首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to facilitate interpretation and comparison of warming effects on ecosystems across various habitats, it is imperative to quantify changes in microclimate induced by warming facilities. This paper reports observed changes in air temperature, soil temperature and soil‐moisture content under experimental warming and clipping in a tallgrass prairie in the Great Plains, USA. We used a factorial design with warming as the primary factor nested with clipping as the secondary factor. Infrared heater was used in order to simulate climatic warming and clipping to mimic mowing for hay or grazing. The warming treatment significantly increased daily mean and minimum air temperatures by 1.1 and 2.3 °C, respectively, but had no effect on daily maximum air temperature, resulting in reduced diurnal air‐temperature range. Infrared heaters substantially increased daily maximum (2.5 and 3.5 °C), mean (2.0 and 2.6 °C) and minimum (1.8 and 2.1 °C) soil temperatures in both the unclipped and clipped subplots. Clipping also significantly increased daily maximum (3.4 and 4.3 °C) and mean (0.6 and 1.2 °C) soil temperatures, but decreased daily minimum soil temperature (1.0 and 0.6 °C in the control and warmed plots, respectively). Daily maximum, mean and minimum soil temperatures in the clipped, warmed subplots were 6.8, 3.2 and 1.1 °C higher than those in the unclipped, control subplots. Infrared heaters caused a reduction of 11.0% in soil moisture in the clipped subplots, but not in the unclipped subplots. Clipping reduced soil‐moisture content by 17.7 and 22.7% in the control and warmed plots, respectively. Experimental warming and clipping interacted to exacerbate soil‐moisture loss (26.7%). Overall, infrared heaters simulated climate warming well by enhancing downward infrared radiation and by reducing the diurnal air‐temperature range.  相似文献   

2.
Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13‐year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000–2006) to 30% in the next 6 years (2007–2012). The two‐stage warming stimulation of soil respiration was closely related to warming‐induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming‐induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming‐induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming‐induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems.  相似文献   

3.
气温上升对草地土壤微生物群落结构的影响   总被引:11,自引:3,他引:11  
张卫建  许泉  王绪奎  卞新民 《生态学报》2004,24(8):1742-1747
在 2 0世纪内 ,全球气温已经上升了 0 .6℃ ,并预计到本世纪末仍将上升 1.4~ 5 .8℃。全球气候变暖对生态系统的潜在影响 ,生态系统对气温上升的反馈已成为国际生态学界的研究热点 ,而且所研究的系统也已经从过去简化的模拟系统到复杂的真实生态系统。但是 ,现有对真实生态系统的研究大部分集中在地上植物群落和土壤气体交换等领域 ,对在土壤有机碳分解和保护中起决定作用的土壤微生物研究较少。为此 ,在美国大平原地区进行人工提高气温 (上升 1.8℃ ) ,来研究土壤微生物对气温上升的反应。结果表明 :增温对土壤微生物的总生物量没有显著效应 ,但可以提高微生物的 C∶ N比。另外 ,磷脂肪酸分析发现 ,气温上升显著降低土壤微生物量中的细菌比重 ,提高真菌的份额 ,从而显著提高了群落中真菌与细菌的比值。而且 ,通过对土壤微生物底物利用方式和磷脂肪酸特征的主成份分析 ,发现增温导致了土壤微生物群落结构的转变。可见 ,气温上升可能是通过提高土壤微生物中真菌的优势 ,而导致群落结构的变化。该变化将可以提高微生物对土壤有机碳的利用效率 ,并利于土壤有机碳的保护  相似文献   

4.
The dynamics of belowground net primary productivity (BNPP) is of fundamental importance in understanding carbon (C) allocation and storage in grasslands. However, our knowledge of the interannual variability in response of BNPP to ongoing global warming is limited. In this study, we explored temporal responses of BNPP and net primary productivity (NPP) partitioning to warming and clipping in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate soil temperature by approximately 2 °C since November 1999. Annual clipping was to mimic hay harvest. On average from 2005 to 2009, warming increased BNPP by 41.89% in the unclipped subplots and 66.93% in the clipped subplots, with significant increase observed in wet years. Clipping also had significant positive impact on BNPP, which was mostly found under warming. Overall, fBNPP, the fraction of BNPP to NPP, increased under both warming and clipping treatments, more in dry years. Water availability (either precipitation or soil moisture) was the most limiting factor for both BNPP and fBNPP. It strongly dominated the interannual variability in NPP, fBNPP, and their responses to warming and clipping. Our results suggest that water availability regulates tallgrass prairie's responses to warming and land use change, which may eventually influence the global C cycle. With increasing variability in future precipitation patterns, warming effects on the vegetation in this region may become less predictable.  相似文献   

