首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several Gram-negative pathogens deploy type III secretion systems (TTSSs) as molecular syringes to inject effector proteins into host cells. Prior to secretion, some of these effectors are accompanied by specific type III secretion chaperones. The Yersinia enterocolitica TTSS chaperone SycT escorts the effector YopT, a cysteine protease that inactivates the small GTPase RhoA of targeted host cells. We solved the crystal structure of SycT at 2.5 angstroms resolution. Despite limited sequence similarity among TTSS chaperones, the SycT structure revealed a global fold similar to that exhibited by other structurally solved TTSS chaperones. The dimerization domain of SycT, however, differed from that of all other known TTSS chaperone structures. Thus, the dimerization domain of TTSS chaperones does not likely serve as a general recognition pattern for downstream processing of effector/chaperone complexes. Yersinia Yop effectors are bound to their specific Syc chaperones close to the Yop N termini, distinct from their catalytic domains. Here, we showed that the catalytically inactive YopT(C139S) is reduced in its ability to bind SycT, suggesting an ancillary interaction between YopT and SycT. This interaction could maintain the protease inactive prior to secretion or could influence the secretion competence and folding of YopT.  相似文献   

2.
Pathogenic Yersinia species use a type III secretion (TTS) system to deliver a number of cytotoxic effector proteins directly into the mammalian host cell. To ensure effective translocation, several such effector proteins transiently bind to specific chaperones in the bacterial cytoplasm. Correspondingly, SycT is the chaperone of YopT, a cysteine protease that cleaves the membrane-anchor of Rho-GTPases in the host. We have analyzed the complex between YopT and SycT and determined the structure of SycT in three crystal forms. Biochemical studies indicate a stoichometric effector/chaperone ratio of 1:2 and the chaperone-binding site contains at least residues 52-103 of YopT. The crystal structures reveal a SycT homodimer with an overall fold similar to that of other TTS effector chaperones. In contrast to the canonical five-stranded anti-parallel beta-sheet flanked by three alpha-helices, SycT lacks the dimerization alpha-helix and has an additional beta-strand capable of undergoing a conformational change. The dimer interface consists of two beta-strands and the connecting loops. Two hydrophobic patches involved in effector binding in other TTS effector chaperones are also found in SycT. The structural similarity of SycT to other chaperones and the spatial conservation of effector-binding sites support the idea that TTS effector chaperones form a single functional and structural group.  相似文献   

3.
Type 3 secretion systems are complex nanomachines used by many Gramnegative bacteria to deliver tens of proteins (effectors) directly into host cells. Once delivered into host cells, effectors often target to specific cellular loci where they usurp host cell processes to their advantage. Here, using the yeast model system, we identify the membrane localization domain (MLD) of IpgB1, a stretch of 20 amino acids enriched for hydrophobic residues essential for the targeting of this effector to the plasma membrane. Embedded within these residues are ten that define the IpgB1 chaperone-binding domain for Spa15. As observed with dedicated class IA chaperones that mask hydrophobic MLDs, Spa15, a class IB chaperone, promotes IpgB1 stability by binding this hydrophobic region. However, despite being stable, an IpgB1 allele that lacks the MLD is not recognized as a secreted substrate. Similarly, deletion of the chaperone binding domains of IpgB1 and three additional Spa15-dependent effectors result in alleles that are no longer recognized as secreted substrates despite the presence of intact N-terminal secretion signal sequences. This is in contrast with MLD-containing effectors that bind class IA dedicated chaperones, as deletion of the MLD of these effectors alleviates the chaperone requirement for secretion. These observations indicate that at least for substrates of class IB chaperones, the chaperone-effector complex plays a major role in defining type 3 secreted proteins and highlight how a single region of an effector can play important roles both within prokaryotic and eukaryotic cells.  相似文献   

4.

