2) increased gastric acid and pepsin output in conscious pylorus-ligated rats. In urethane-anesthetized, gastric fistula rats, intracisternal RX 77368 or TRH induced stimulation of gastric acid output which was rapid in onset, long lasting, and dose-dependent, in doses ranging from 3 to 100 ng/rat for RX 77368, and 0.1 to 1 micrograms/rat for TRH. Vagotomy or atropine pretreatment reversed RX 77368 gastric secretory response. The analog was less effective when infused intravenously (1-10 micrograms X kg-1 X h-1) and 22 times more potent than TRH when given intracisternally. These results demonstrated the ability of RX 77368 to act within the rat brain to enhance gastric secretion (acid and pepsin) through vagus cholinergic dependent mechanisms. The enhanced potency and extended duration of action of RX 77368 over TRH, could make intracisternal injection of this peptide a useful test to induce centrally mediated vagal dependent stimulation of gastric secretion in rats.  相似文献   

2.
Central nervous system action of TRH to stimulate gastric emptying in rats   总被引:1,自引:0,他引:1  
The effects of intracisternal injection of TRH on gastric emptying of a liquid meal was investigated in 24 h fasted rats using the phenol red method. Intracisternal injection of TRH, RX 77368, or [N-Val2]-TRH, an analog devoid of TSH-releasing activity, 5 min prior to a meal, stimulated gastric emptying measured 20 min later. TRH action was dose dependent (1-100 ng), and rapid in onset. The calculated time for emptying half of the meal was decreased from 16 +/- 3 min (control group) to 4 +/- 1 min (TRH 30 ng). The stable analog, RX 77368, unlike TRH, stimulated gastric emptying when the meal was given 60 min after peptide injection. Intravenous injection of atropine (2.5 micrograms) inhibited and that of carbachol (1 microgram) stimulated gastric emptying whereas i.v. injection of TRH (0.1-1 microgram) had no effect. Vagotomy but not adrenalectomy reversed the increase in gastric emptying induced by intracisternal TRH. Atropine blocked the stimulatory effect of TRH and carbachol. These results demonstrate that TRH acts within the brain to stimulate gastric emptying through vagus-dependent and cholinergic pathways whereas alterations of adrenal and pituitary-thyroid secretion do not play an important role.  相似文献   

3.
Changes in gastric contractility induced by intracisternal (ic) injection of thyrotropin-releasing hormone (TRH) or a stable TRH analog, RX77368 [p-Glu-His-(3,3'-dimethyl)-Pro NH2] were investigated in 24 h fasted-conscious rats. Gastric contractility was monitored using chronically implanted extraluminal force transducers sutured to the corpus. Response elicited by a standard meal was used as a physiologic standard. Intracisternal injection of TRH (1 microgram) or RX77368 (100 ng), unlike saline, stimulated high amplitude gastric contractions. The stimulation of gastric contractions induced by ic RX77368 was dose dependent (3-100 ng), rapid in onset, long lasting and not mimicked by the intravenous route of administration. Atropine (0.1 mg/kg) partially antagonized and vagotomy totally blocked the RX77368 (100 ng, ic)-induced stimulation of gastric contractility. These results demonstrated that TRH or RX77368 acts within the brain to elicit potent contractions of the stomach; TRH action appears vagally mediated probably through cholinergic mechanism.  相似文献   

4.
《Peptides》1997,18(2):213-219
O-Lee, T. J., J. Y. Wei and Y. TachÉ. Intracisternal Trh and Rx 77368 potently activate gastric vagal efferent discharge in rats. Peptides 18(2) 213–219, 1997.—The influence of intracisternal (ic) TRH and the stable TRH analog, RX 77368, on gastric vagal efferent discharge (GVED) was investigated in urethane-anesthetized rats. Consecutive IC injections of TRH (3, 30, and 300 ng) at 60 min intervals stimulated dose dependently multi-unit GVED with a peak increase of 90 ± 21%, 127 ± 18% and 145 ± 16% respectively. In two separate studies, IC injection of RX 77368 at 1.5 or 15 ng stimulated multi-unit GVED by 142 ± 24% and 244 ± 95% respectively. Saline injection IC had no effect on GVED. RX 77368 (1.5 ng, ic) action was long lasting (84 ± 13 min) compared with TRH (3 ng: 44 ± 7 min). Single-unit analysis also showed that 13 of 13 units responded to ic RX 77368 (1.5 ng) by an increase in activity. These data indicate that low doses of TRH injected ic stimulate vagal efferent outflow to the rat stomach and that RX 77368 action is more potent than TRH.  相似文献   

