首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phloem transport stops transiently within dicot stems that are cooled rapidly, but the cause remains unknown. Now it is known that (1) rapid cooling depolarizes cell membranes giving a transient increase in cytoplasmic Ca2+, and (2) a rise of free calcium triggers dispersion of forisomes, which then occlude sieve elements (SEs) of fabacean plants. Therefore, we compared the effects of rapid chilling on SE electrophysiology, phloem transport and forisomes in Vicia faba. Forisomes dispersed after rapid cooling with a delay that was longer for slower cooling rates. Phloem transport stopped about 20 s after forisome dispersion, and then transport resumed and forisomes re‐condensed within similar time frames. Transport interruption and forisome dispersion showed parallel behaviour – a cooling rate‐dependent response, transience and desensitization. Chilling induced both a fast and a slow depolarization of SE membranes, the electrical signature suggesting strongly that the cause of forisome dispersion was the transient promotion of SE free calcium. This apparent block of SEs by dispersed forisomes may be assisted by other Ca2+‐dependent sealing proteins that are present in all dicots.  相似文献   

2.
In transport phloem, photoassimilates escaping from the sieve tubes are released into the apoplasmic space between sieve element (SE)/companion cell (CC) complexes (SE/CCs) and phloem parenchyma cells (PPCs). For uptake respective retrieval, PPCs and SE/CCs make use of plasma membrane translocators energized by the proton motive force (PMF). Their mutual competitiveness, which essentially determines the amount of photoassimilates translocated through the sieve tubes, therefore depends on the respective PMFs. We measured the components of the PMF, membrane potential and DeltapH, of SE/CCs and PPCs in transport phloem. Membrane potentials of SE/CCs and PPCs in tissue slices as well as in intact plants fell into two categories. In the first group including apoplasmically phloem-loading species (e.g. Vicia, Solanum), the membrane potentials of the SEs are more negative than those of the PPCs. In the second group including symplasmically phloem-loading species (e.g. Cucurbita, Ocimum), membrane potentials of SEs are equal to or slightly more positive than those of PPCs. Pure sieve tube sap collected from cut aphid stylets was measured with H(+)-selective microelectrodes. Under our experimental conditions, pH of the sieve tube saps was around 7.5, which is comparable to the pH of cytoplasmic compartments in parenchymatous cells. In conclusion, only the membrane potential appears to be relevant for the PMF-determined competition between SE/CCs and PPCs. The findings may imply that the axial sinks along the pathway withdraw more photoassimilates from the sieve tubes in symplasmically loading species than in apoplasmically loading species.  相似文献   

3.
Summary After chemical fixation following two different preparation procedures, the ultrastructure of mature sieve elements (SEs) was systematically compared in the transport phloem ofVicia faba leaves andLycopersicon esculentum internodes. The SEs in samples obtained by gentle preparation were well preserved, while those in conventionally prepared samples were generally injured. (1) In well-preserved SEs, parietal P-proteins were associated with cisternae of the SE endoplasmic reticulum (ER). Additionally, theV. faba SEs had crystalline P-proteins, and a homogeneous network of filamentous P-proteins occurred in the lumen of theL. esculentum SEs. In injured SEs, all P-proteins were dispersed. (2) In well-preserved SEs, stacked ER cisternae associated with P-proteins lay also on the sieve-plate walls, but passages were kept free in front of the sieve pores. Injured SEs lacked these orderly arranged deposits. Instead, irregular filamentous and membranous materials occluded the sieve pores. (3) In well-preserved SEs, the sieve-pore lumen was free of obstructions, apart from small, lateral coatings of P-proteins. Sieve pores in injured SEs were always occluded. (4) The SE organelles and, in tomato SEs, also the parietal ER located at the longitudinal walls were firmly attached in the SE periphery and stayed in place after injury. The stable parietal attachment is likely exerted by minute, clamplike structures which link the outer membranes of the SE components with one another or to the SE plasma membrane. Single, straight clamps with a length of about 7 nm anchored the SE components directly to the SE plasma membrane. The connections between adjacent SE organelles and/or parietal ER cisternae were mostly twice as long (about 15 nm) and often were branched. Presumably, the long, branched clamps were constituted by the interaction of opposite short clamps. The ultrastructural results are discussed with respect to SE functioning.  相似文献   