Background  

Pathogenic yersiniae (Y. pestis, Y. pseudotuberculosis, Y. enterocolitica) share a virulence plasmid encoding a type three secretion system (T3SS). This T3SS comprises more than 40 constituents. Among these are the transport substrates called Yops (Yersinia outer proteins), the specific Yop chaperones (Sycs), and the Ysc (Yop secretion) proteins which form the transport machinery. The effectors YopO and YopP are encoded on an operon together with SycO, the chaperone of YopO. The characterization of SycO is the focus of this study.  相似文献   

5.
Extracellular Yersinia disarm the immune system of their host by injecting effector Yop proteins into the cytosol of target cells. Five effectors have been described: YopE, YopH, YpkA/YopO, YopP and YopM. Delivery of these effectors by Yersinia adhering at the cell surface requires other Yops (translocators) including YopB. Effector and translocator Yops are secreted by the type III Ysc secretion apparatus, and some Yops also need a specific cytosolic chaperone, called Syc. In this paper, we describe a new Yop, which we have called YopT (35.5 kDa). Its secretion required an intact Ysc apparatus and SycT (15.0 kDa, pI 4.4), a new chaperone resembling SycE. Infection of macrophages with a Yersinia , producing a hybrid YopT–adenylate cyclase, led to the accumulation of intracellular cAMP, indicating that YopT is delivered into the cytosol of eukaryotic cells. Infection of HeLa cells with a mutant strain devoid of the five known Yop effectors (ΔHOPEM strain) but producing YopT resulted in the alteration of the cell cytoskeleton and the disruption of the actin filament structure. This cytotoxic effect was caused by YopT and dependent on YopB. YopT is thus a new effector Yop and a new bacterial toxin affecting the cytoskeleton of eukaryotic cells.  相似文献   

6.
Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella.  相似文献   

7.
Many virulence-related, bacterial effector proteins are translocated directly into the cytosol of host cells by the type III secretion (TTS) system. Translocation of most TTS effectors requires binding by specific chaperones in the bacterial cytosol, although how chaperones promote translocation is unclear. To provide insight into the action of such chaperones, we studied the consequences of binding by the Yersinia chaperone SycE to the effector YopE by NMR. These studies examined the intact form of the effector, whereas prior studies have been limited to well ordered fragments. We found that YopE had the characteristics of a natively unfolded protein, with its N-terminal 100 residues, including its chaperone-binding (Cb) region, flexible and disordered in the absence of SycE. SycE binding caused a pronounced disorder-to-order transition in the Cb region of YopE. The effect of SycE was strictly localized to the Cb region, with other portions of YopE being unperturbed. These results provide stringent limits on models of chaperone action and are consistent with the chaperone promoting formation of a three-dimensional targeting signal in the Cb region of the effector. The target of this putative signal is unknown but appears to be a bacterial component other than the TTS ATPase YscN.  相似文献   

8.
Bacterium usually utilises type III secretion systems (T3SS) to deliver effectors directly into host cells with the aids of chaperones. Hence, it is very important to identify bacterial T3SS effectors and chaperones for better understanding of host–pathogen interactions. Edwardsiella piscicida is an invasive enteric bacterium, which infects a wide range of hosts from fish to human. Given E. piscicida encodes a functional T3SS to promote infection, very few T3SS effectors and chaperones have been identified in this bacterium so far. Here, we reported that EseK is a new T3SS effector protein translocated by E. piscicida. Bioinformatic analysis indicated that escH and escS encode two putative class I T3SS chaperones. Further investigation indicated that EscH and EscS can enhance the secretion and translocation of EseK. EscH directly binds EseK through undetermined binding domains, whereas EscS binds EseK via its N‐terminal α‐helix. We also found that EseK has an N‐terminal chaperone‐binding domain, which binds EscH and EscS to form a ternary complex. Zebrafish infection experiments showed that EseK and its chaperones EscH and EscS are necessary for bacterial colonisation in zebrafish. This work identified a new T3SS effector, EseK, and its two T3SS chaperones, EscH and EscS, in E. piscicida, which enriches our knowledge of bacterial T3SS effector–chaperone interaction and contributes to our understanding of bacterial pathogenesis.  相似文献   

9.
In the type III secretory system of bacterial pathogens, a large number of sequence-divergent but characteristically small (approximately 14-19 kDa), acidic (pI approximately 4-5) chaperone proteins have been identified. We present the 1.74 A resolution crystal structure of the Yersinia pseudotuberculosis chaperone SycE, whose action in promoting translocation of YopE into host macrophages is essential to Yersinia pathogenesis. SycE, a compact, globular dimer with a novel fold, has two large hydrophobic surface patches that may form binding sites for YopE or other type III components. These patches are formed by structurally key residues that are conserved among many chaperones, suggesting shared structural and functional relationships. A negative electrostatic potential covers almost the entire surface of SycE and is likely conserved in character, but not in detail, among chaperones. The structure provides the first structural insights into possible modes of action of SycE and type III chaperones in general.  相似文献   