5.
Central injection of TRH or its stable analog, RX77368, produces a vagal cholinergic stimulation of gastric acid secretion, mucosal blood flow and motor function. In the present study, we have investigated the contribution of capsaicin-sensitive vagal afferent fibers to the gastric responses to intracisternal injection of RX77368. Gastric acid secretion, measured in acute gastric fistula rats anesthetized with urethane, in response to intracisternal injection of RX77368 (3-30 ng) was reduced by 21-65% by perineural pretreatment of the vagus nerves with capsaicin 10-20 days before experiments. The increase in gastric mucosal blood flow measured by hydrogen gas clearance induced by intracisternal injection of RX77368 (30 ng) was also reduced by 65% in capsaicin-pretreated rats. In contrast, increases in gastric motor function measured manometrically or release of gastric luminal serotonin in response to intracisternal injection of RX77368 (3-30 ng) were unaltered by capsaicin pretreatment. The mechanism by which vagal afferent fibers contribute to the secretory and blood flow responses to the stable TRH analog is unclear at present, but it is possible that the decrease in gastric mucosal blood flow by lesion of capsaicin-sensitive vagal afferents limits the secretory response.  相似文献   

6.
Central injection of TRH or its metabolically stable analogue RX 77368 has been demonstrated to produce a vagal-dependent stimulation in gastric acid secretion. Accumulating evidence exists regarding the interaction of serotonin (5HT) with TRH containing neuronal systems. This study was performed to assess the effect of pretreatment with the 5HT uptake inhibitor fluoxetine on the TRH analogue-induced gastric acid secretory response. Systemic fluoxetine (30 mumol/kg, i.v.) produced a 43-85% increase in the intracisternal RX 77368 (78-780 pmol)-induced gastric acid output, while not affecting the basal acid response. The acid response to a lower dose of RX 77368 (26 pmol) was not altered. In addition, intracisternal fluoxetine (180 nmol) produced a 71% augmentation of the acid secretory response of i.c. RX 77368 (260 pmol). Intracisternal injection of lower doses (60, 120 nmol), or intravenous injection of 180 nmol of fluoxetine was ineffective in altering the intracisternal RX 77368-induced acid response. Pretreatment with the noradrenergic or dopaminergic uptake inhibitor desipramine or GBR 12909 did not alter the RX 77368-stimulated gastric acid secretory response. The results show that fluoxetine pretreatment potentiates the effect of intracisternal RX 77368 on acid secretion. The effect appears to be impulse dependent, and central sites of action are involved. The data suggest an interaction of synaptic serotonin with a RX 77368-elicited event (activation of TRH receptors, second messenger systems and/or firing of the motor vagus) results in potentiation of the RX 77368-induced gastric response.  相似文献   

7.
TRH analogue, RX 77368, injected intracisternally (i.c.) at high dose (3 microg/rat) produces gastric mucosal lesion formation through vagal-dependent pathway. The gastric mucosal hyperemia induced by i.c. RX 77368 was shown to be mediated by muscarinic vagal efferent fibres and mast cells. Furthermore, electrical vagal stimulation was observed to induce gastric mucosal mast cell degranulation. The aim of the study was to assess the influence of ketotifen, a mast cell stabilizer, on RX 77368-induced gastric lesion formation and gastric acid secretion. RX 77368 (3 microg, i.c.) or vehicle (10 microL, i.c.) was delivered 240 min prior to the sacrifice of the animals. Ketotifen or vehicle (0.9% NaCl, 0.5 mL) was injected intraperitoneally (i.p.) at a dose of 10 mg x kg(-1) 30 min before RX 77368 injection. The extent of mucosal damage was planimetrically measured by a video image analyzer (ASK Ltd., Budapest) device. In the gastric acid secretion studies, the rats were pretreated with ketotifen (10 mg x kg(-1), i.p.) or vehicle (0.9% NaCl, 0.5 mL, i.p.), 30 min later pylorus-ligation was performed and RX 77368 (3 microg, i.c.) or vehicle (0.9% NaCl, 10 microL, i.c.) was injected. The rats were killed 240 min after i.c. injection, and the gastric acid secretion was measured through the titration of gastric contents with 0.1 N NaOH to pH 7.0. RX 77368 (3 microg, i.c.) resulted in a gastric mucosal lesion formation involving 8.2% of the corpus mucosa (n = 7). Ketotifen elicited an 85% inhibition on the development of mucosal lesions (n = 7, P < 0.001) whereas ketotifen alone had no effect on the lesion formation in the mucosa (n = 7). The RX 77368 induced increase of gastric acid secretion was not influenced by ketotifen pretreatment in 4-h pylorus-ligated animals. Central vagal activation induced mucosal lesion formation is mediated by the activation of mucosal mast cells in the stomach. Mast cell inhibition by ketotifen does not influence gastric acid secretion induced by i.c. TRH analogue in 4-h pylorus-ligated rats.  相似文献   