4.
In the legume phloem, sieve element occlusion (SEO) proteins assemble into Ca(2+)-dependent contractile bodies. These forisomes presumably control phloem transport by forming reversible sieve tube plugs. This function, however, has never been directly demonstrated, and appears questionable as forisomes were reported to be too small to plug sieve tubes, and failed to block flow efficiently in artificial microchannels. Moreover, plugs of SEO-related proteins in Arabidopsis sieve tubes do not affect phloem translocation. We improved existing procedures for forisome isolation and storage, and found that the degree of Ca(2+)-driven deformation that is possible in forisomes of Vicia faba, the standard object of earlier research, has been underestimated substantially. Forisomes deform particularly strongly under reducing conditions and high sugar concentrations, as typically found in sieve tubes. In contrast to our previous inference, Ca(2+)-inducible forisome swelling certainly seems sufficient to plug sieve tubes. This conclusion was supported by 3D-reconstructions of forisome plugs in Canavalia gladiata. For a direct test, we built microfluidics chips with artificial sieve tubes. Using fluorescent dyes to visualize flow, we demonstrated the complete blockage of these biomimetic microtubes by Ca(2+)-induced forisome plugs, and concluded by analogy that forisomes are capable of regulating phloem flow in vivo.  相似文献   

5.
Rapid acquisition of quantitative anatomical data from the sieve tubes of angiosperm phloem has been confounded by their small size, their distance from organ surfaces, and the time-consuming nature of traditional methods, such as transmission electron microscopy. To improve access to these cells, for which good anatomical data are critical, a monomeric yellow fluorescent protein (mCitrine) was N-terminally fused to a small (approximately 6 kD) membrane protein (AtRCI2A) and stably expressed in Arabidopsis thaliana (Columbia-0 ecotype) and Nicotiana tabacum ('Samsun') under the control of a companion cell-specific promoter (AtSUC2p). The construct, called by its abbreviation SUmCR, yielded stable sieve element (SE) plasma membrane fluorescence labeling, even after plastic (methacrylate) embedding. In conjunction with wide-field fluorescence measurements of sieve pore number and position using aniline blue-stained callose, mCitrine-labeled material was used to calculate rough estimates of sieve tube-specific conductivity for both species. The SUmCR construct also revealed a hitherto unknown expression domain of the AtSUC2 Suc-H(+) symporter in the epidermis of the cell division zone of developing root tips. The success of this construct in targeting plasma membrane-anchored fluorescent proteins to SEs could be attributable to the small size of AtRCI2A or to the presence of other signals innate to AtRCI2A that permit the protein to be trafficked to SEs. The construct provides a hitherto unique entrée into companion cell-to-SE protein targeting, as well as a new tool for studying whole-plant phloem anatomy and architecture.  相似文献   

6.
7.
van Bel  Aart J. E.  van Rijen  Harold V. M. 《Planta》1994,192(2):165-175
From the cambial stage onwards, the symplasmic autonomy of sieve element/companion cell complexes (SE/CC-complexes) was followed in stems of Lupinus luteus L. by microinjection techniques. The membrane potential and the symplasmic autonomy of the mature SE/CC-complex was measured in successive internodes. A microelectrode was inserted into SE/CC-complexes or phloem parenchyma cells (PPs) and, after stabilization of the membrane potential, the membrane-impermeant fluorescent dye Lucifer Yellow CH (LYCH) was injected intracellullary. The plasmodesmata of the cambial SE/ CC precursor were gradually shut off at all interfaces beginning at the walls to be transformed into sieve plates. In the course of maturation, symplasmic discontinuity was maintained at the longitudinal walls of the complex. In the transverse walls of the SE, wide sieve pores were formed giving rise to longitudinal multicellular symplasmic domains of SE/CC-complexes. Symplasmic isolation of the files of mature SE/CC-complexes was demonstrated in several ways: (i) the membrane potential of the SE/CC-complexes (between -100 mV and -130 mV) was consistently more negative than that of the PPs (between-50 and -100 mV), (ii) No exchange of LYCH was observed between SE/CC-complexes and the PPs. Lucifer Yellow CH injected into the SEs exclusively moved to the associated CCs and to other SE/CC-complexes whereas LYCH injected into the PPs was only displaced to other PPs. (iii) The electrical coupling ratio between adjacent PPs was ten times higher than that between SE/CC-complex and PP. A gradient in the membrane potential of the SE/CC-complexes along the stem was not conclusively demonstrated.Abbreviations LYCH Lucifer Yellow CH - membrane potential - PMF proton-motive force - PP phloem parenchyma cell - SE/CC-complex sieve element/companion cell complex - SR-G sulphorhodamine G  相似文献   