5.
Plant nitrogen (N) relationship has the potential to regulate plant and ecosystem responses strongly to global warming but has not been carefully examined under warmed environments. This study was conducted to examine responses of plant N relationship (i.e. leaf N concentration, N use efficiency, and plant N content in this study) to a 4‐year experimental warming in a tallgrass prairie in the central Great Plains in USA. We measured mass‐based N and carbon (C) concentrations of stem, green, and senescent leaves, and calculated N resorption efficiency, N use efficiency, plant N content, and C : N ratios of five dominant species (two C4 grasses, one C3 grass, and two C3 forbs). The results showed that warming decreased N concentration of both green and senescent leaves, and N resorption efficiency for all species. N use efficiencies and C : N ratios were accordingly higher under warming than control. Total plant N content increased under warming because of warming‐induced increases in biomass production that are larger than the warming‐induced decreases in tissue N concentration. The increases in N contents in both green and senescent plant tissues suggest that warming enhanced both plant N uptake and return through litterfall in the tallgrass ecosystem. Our results also suggest that the increased N use efficiency in C4 grasses is a primary mechanism leading to increased biomass production under warming in the grassland ecosystem.  相似文献   

6.
Soil microbial response in tallgrass prairie to elevated CO2   总被引:3,自引:0,他引:3  
Terrestrial responses to increasing atmospheric CO2 are important to the global carbon budget. Increased plant production under elevated CO2 is expected to increase soil C which may induce N limitations. The objectives of this study were to determine the effects of increased CO2 on 1) the amount of carbon and nitrogen stored in soil organic matter and microbial biomass and 2) soil microbial activity. A tallgrass prairie ecosystem was exposed to ambient and twice-ambient CO2 concentrations in open-top chambers in the field from 1989 to 1992 and compared to unchambered ambient CO2 during the entire growing season. During 1990 and 1991, N fertilizer was included as a treatment. The soil microbial response to CO2 was measured during 1991 and 1992. Soil organic C and N were not significantly affected by enriched atmospheric CO2. The response of microbial biomass to CO2 enrichment was dependent upon soil water conditions. In 1991, a dry year, CO2 enrichment significantly increased microbial biomass C and N. In 1992, a wet year, microbial biomass C and N were unaffected by the CO2 treatments. Added N increased microbial C and N under CO2 enrichment. Microbial activity was consistently greater under CO2 enrichment because of better soil water conditions. Added N stimulated microbial activity under CO2 enrichment. Increased microbial N with CO2 enrichment may indicate plant production could be limited by N availability. The soil system also could compensate for the limited N by increasing the labile pool to support increased plant production with elevated atmospheric CO2. Longer-term studies are needed to determine how tallgrass prairie will respond to increased C input.  相似文献   

7.
Annually burned tallgrass prairie is purported to be a nitrogen-limited system, especially when compared to unburned prairie. To test the hypothesis that legumes, potential nitrogen-fixers, would increase in relative abundance in annually burned sites, we assessed their density and biomass for two seasons on upland and lowland soils in annually burned and unburned watersheds. Total legume density was significantly higher in burned (8.0 ± 1.0 [SE] stems/m2) than in unburned watersheds (3.0 ± 0.3 stems/m2). Species with higher (P < 0.05) densities in burned than in unburned prairie included Amorpha canescens, Dalea candida, Dalea purpurea, Lespedeza violacea, Psoralea tenuiflora, and Schrankia nuttallii. Desmodium illinoense was the only legume that responded negatively to annual fire. Total legume biomass did not differ between burned (11.3 ± 1.3 g/m2) and unburned prairie (10.5 ± 0.9 g/m2). Biomass productions of Dalea candida and Psoralea tenuiflora were higher (P < 0.05) in burned than in unburned sites, but biomasses of other legumes were similar between burn treatments. Average individual stem masses of Amorpha canescens and Baptisia bracteata were significantly greater in unburned than in burned prairie. Legumes were affected differentially by topographic location. Total legume density was higher (P < 0.05) on lowland soils (6.6 ± 1.0 stems/m2) than on upland soils (4.3 ± 0.5 stems/m2). However, total legume biomass was not different between lowland soils (12.0 ± 1.2 g/m2) and upland soils (9.9 ± 1.0 g/m2). Densities and biomasses of Amorpha canescens, Desmodium illinoense, and Lespedeza capitata were higher on lowland sites than on upland sites, whereas densities and biomasses of Baptisia bracteata and Dalea purpurea were higher on upland than on lowland soils. Most legume species are either fire tolerant or exhibit a positive response to fire and their persistence in annually burned prairie suggests that they may play an important role in the nitrogen budget of this ecosystem.  相似文献   