10.
Bacterial virulence is typically initiated by translocation of effector or toxic proteins across host cell membranes. A class of gram-negative pathogenic bacteria including Yersinia pseudotuberculosis and Yersinia pestis accomplishes this objective with a protein assembly called the type III secretion system. Yersinia effector proteins (Yop) are presented to the translocation apparatus through formation of specific complexes with their cognate chaperones (Syc). In the complexes where the structure is available, the Yops are extended and wrap around their cognate chaperone. This structural architecture enables secretion of the Yop from the bacterium in early stages of translocation. It has been shown previously that the chaperone-binding domain of YopE is disordered in its isolation but becomes substantially more ordered in its wrap-around complex with its chaperone SycE. Here, by means of NMR spectroscopy, small-angle X-ray scattering and molecular modeling, we demonstrate that while the free chaperone-binding domain of YopH (YopHCBD) adopts a fully ordered and globular fold, it populates an elongated, wrap-around conformation when it engages in a specific complex with its chaperone SycH2. Hence, in contrast to YopE that is unstructured in its free state, YopH transits from a globular free state to an elongated chaperone-bound state. We demonstrate that a sparsely populated YopHCBD state has an elevated affinity for SycH2 and represents an intermediate in the formation of the protein complex. Our results suggest that Yersinia has evolved a binding mechanism where SycH2 passively stimulates an elongated YopH conformation that is presented to the type III secretion system in a secretion-competent conformation.  相似文献   

11.
A type III secretion-translocation system allows Yersinia adhering at the surface of animal cells to deliver a cocktail of effector Yops (YopH, -O, -P, -E, -M, and -T) into the cytosol of these cells. Residues or codons 1 to 77 contain all the information required for the complete delivery of YopE into the target cell (release from the bacterium and translocation across the eukaryotic cell membrane). Residues or codons 1 to 15 are sufficient for release from the wild-type bacterium under Ca(2+)-chelating conditions but not for delivery into target cells. Residues 15 to 50 comprise the binding domain for SycE, a chaperone specific for YopE that is necessary for release and translocation of full-length YopE. To understand the role of this chaperone, we studied the delivery of YopE-Cya reporter proteins and YopE deletants by polymutant Yersinia devoid of most of the Yop effectors (delta HOPEM and delta THE strains). We first tested YopE-Cya hybrid proteins and YopE proteins deleted of the SycE-binding site. In contrast to wild-type strains, these mutants delivered YopE(15)-Cya as efficiently as YopE(130)-Cya. They were also able to deliver YopE(delta 17-77). SycE was dispensable for these deliveries. These results show that residues or codons 1 to 15 are sufficient for delivery into eukaryotic cells and that there is no specific translocation signal in Yops. However, the fact that the SycE-binding site and SycE were necessary for delivery of YopE by wild-type Yersinia suggests that they could introduce hierarchy among the effectors to be delivered. We then tested a YopE-Cya hybrid and YopE proteins deleted of amino acids 2 to 15 but containing the SycE-binding domain. These constructs were neither released in vitro upon Ca(2+) chelation nor delivered into cells by wild-type or polymutant bacteria, casting doubts on the hypothesis that SycE could be a secretion pilot. Finally, it appeared that residues 50 to 77 are inhibitory to YopE release and that binding of SycE overcomes this inhibitory effect. Removal of this domain allowed in vitro release and delivery in cells in the absence as well as in the presence of SycE.  相似文献   

12.
Yersinia adhering at the surface of eukaryotic cells secrete a set of proteins called Yops. This secretion which occurs via a type III secretion pathway is immediately followed by the injection of some Yops into the cytosol of eukaryotic cells. Translocation of YopE and YopH across the eukaryotic cell membranes requires the presence of the translocators YopB and YopD. YopE and YopH are modular proteins composed of an N-terminal secretion signal, an internalization domain, and an effector domain. Secretion of YopE and YopH requires the presence of the specific cytosolic chaperones SycE and SycH, respectively. In this work, we have mapped the regions of YopE and YopH that are involved in binding of their cognate chaperone. There is only one Syc-binding domain in YopE (residues 15–50) and YopH (residues 20–70). This domain is localized immediately after the secretion signal and it corresponds to the internalization domain. Removal of this bifunctional domain did not affect secretion of YopE and YopH and even suppressed the need for the chaperone in the secretion process. Thus SycE and SycH are not secretion pilots. Instead, we propose that they prevent intrabacterial interaction of YopE and YopH with proteins involved in translocation of these Yops across eukaryotic cell membranes.  相似文献   