8.
Transgenic tobacco (Nicotiana tabacum) was studied to localize the activity of phloem loading during development and to establish whether the endoplasmic reticulum (ER) of the companion cell (CC) and the sieve element (SE) reticulum is continuous by using a SUC2 promoter-green fluorescent protein (GFP) construct targeted to the CC-ER. Expression of GFP marked the collection phloem in source leaves and cotyledons as expected, but also the transport phloem in stems, petioles, midveins of sink leaves, nonphotosynthetic flower parts, roots, and newly germinated seedlings, suggesting that sucrose retrieval along the pathway is an integral component of phloem function. GFP fluorescence was limited to CCs where it was visualized as a well-developed ER network in close proximity to the plasma membrane. ER coupling between CC and SEs was tested in wild-type tobacco using an ER-specific fluorochrome and fluorescence redistribution after photobleaching (FRAP), and showed that the ER is continuous via pore-plasmodesma units. ER coupling between CC and SE was quantified by determining the mobile fraction and half-life of fluorescence redistribution and compared with that of other cell types. In all tissues, fluorescence recovered slowly when it was rate limited by plasmodesmata, contrasting with fast intracellular FRAP. FRAP was unaffected by treatment with cytochalasin D. The highest degree of ER coupling was measured between CC and SE. Intimate ER coupling is consistent with a possible role for ER in membrane protein and signal exchange between CC and SE. However, a complete lack of GFP transfer between CC and SE indicated that the intraluminal pore-plasmodesma contact has a size exclusion limit below 27 kD.  相似文献   

9.
Transgenic Arabidopsis plants were constructed to express a range of GFP-fusion proteins (36-67 kDa) under the companion cell (CC)-specific AtSUC2 promoter. These plants were used to monitor the trafficking of these GFP-fusion proteins from the CCs into the sieve elements (SEs) and their subsequent translocation within and out of the phloem. The results revealed a large size exclusion limit (SEL) (>67 kDa) for the plasmodesmata connecting SEs and CCs in the loading phloem. Membrane-anchored GFP-fusions and a GFP variant targeted to the endoplasmic reticulum (ER) remained inside the CCs and were used as 'zero trafficking' controls. In contrast, free GFP and all soluble GFP-fusions, moved from the CCs into the SEs and were subsequently translocated through the phloem. Phloem unloading and post-phloem transport of these mobile GFP-fusions were studied in root tips, where post-phloem transport occurred only for the free form of GFP. All of the other soluble GFP-fusion variants were unloaded and restricted to a narrow zone of cells immediately adjacent to the mature protophloem. It appears that this domain of cells, which has a peripheral SEL of about 27-36 kDa, allows protein exchange between protophloem SEs and surrounding cells, but restricts general access of large proteins into the root tip. The presented data provide additional information on phloem development in Arabidopsis in relation to the formation of symplasmic domains.  相似文献   

10.
Remote-controlled Ca2+ influx, elicited by electropotential waves, triggers local signaling cascades in sieve elements and companion cells along the phloem of Vicia faba plants. The stimulus strength seems to be communicated by the rate and duration of Ca2+ influx into sieve elements (SEs). The cooperative recruitment of Ca2+ channels results in a graded response of forisome culminating in full sieve-tube occlusion. Several lines of evidence are integrated into a model that links the mode and strength of the electropotential waves (EPWs) with forisome dispersion, mediated by transiently enhanced levels of local Ca2+ release dependent on both plasma membrane and ER Ca2+ channels.Key words: distant injury, electropotential wave, remote sieve tube occlusion, activity of sieve element Ca2+ channels, signal cascades, Ca2+ hotspots  相似文献   

11.
An inward Shaker K(+) channel identified in Zea mays (maize), ZmK2.1, displays strong regulation by external K(+) when expressed in Xenopus laevis (African clawed frog) oocytes or COS cells. ZmK2.1 is specifically activated by K(+) with an apparent K(m) close to 15 mM independent of the membrane hyperpolarization level. In the absence of K(+), ZmK2.1 appears to enter a nonconducting state. Thus, whatever the membrane potential, this maize channel cannot mediate K(+) influx in the submillimolar concentration range, unlike its relatives in Arabidopsis thaliana. Its expression is restricted to the shoots, the strongest signal (RT-PCR) being associated with vascular/bundle sheath strands. Based on sequence and gene structure, the closest relatives of ZmK2.1 in Arabidopsis are K(+) Arabidopsis Transporter 1 (KAT1) (expressed in guard cells) and KAT2 (expressed in guard cells and leaf phloem). Patch-clamp analyses of guard cell protoplasts reveal a higher functional diversity of K(+) channels in maize than in Arabidopsis. Channels endowed with regulation by external K(+) similar to that of ZmK2.1 (channel activity regulated by external K(+) with a K(m) close to 15 mM, regulation independent of external Ca(2+)) constitute a major component of the maize guard cell inward K(+) channel population. The presence of such channels in maize might reflect physiological traits of C4 and/or monocotyledonous plants.  相似文献   