8.
Global climate change is expected to result in a greater frequency of extreme weather, which can cause lag effects on aboveground net primary production (ANPP). However, our understanding of lag effects is limited. To explore lag effects following extreme weather, we applied four treatments (control, doubled precipitation, 4 °C warming, and warming plus doubled precipitation) for 1 year in a randomized block design and monitored changes in ecosystem processes for 3 years in an old‐field tallgrass prairie in central Oklahoma. Biomass was estimated twice in the pretreatment year, and three times during the treatment and posttreatment years. Total plant biomass was increased by warming in spring of the treatment year and by doubled precipitation in summer. However, double precipitation suppressed fall production. During the following spring, biomass production was significantly suppressed in the formerly warmed plots 2 months after treatments ceased. Nine months after the end of treatments, fall production remained suppressed in double precipitation and warming plus double precipitation treatments. Also, the formerly warmed plots still had a significantly greater proportion of C4 plants, while the warmed plus double precipitation plots retained a high proportion of C3 plants. The lag effects of warming on biomass did not match the temporal patterns of soil nitrogen availability determined by plant root simulator probes, but coincided with warming‐induced decreases in available soil moisture in the deepest layers of soil which recovered to the pretreatment pattern approximately 10 months after the treatments ceased. Analyzing the data with an ecosystem model showed that the lagged temporal patterns of effects of warming and precipitation on biomass can be fully explained by warming‐induced differences in soil moisture. Thus, both the experimental results and modeling analysis indicate that water availability regulates lag effects of warming on biomass production.  相似文献   

9.
Symbiotic associations between plants and arbuscular mycorrhizal fungi are ubiquitous and ecologically important in many grasslands. Differences in species responses to mycorrhizal colonization can have a significant influence on plant community structure. The growth responses of 36 species of warm- and cool-season tallgrass prairie grasses and 59 tallgrass prairie forbs to arbuscular mycorrhizal (AM) fungal colonization were assessed in greenhouse studies to examine the extent of interspecific variation in host-plant benefit from the symbiosis and patterns of mycorrhizal dependence among host plant life history (e.g., annual, perennial) and taxonomic (e.g., grass, forb, legume, nonlegume) groups and phenological guilds. There was a strong and significant relationship between phenology of prairie grasses and mycorrhizal responsiveness, however this relationship was less apparent in forbs. Perennial warm-season C(4) grasses and forbs generally benefited significantly from the mycorrhizal symbiosis, whereas biomass production of the cool-season C(3) grasses was not affected. The root systems of the cool-season grasses were also less highly colonized by the AM fungi, as compared to the warm-season grasses or forbs. Unlike the native perennials, annuals were generally not responsive to mycorrhizal colonization and were lower in percentage root colonization than the perennial species. Plant growth responsiveness and AM root colonization were positively correlated for the nonleguminous species, with this relationship being strongest for the cool-season grasses. In contrast, root colonization of prairie legumes showed a significant, but negative, relationship to mycorrhizal growth responsiveness.  相似文献   