8.
The role of gastrin, acetylcholine and histamine in the acid response to central vagal activation induced by intracisternal injection of the stable analog, RX 77368, was further investigated in urethane-anesthetized rats with gastric fistula. The gastrin monoclonal antibody 28-2 injected intravenously, at a dose previously shown to prevent gastrin-induced stimulation of acid secretion, did not alter the peak acid response to intracisternal injection of RX 77368 (15 ng). The TRH analog (30 ng) injected into the cisterna magna increased levels of histamine measured in the hepatic portal blood. Cimetidine administered at a dose which completely blocked the stimulation of gastric acid secretion produced by intravenous infusion of histamine, inhibited by 62% the stimulatory effect of intracisternal RX 77368 (30 ng). The M1 muscarinic antagonist, pirenzepine, completely prevented the acid secretion induced by intracisternal RX 77368 (30 ng). These results indicate that the acid response to central vagal activation by the TRH analog in rats involved M1 muscarinic receptors along with histamine release acting on H2 histaminergic receptors whereas gastrin does not appear to play an important role.  相似文献   

9.
Central neuropeptides play a role in physiological regulation through the autonomic nervous system. Thyrotropin-releasing hormone (TRH) is a neuropeptide distributed throughout the central nervous system and acts as a neurotransmitter to regulate gastric and hepatic functions through vagal-cholinergic pathways. In this study, the central effect of TRH on pancreatic blood flow was investigated in urethane-anesthetized rats. Pancreatic blood flow was determined by laser Doppler flowmetery. After measurement of basal blood flow, a stable TRH analog, RX 77368 (1-50 ng) or saline was injected intracisternally. Pancreatic blood flow was observed for 120 min thereafter. In some experiments, pretreatment with atropine methyl nitrate (0.15 mg/kg, i.p.), NG-nitro-L-arginine-methyl ester (10 mg/kg, i.v.), or 6-hydroxydopamine (6-OHDA;180 mg/kg, i.p.), or subdiaphragmatic vagotomy was performed. Intracisternal injection of TRH analog dose-dependently increased pancreatic blood flow with a peak response occurring 30 min after injection. The stimulatory effect of TRH analog on pancreatic blood flow was blocked by vagotomy, atropine, and NG-nitro-L-arginine-methyl ester, but not by 6-hydroxydopamine. Intravenous administration of the TRH analog did not influence pancreatic blood flow in the same animal model. These results indicate that TRH acts in the central nervous system to stimulate pancreatic blood flow through vagal-cholinergic and nitric oxide-dependent pathways.  相似文献   

10.
The effects of intracisternal (i.c.) and intravenous (i.v.) administration of corticotropin-releasing factor (CRF) on gastric contractility stimulated by i.c. injection of the TRH analog RX77368 [p-Glu-His-(3,3'-dimethyl)-Pro-NH2], 2-deoxy-D-glucose (2DG) and i.v. infusion of carbachol were evaluated in rats under urethane anesthesia. Gastric contractility was monitored using acutely implanted extraluminal force transducers sutured to the corpus of the stomach. I.c. injection of CRF (6.3-210 pmol) resulted in a dose dependent suppression of gastric contractility stimulated by RX77368 (260 pmol) and 2DG (6 mg). Gastric inhibitory response to i.c. CRF was rapid in onset and lasted at least 45 min. Carbachol (200 mg/kg/h)-induced stimulation of gastric contractility was not modified by i.c. injection of CRF. The stimulation of contractility caused by both i.v. carbachol and i.c. 2DG were completely inhibited by atropine (1 mg/kg, i.v.). CRF (210 pmol) given i.v. suppressed RX77368-stimulated gastric contractions, but was less than 1/10 as potent as administered i.c. I.v. CRF (210 pmol) did not alter 2DG- or carbachol-induced gastric contractions. These results demonstrate that the i.c. administration of CRF acts within the brain to inhibit gastric contractility elicited by vagus-dependent mechanisms.  相似文献   