12.
Syncytial feeding complexes induced by the cyst nematode Heterodera schachtii represent strong metabolic sinks for photoassimilates. These newly formed structures were described to be symplastically isolated from the surrounding root tissue and their mechanism of carbohydrate import has repeatedly been under investigation. Here, we present analyses of the symplastic connectivity between the root phloem and these syncytia in nematode-infected Arabidopsis (Arabidopsis thaliana) plants expressing the gene of the green fluorescent protein (GFP) or of different GFP fusions under the control of the companion cell (CC)-specific AtSUC2 promoter. In the same plants, phloem differentiation during syncytium formation was monitored using cell-specific antibodies for CCs or sieve elements (SEs). Our results demonstrate that free, CC-derived GFP moved freely from the phloem into the syncytial domain. No or only marginal cell-to-cell passage of GFP was observed into other root cells adjacent to these syncytia. In contrast, membrane-anchored GFP variants as well as soluble GFP fusions with increased molecular masses were restricted to the SE-CC complex. The presented data also show that nematode infection triggers the de novo formation of phloem containing an approximately 3-fold excess of SEs over CCs. This newly formed phloem exhibits typical properties of unloading phloem previously described in other sink tissues. Our results reveal the existence of a symplastic pathway between phloem CCs and nematode-induced syncytia. The plasmodesmata responsible for this symplastic connectivity allow the cell-to-cell movement of macromolecules up to 30 kD and are likely to represent the major or exclusive path for the supply of assimilates from the phloem into the syncytial complex.  相似文献   

13.
Phloem sieve elements have shut‐off mechanisms that prevent loss of nutrient‐rich phloem sap when the phloem is damaged. Some phloem proteins such as the proteins that form forisomes in legume sieve elements are one such mechanism and in response to damage, they instantly form occlusions that stop the flow of sap. It has long been hypothesized that one function of phloem proteins is defence against phloem sap‐feeding insects such as aphids. This study provides the first experimental evidence that aphid feeding can induce phloem protein occlusion and that the aphid‐induced occlusions inhibit phloem sap ingestion. The great majority of phloem penetrations in Vicia faba by the generalist aphids Myzus persicae and Macrosiphum euphorbiae triggered forisome occlusion and the aphids eventually withdrew their stylets without ingesting phloem sap. This contrasts starkly with a previous study on the legume‐specialist aphid, Acyrthosiphon pisum, where penetration of faba bean sieve elements did not trigger forisome occlusion and the aphids readily ingested phloem sap. Next, forisome occlusion was demonstrated to be the cause of failed phloem ingestion attempts by M. persicae: when occlusion was inhibited by the calcium channel blocker lanthanum, M. persicae readily ingested faba bean phloem sap.  相似文献   

14.
Serpins are unique inhibitors of serine proteases that are located in various plant tissues and organs. An orthologue of the pumpkin (Cucurbita maxima) phloem serpin CmPS-1 was amplified from cucumber (Cucumis sativus) RNA by RT-PCR, cloned, and designated as CsPS-1 (GenBank accession no. AJ866989). Alternative amino acid sequences in the reactive centre loop suggest distinct inhibitory specificity between CmPS-1 and CsPS-1. A difference in the electrophoretic mobility of these serpins was used in heterografts to establish that serpins are phloem-mobile. Immuno light microscopy revealed that the phloem serpins are localized exclusively to sieve elements (SE), while the phloem filament protein CmPP1, used as a reference, is localized to both SEs and companion cells (CCs). Similar to CmPS-1, CsPS-1 accumulates over time in phloem exudates, indicating that serpins differ from other phloem-mobile proteins whose concentrations appear to be stable in phloem exudates. These differences could reflect alternative mechanisms regulating protein turnover and/or inaccessibility of protein degradation. The functionality of the pore/plasmodesma units connecting SEs and CCs was tested with graft-transmitted CmPP1 as a transport marker. The occurrence of CmPP1 in the CCs of the Cucumis graft partner shows that translocated 88 kDa phloem filament protein monomers can symplasmically exit the SE and accumulate in the CC. By contrast, serial sections probed with the serpin antibody demonstrate that the 43 kDa serpin does not enter CCs. Collectively, these data indicate that CCs play a decisive role in homeostasis of exudate proteins; proteins not accessing the CCs accumulate in SEs and display a time-dependent increase in concentration.  相似文献   