10.
Williams  Mark A.  Rice  Charles W.  Owensby  Clenton E. 《Plant and Soil》2000,227(1-2):127-137
Alterations in microbial mineralization and nutrient cycling may control the long-term response of ecosystems to elevated CO2. Because micro-organisms constitute a labile fraction of potentially available N and are regulators of decomposition, an understanding of microbial activity and microbial biomass is crucial. Tallgrass prairie was exposed to twice ambient CO2 for 8 years beginning in 1989. Starting in 1991 and ending in 1996, soil samples from 0 to 5 and 5 to 15 cm depths were taken for measurement of microbial biomass C and N, total C and N, microbial activity, inorganic N and soil water content. Because of increased water-use-efficiency by plants, soil water content was consistently and significantly greater in elevated CO2 compared to ambient treatments. Soil microbial biomass C and N tended to be greater under elevated CO2 than ambient CO2 in the 5–15 cm depth during most years, and in the month of October, when analyzed over the entire study period. Microbial activity was significantly greater at both depths in elevated CO2 than ambient conditions for most years. During dry periods, the greater water content of the surface 5 cm soil in the elevated CO2 treatments increased microbial activity relative to the ambient CO2 conditions. The increase in microbial activity under elevated CO2 in the 5–15 cm layer was not correlated with differences in soil water contents, but may have been related to increases in soil C inputs from enhanced root growth and possibly greater root exudation. Total soil C and N in the surface 15 cm were, after 8 years, significantly greater under elevated CO2 than ambient CO2. Our results suggest that decomposition is enhanced under elevated CO2 compared with ambient CO2, but that inputs of C are greater than the decomposition rates. Soil C sequestration in tallgrass prairie and other drought-prone grassland systems is, therefore, considered plausible as atmospheric CO2 increases. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
12.
Partitioning soil CO2 efflux into autotrophic (RA) and heterotrophic (RH) components is crucial for understanding their differential responses to climate change. We conducted a long‐term experiment (2000–2005) to investigate effects of warming 2°C and yearly clipping on soil CO2 efflux and its components (i.e. RA and RH) in a tallgrass prairie ecosystem. Interannual variability of these fluxes was also examined. Deep collars (70 cm) were inserted into soil to measure RH. RA was quantified as the difference between soil CO2 efflux and RH. Warming treatment significantly stimulated soil CO2 efflux and its components (i.e. RA and RH) in most years. In contrast, yearly clipping significantly reduced soil CO2 efflux only in the last 2 years, although it decreased RH in every year of the study. Temperature sensitivity (i.e. apparent Q10 values) of soil CO2 efflux was slightly lower under warming (P>0.05) and reduced considerably by clipping (P<0.05) compared with that in the control. On average over the 4 years, RH accounted for approximately 65% of soil CO2 efflux with a range from 58% to 73% in the four treatments. Over seasons, the contribution of RH to soil CO2 efflux reached a maximum in winter (∼90%) and a minimum in summer (∼35%). Annual soil CO2 efflux did not vary substantially among years as precipitation did. The interannual variability of soil CO2 efflux may be mainly caused by precipitation distribution and summer severe drought. Our results suggest that the effects of warming and yearly clipping on soil CO2 efflux and its components did not result in significant changes in RH or RA contribution, and rainfall timing may be more important in determining interannual variability of soil CO2 efflux than the amount of annual precipitation.  相似文献   

13.
14.
Soil microbial communities are the key drivers of many terrestrial biogeochemical processes. However, we currently lack a generalizable understanding of how these soil communities will change in response to predicted increases in global temperatures and which microbial lineages will be most impacted. Here, using high‐throughput marker gene sequencing of soils collected from 18 sites throughout North America included in a 100‐day laboratory incubation experiment, we identified a core group of abundant and nearly ubiquitous soil microbes that shift in relative abundance with elevated soil temperatures. We then validated and narrowed our list of temperature‐sensitive microbes by comparing the results from this laboratory experiment with data compiled from 210 soils representing multiple, independent global field studies sampled across spatial gradients with a wide range in mean annual temperatures. Our results reveal predictable and consistent responses to temperature for a core group of 189 ubiquitous soil bacterial and archaeal taxa, with these taxa exhibiting similar temperature responses across a broad range of soil types. These microbial ‘bioindicators’ are useful for understanding how soil microbial communities respond to warming and to discriminate between the direct and indirect effects of soil warming on microbial communities. Those taxa that were found to be sensitive to temperature represented a wide range of lineages and the direction of the temperature responses were not predictable from phylogeny alone, indicating that temperature responses are difficult to predict from simply describing soil microbial communities at broad taxonomic or phylogenetic levels of resolution. Together, these results lay the foundation for a more predictive understanding of how soil microbial communities respond to soil warming and how warming may ultimately lead to changes in soil biogeochemical processes.  相似文献   

15.
ABSTRACT.   No other group of North American birds has declined as precipitously and over so large an area as has the grassland assemblage. In the Flint Hills of Kansas, the largest extant region of tallgrass prairie, annual spring burning of rangeland has largely replaced traditional regimes and natural patterns with longer intervals between burns. I examined effects of burning and low-intensity cattle grazing on abundances of seven bird species at Konza Prairie Research Natural Area in June 2002 and 2003. Every species was affected by fire, with Upland Sandpipers ( Bartramia longicauda ) more abundant, and six species—Grasshopper Sparrow ( Ammodramus savannarum ), Henslow's Sparrow ( A. henslowii ), Dickcissel ( Spiza americana ), Eastern Meadowlark ( Sturnella magna ), Brown-headed Cowbird ( Molothrus ater ), and Bell's Vireo ( Vireo bellii )—either less abundant or absent at sites in the breeding season following a fire. These results demonstrate that annual burning limits the potential of much of the Flint Hills prairie to harbor high breeding densities of many grassland birds. On the other hand, I found a trade-off between immediate and longer-term effects of burning for several grass-dependent species. Grasshopper Sparrows, Henslow's Sparrows, and Eastern Meadowlarks, although more numerous in areas that were not burned the preceding spring, were less abundant at sites burned every 4 yrs than those burned at shorter intervals. In contrast, shrub-dependent Bell's Vireos were more abundant at sites burned every 4 yrs. Upland Sandpipers, Grasshopper Sparrows, and Eastern Meadowlarks were more abundant in grazed areas. Use of alternatives to annual burning could increase habitat heterogeneity by transforming the Flint Hills into a mosaic of regularly, but asynchronously, burned pastures that would better meet the diverse habitat needs of the region's grassland birds.  相似文献   