11.
Central neuropeptides play a role in many physiological functions through the autonomic nervous system. We have recently demonstrated that central injection of a thyrotropin-releasing hormone (TRH) analog increases pancreatic blood flow through vagal and nitric oxide-dependent pathways. In this study, the central effect of a TRH analog on experimental acute pancreatitis was investigated in rats. Acute pancreatitis was induced by two intraperitoneal injections of cerulein (40 microg/kg) at 1-h interval. Either stable TRH analog, RX 77368 (5-100 ng), or saline was injected intracisternally 15 min before the first cerulein injection under ether anesthesia. Serum amylase level was measured before and 5 h after the first cerulein injection. Pancreatic wet/dry weight ratio and histological changes were also evaluated. Intracisternal TRH analog inhibited cerulean-induced elevation of serum amylase level, increase in pancreatic wet/dry weight ratio and pancreatic histological changes, such as interstitial edema, inflammation and vacuolization. The pancreatic cytoprotection induced by central TRH analog was abolished by subdiaphragmatic vagotomy and N(G)-nitro-L-arginine-methyl ester (L-NAME), but not by 6-hydroxydopamine (6-OHDA). Intravenous administration of the TRH analog did not influence cerulein-induced acute pancreatitis. These results indicate that the TRH analog acts in the central nervous system to protect against acute pancreatitis through vagal and nitric oxide-dependent pathways.  相似文献   

12.
The neurohumoral pathways mediating intracisternal TRH-induced stimulation of gastric acid secretion were investigated. In urethane-anesthetized rats, with gastric and intrajugular cannulas, TRH or the analog [N-Val2]-TRH (1 microgram) injected intracisternally increased gastric acid output for 90 min. Serum gastrin levels were not elevated significantly. Under these conditions the TRH analog, unlike TRH, was devoid of thyrotropin-releasing activity as measured by serum TSH levels. In pylorus-ligated rats, gastrin values were not modified 2 h after peptide injection whereas gastric acid output was enhanced. TRH (0.1-1 micrograms) stimulated vagal efferent discharge, recorded from a multifiber preparation of the cervical vagus in urethane-anesthetized rats and the response was dose-dependent. The time course of vagal activation was well correlated with the time profile of gastric stimulation measured every 2 min. These results demonstrated that gastric acid secretory stimulation elicited by intracisternal TRH is not related to changes in circulating levels of gastrin or TSH but is mediated by the activation of efferent vagal pathways that stimulated parietal cell secretion.  相似文献   

13.
M Yoneda  H Raybould  Y Taché 《Peptides》1991,12(3):401-406
The effects of intracisternal and intravenous injections of the somatostatin analog, SMS 201-995, on gastric acid secretion were investigated in rats with pylorus ligation or gastric cannula. Intracisternal injection of SMS 201-995 induced a dose-related (0.1-0.3 microgram) and long-lasting stimulation of gastric acid output with a peak response at 3 h postinjection in conscious, pylorus-ligated rats. Intracisternal SMS 201-995 increased histamine levels in the portal blood, whereas plasma gastrin levels were not modified. Atropine, cimetidine and adrenalectomy abolished the stimulatory effect of intracisternal SMS 201-995 (0.3 microgram). SMS 201-995 (0.03 microgram), microinjected unilaterally into the dorsal vagal complex, increased gastric acid output in urethane anesthetized rats. SMS 201-995, injected intravenously at 0.5 microgram, did not alter gastric secretion, whereas higher doses (5-20 micrograms) resulted in a dose-related inhibition of gastric acid secretion in conscious pylorus-ligated rats. These data indicate that SMS 201-995, a selective ligand for somatostatin-1 receptor subtype, induces a centrally mediated stimulatory effect on gastric acid secretion in rats. The central action involves the parasympathetic system, muscarinic and H2 receptors as well as adrenal-dependent pathways.  相似文献   