15.
Phloem injury triggers local sieve-plate occlusion including callose-mediated constriction and protein plugging of sieve pores. In intact plants, reversible sieve-plate occlusion is induced by electric potential waves (EPWs)—accompanied by Ca2+-influx—as result of distant burning. Here, we present additional results which pertain to (a) the variability of EPW-profiles in relation to forisome conformation in intact Vicia faba plants and (b) the differential occlusion reactions to burning and cutting in various plant species. A correlation between stimulus perception and mode of phloem loading is discussed.Key words: callose, electrical potential waves, forisome, membrane potential, phloem transport, sieve-element occlusion, wound potentials  相似文献   

16.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

17.
18.
In leaf mesophyll cells of pea (Pisum sativum) light induces a transient depolarization that is at least partly due to an increased plasma membrane conductance for anions. Several channel types were identified in the plasma membrane of protoplasts from mesophyll cells using the patch-clamp technique. One of these was an anion channel with a single-channel conductance of 32 picasiemens in symmetrical 100/100 KCl solutions. In asymmetrical solutions the reversal potential indicates a high selectivity for Cl- over K+ at high cytoplasmic Cl-. At negative membrane voltages the channel openings were interrupted by very short closures. In the open channel conductance several substrates were identified. At a cytoplasmic negative logarithm of Ca concentration higher than 6.3, no channel openings were observed. When the protoplast was illuminated in the cell-attached configuration, at least one channel type had a higher opening probability. This channel can tentatively be identified as the above-described anion channel based on conductance and the characteristic short closures at negative membrane potentials. This light activation of the 32-picasiemen anion channel is a strong indication that this channel conducts the light-induced depolarizing current. Because channel activity is strongly Ca2+-dependent, a role of cytoplasmic Ca2+ concentration changes in the light activation of the conductance is discussed.  相似文献   

19.
Trafficking of K+ inward (Kin+) rectifying channels was analyzed in guard cells of Vicia faba transfected with the Kin+ rectifier from Arabidopsis thaliana KAT1 fused to the green fluorescent protein (GFP). Confocal images and whole-cell patch-clamp measurements confirmed the incorporation of active KAT1 channels into the plasma membrane of transfected guard cell protoplasts. The Kin+ rectifier current density of the plasma membrane was much larger in transfected protoplasts than in wild-type (wt) protoplasts. This shows a coupling between K+ channel synthesis and incorporation of the channel into the plasma membrane. Pressure-driven increase and decrease in surface area led to the incorporation and removal of vesicular membrane carrying active Kin+ rectifier in wt and transfected protoplasts. These vesicular membranes revealed a higher channel density than the plasma membrane, suggesting that Kin+ rectifier remains in clusters during trafficking to and from the plasma membrane. The observed results can be explained by a model illustrating that vesicles of a pre-plasma membrane pool carry K+ channels preferentially in clusters during constitutive and pressure-driven exo- and endocytosis.  相似文献   

20.
TPK1 (formerly KCO1) is the founding member of the family of two-pore domain K(+) channels in Arabidopsis (Arabidopsis thaliana), which originally was described following expression in Sf9 insect cells as a Ca(2+)- and voltage-dependent outwardly rectifying plasma membrane K(+) channel. In plants, this channel has been shown by green fluorescent protein fusion to localize to the vacuolar membrane, which led to speculations that the TPK1 gene product would be a component of the nonselective, Ca(2+) and voltage-dependent slow-vacuolar (SV) cation channel found in many plants species. Using yeast (Saccharomyces cerevisiae) as an expression system for TPK1, we show functional expression of the channel in the vacuolar membrane. In isolated vacuoles of yeast yvc1 disruption mutants, the TPK1 gene product shows ion channel activity with some characteristics very similar to the SV-type channel. The open channel conductance of TPK1 in symmetrically 100 mM KCl is slightly asymmetric with roughly 40 pS at positive membrane voltages and 75 pS at negative voltages. Similar to the SV-type channel, TPK1 is activated by cytosolic Ca(2+), requiring micromolar concentration for activation. However, in contrast to the SV-type channel, TPK1 exhibits strong selectivity for K(+) over Na(+), and its activity turned out to be independent of the membrane voltage over the range of +/-80 mV. Our data clearly demonstrate that TPK1 is a voltage-independent, Ca(2+)-activated, K(+)-selective ion channel in the vacuolar membrane that does not mediate SV-type ionic currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号