16.
Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie   总被引:14,自引:2,他引:14  
Fires in the tallgrass prairie are frequent and significantly alter nutrient cycling processes. We evaluated the short-term changes in plant production and microbial activity due to fire and the long-term consequences of annual burning on soil organic matter (SOM), plant production, and nutrient cycling using a combination of field, laboratory, and modeling studies. In the short-term, fire in the tallgrass prairie enhances microbial activity, increases both above-and belowground plant production, and increases nitrogen use efficiency (NUE). However, repeated annual burning results in greater inputs of lower quality plant residues causing a significant reduction in soil organic N, lower microbial biomass, lower N availability, and higher C:N ratios in SOM. Changes in amount and quality of below-ground inputs increased N immobilization and resulted in no net increases in N availability with burning. This response occurred rapidly (e.g., within two years) and persisted during 50 years of annual burning. Plant production at a long-term burned site was not adversely affected due to shifts in plant NUE and carbon allocation. Modeling results indicate that the tallgrass ecosystem responds to the combined changes in plant resource allocation and NUE. No single factor dominates the impact of fire on tallgrass plant production.  相似文献   

17.
Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm‐tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years’ winter warming. The warming treatments increased winter soil temperatures by 5–6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q10) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat‐spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil‐atmosphere C exchange.  相似文献   

18.
长期模拟升温对崇明东滩湿地土壤微生物生物量的影响   总被引:1,自引:0,他引:1  
以崇明东滩芦苇湿地为对象,采用开顶室生长箱(Open top chambers OTCs)原位模拟大气升温试验,研究了连续升温8a对崇明东滩湿地0—40cm土层土壤微生物生物量碳氮含量的影响。结果表明:连续升温显著提高了崇明东滩湿地土壤微生物生物量碳氮含量,从土壤表层到深层(0—10,10—20,20—30,30—40cm),微生物生物量碳分别增加了39.32%、70.79%、65.20%、74.09%,微生物生物量氮分别增加了66.46%、178.27%、47.24%、64.11%。但升温对土壤微生物生物量的影响因不同土层和不同季节并未表现出统一的规律,长期模拟升温显著提高4月0—20cm土层和7月0—40cm土层微生物生物量碳氮含量,对10月0—40cm土层微生物生物量碳含量没有影响,但是显著提高了10月0—40cm土层微生物生物量氮含量,同时,微生物生物量碳氮比在7月也显著提高。相关分析表明:无论在升温条件还是在对照条件下,土壤温度、含水量、总氮与土壤微生物生物量碳氮及微生物生物量碳氮比均无相关关系,升温条件下,有机碳与微生物生物量碳氮含量以及微生物生物量碳氮比呈显著正相关,但是在对照条件下有机碳与微生物生物量碳氮含量以及微生物生物量碳氮比呈显著负相关。因此,土壤有机碳是影响土壤微生物生物量碳氮含量对长期模拟升温响应的重要生态因子。  相似文献   

19.
20.
In grasslands, fire management and fertilization are established drivers of plant community change, but associated soil fungal responses are less well defined. We predicted that soil fungal communities would change seasonally, that decades of fire cessation and nitrogen (N) fertilization would alter fungal distributions, and that plant and fungal community change would be correlated. Surface soils were sampled monthly for 1 y from a 30-y fire by fertilization experiment to evaluate fungal community dynamics and assess correlation with plant community heterogeneity. ITS gene community composition was seasonally stable, excepting increased arbuscular mycorrhizal fungal summer abundance in the burned, fertilized treatment. Long-term treatments affected soil fungal and plant communities, with correlated heterogeneity patterns. Despite woody encroachment in the fire cessation treatment, soil fungal communities did not resemble those of forests. This study provides evidence supporting the strength of feedbacks between fungal and plant community change in response to long-term grassland fire and N management changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号