14.
Thyrotrophin-releasing hormone (TRH) and its stable analogues CG3509 and RX77368 were injected directly into the nucleus accumbens, septum and striatum of the rat and locomotor activity was recorded. TRH (5-20 micrograms) caused a dose-dependent increase in locomotor activity when injected into the nucleus accumbens. TRH (20 micrograms) also increased locomotor activity after administration into the septum but not when put into the striatum. Both the TRH analogues (0.1 and 1.0 microgram) produced closely related increases in activity when injected into either the nucleus accumbens or septum but CG3509 was more potent with a longer lasting effect. Also, in contrast with TRH (20 micrograms), both TRH analogues stimulated locomotor activity when injected into the striatum at a dose of 1 microgram but the effect was less marked and delayed in onset compared to the nucleus accumbens and septum response. Dopamine (100 micrograms) injected into the accumbens or septum also produced significant increases in locomotor activity. The locomotor effects of the peptides are discussed in relation to a possible dopamine-mediated mechanism which contrasts with the actions of TRH and the analogues on barbiturate anaesthesia.  相似文献   

15.
Medullary sites of action for bombesin-induced inhibition of gastric acid secretion were investigated in urethane-anesthetized rats with gastric fistula. Unilateral microinjection of bombesin or vehicle into the dorsal vagal complex was performed using a glass micropipet and pressure ejection of 100 nl volume; gastric acid output was measured every 10 min by flushing the stomach. Microinjection of vehicle into the dorsal vagal complex did not alter gastric acid secretion (1.9 +/- mumol/10) from preinjection levels (2.9 +/- 0.8 mumol/10 min). Microinjection of the stable thyrotropin-releasing hormone (TRH) analog, RX 77368, at a 77 pmol dose into the dorsal vagal complex stimulated gastric acid secretion for 100 min with a peak response at 40 min (24.1 +/- 3.2 mumol/10 min). Concomitant microinjection of RX 77368 (77 pmol) with bombesin (0.6-6.2 pmol) into the dorsal vagal complex dose dependently inhibited by 35-86% the gastric acid response to the TRH analog. Bombesin (6.2 pmol) microinjected into the dorsal vagal complex inhibited by 17% pentagastrin infusion-induced stimulation of gastric acid secretion (13.2 +/- 0.8 mumol/10 min) whereas intracisternal injection induced a 69% inhibition of the pentagastrin response. These results demonstrate that the dorsal motor complex is a sensitive site of action for bombesin-induced inhibition of vagally stimulated gastric secretion. However, other medullary sites must be involved in mediating the inhibitory effect of intracisternal bombesin on pentagastrin-stimulated gastric acid secretion.  相似文献   

16.
Miampamba M  Million M  Taché Y 《Peptides》2011,32(5):1078-1082
We previously showed that medullary thyrotropin-releasing hormone (TRH) or the stable TRH agonist, RX-77368 administered intracisternally induces vagal-dependent activation of gastric myenteric neurons and prevents post surgery-induced delayed gastric emptying in rats. We investigated whether abdominal surgery alters intracisternal (ic) RX-77368 (50 ng)-induced gastric myenteric neuron activation. Under 10 min enflurane anesthesia, rats underwent an ic injection of saline or RX-77368 followed by a laparotomy and a 1-min cecal palpation, or no surgery and were euthanized 90 min later. Longitudinal muscle/myenteric plexus whole-mount preparations of gastric corpus and antrum were processed for immunohistochemical detection of Fos alone or double labeled with protein gene-product 9.5 (PGP 9.5) and vesicular acetylcholine transporter (VAChT). In the non surgery groups, ic RX-77368 induced a 17 fold increase in Fos-expression in both gastric antrum and corpus myenteric neurons compared to saline injected rats. PGP 9.5 ascertained the neuronal identity of myenteric cells expressing Fos. In the abdominal surgery groups, ic RX-77368 induced a significant increase in Fos-expression in both the corpus and antrum myenteric ganglia compared with ic saline injected rats which has no Fos in the gastric myenteric ganglia. However, the response was reduced by 73-78% compared with that induced by ic RX 77368 without surgery. Abundant VAChT positive nerve fibers were present around Fos positive neurons. These results indicate a bidirectional interaction between central vagal stimulation of gastric myenteric neurons and abdominal surgery. The modulation of gastric vagus-myenteric neuron activity could play an important role in the recovery phase of postoperative gastric ileus.  相似文献   

17.
Intracisternal injection of thyrotropin-releasing hormone (TRH)-Gly (pGlu-His-Pro-Gly) produced a dose-dependent (1-100 micrograms) stimulation of gastric acid secretion in urethane-anesthetized rats implanted acutely with a gastric fistula. The peak response occurred 20-30 min after intracisternal injection and lasted for more than 2 h. Intravenous injection of TRH-Gly (100 micrograms) did not modify gastric acid secretion. Following intracisternal injection of TRH-Gly, a peak elevation of both TRH-Gly and TRH levels is observed in the cerebrospinal fluid (CSF) within 15 min. Thereafter, TRH values are returned to basal levels at 75 min after the injection, whereas TRH-Gly concentrations remain significantly elevated throughout the 2-h period of measurement. Compartmental analysis revealed that CSF conversion of TRH-Gly to TRH was only 0.0072%/min. Medullary coronal sections containing the dorsal vagal complex and the raphé nucleus revealed increased content of TRH-Gly, but not TRH, 40 min after administration of TRH-Gly at an intracisternal dose effective in stimulating gastric acid secretion (100 micrograms). In addition, TRH but not TRH-Gly (10(-7)-10(-5) M) displaced [3H]MeTRH binding from rat medullary blocks containing the dorsal vagal complex. These data suggest that the intracisternal TRH-Gly-induced stimulation of gastric acid secretion is not related to its conversion to TRH in the CSF, or direct activation of TRH receptors in the medulla. The acid secretory response of TRH-Gly may be due to the formation of TRH at the active brain sites, or alternatively to activation of its own specific receptors.  相似文献   

18.
The effect of intracisternal injection of thyrotropin-releasing hormone (TRH) on small intestinal transit of a charcoal bolus was investigated in 14-, 21-, 28- and 35-day-old and adult rats. Intracisternal TRH (15 micrograms in 2 microliters) was administered, and transit (distance traveled by the charcoal) was measured 120 min later. In all age groups, intracisternal TRH increased charcoal transit significantly (P less than 0.05) as compared to saline-treated controls. This increase in transit was not mimicked by intravascular TRH, and it was blocked in all age groups by prior intraperitoneal injection of atropine (2 micrograms/g body weight). Vagotomy blocked TRH-induced increases in small intestine transit in rats of 28 days and older. Prior intraperitoneal injection of the antiserotonin compound, cyproheptadine (1 microgram/g body weight) reduced TRH-induced increases in small intestine transit in all age groups. These results demonstrate that centrally administered TRH stimulates small intestine transit through both cholinergic and serotonergic mechanisms in rats as early as 14 days of age.  相似文献   

19.
The formation of gastric stress ulcers was studied as a function of interactions between thyrotropin releasing hormone (TRH) and endogenous opioids in the central amygdalar nucleus (CEA) in rats. Bilateral microinjections of TRH (1 or 10 micrograms) into the CEA produced dose-related aggravations in cold restraint stress (CRS, 3 h at 4 degrees C)-induced gastric ulcer formation. Similar stress ulcer facilitating effects were also seen with intra-CEA injections of the opioid antagonists, naloxone (1 or 10 micrograms). On the other hand, the enkephalin analog, D-Ala2-metenkephalinamide (DAMEA, 1, 10 or 20 micrograms) produced dose-dependent attenuations in gastric stress pathology, the effects being most marked with the latter two doses. Pretreatment of rats with intra-CEA naloxone (1 microgram) (a) antagonized the gastric cytoprotective effects of DAMEA (20 micrograms) and (b) further aggravated the ulcerogenic response of TRH (1 microgram), without influencing significantly the TRH (10 micrograms) effect. Further, when DAMEA (20 micrograms) was administered intra-CEA just after TRH (10 micrograms), the stress ulcer facilitating effects of the latter was neutralized. The results indicate that TRH-enkephalin interactions are possible at the level of the CEA during CRS-induced gastric ulcer formation.  相似文献   

20.
Intracisternal injection of octapeptide analogs of somatostatin (SS), Cys-Phe-Phe-D-Trp-Lys-Thr-Phe-Cys (des-AA1,2,4,5,12,13-[D-Trp8]SS (ODT8-SS)) and Cys-Phe-Phe-D-Trp-Lys-Thr-Phe-D-Cys, increased the volume and the acid output of gastric secretion in rats. ODT8-SS given intravenously did not affect basal gastric secretion. The gastrosecretory effect of ODT8-SS, administered intracisternally is dose-dependent (0.01-1 micrograms), long acting, reversible, specific, and abolished by vagotomy, or systemic injection of atropine or SS. SS (5-10 micrograms) or [D-Trp8]SS (1 microgram) had no effect on gastric secretion when given intracisternally. These results demonstrate that some octapeptide SS analogs, unlike SS or other SS analogs, have the capability to act in the brain to induce a vagal dependent stimulation of gastric secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号