13.
Bacterial type III secretion system (T3SS) chaperones pilot substrates to the export apparatus in a secretion‐competent state, and are consequently central to the translocation of effectors into target cells. Chlamydia trachomatis is a genetically intractable obligate intracellular pathogen that utilizes T3SS effectors to trigger its entry into mammalian cells. The only well‐characterized T3SS effector is TARP (translocated actin recruitment protein), but its chaperone is unknown. Here we exploited a known structural signature to screen for putative type III secretion chaperones encoded within the C. trachomatis genome. Using bacterial two‐hybrid, co‐precipitation, cross‐linking and size exclusion chromatography we show that Slc1 (SycE‐like chaperone 1; CT043) specifically interacts with a 200‐amino‐acid residue N‐terminal region of TARP (TARP1–200). Slc1 formed homodimers in vitro, as shown in cross‐linking and gel filtration experiments. Biochemical analysis of an isolated Slc1–TARP1–200 complex was consistent with a characteristic 2:1 chaperone–effector stoichiometry. Furthermore, Slc1 was co‐immunoprecipitated with TARP from C. trachomatis elementary bodies. Also, coexpression of Slc1 specifically enhanced host cell translocation of TARP by a heterologous Yersinia enterocolitica T3SS. Taken together, we propose Slc1 as a chaperone of the C. trachomatis T3SS effector TARP.  相似文献   

14.
The Chlamydia trachomatis type three-secreted effector protein CT694 is expressed during late-cycle development yet is secreted by infectious particles during the invasion process. We have previously described the presence of at least two functional domains within CT694. CT694 was found to interact with the human protein Ahnak through a C-terminal domain and affect formation of host-cell actin stress fibers. Immunolocalization analyses of ectopically expressed pEGFP-CT694 also revealed plasma membrane localization for CT694 that was independent of Ahnak binding. Here we provide evidence that CT694 contains multiple functional domains. Plasma membrane localization and CT694-induced alterations in host cell morphology are dependent on an N-terminal domain. We demonstrate that membrane association of CT694 is dependent on a domain resembling a membrane localization domain (MLD) found in anti-host proteins from Yersinia, Pseudomonas, and Salmonella spp. This domain is necessary and sufficient for localization and morphology changes but is not required for Ahnak binding. Further, the CT694 MLD is able to complement ExoS ΔMLD when ectopically expressed. Taken together, our data indicate that CT694 is a multidomain protein with the potential to modulate multiple host cell processes.  相似文献   

15.
16.
Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors.  相似文献   

17.
The type III secretion system (T3SS) is a specialized apparatus evolved by Gram-negative bacteria to deliver effector proteins into host cells, thus facilitating the establishment of an infection. Effector translocation across the target cell plasma membrane is believed to occur via pores formed by at least two secreted translocator proteins, the functions of which are dependent upon customized class II T3SS chaperones. Recently, three internal tetratricopeptide repeats (TPRs) were identified in this class of chaperones. Here, defined mutagenesis of the class II chaperone PcrH of Pseudomonas aeruginosa revealed these TPRs to be essential for chaperone activity towards the translocator proteins PopB and PopD and subsequently for the translocation of exoenzymes into host cells.  相似文献   

18.
Pathogenic bacteria of the genus Yersinia employ a type III secretion system to inject effector proteins (Yops) into host cells. The Yops down-regulate host cell functions through unique biochemical activities. YopO, a serine/threonine kinase required for Yersinia virulence, is activated by host cell actin via an unknown process. Here we show that YopO kinase is activated by formation of a 1:1 complex with monomeric (G) actin but is unresponsive to filamentous (F) actin. Two separate G-actin binding sites, one in the N-terminal kinase region (amino acids 89-440) and one in the C-terminal guanine nucleotide dissociation inhibitor-like region (amino acids 441-729) of YopO, were identified. Actin binding to both of these sites was necessary for effective autophosphorylation of YopO on amino acids Ser-90 and Ser-95. A S90A/S95A YopO mutant was strongly reduced in substrate phosphorylation, suggesting that autophosphorylation activates YopO kinase activity. In cells the kinase activity of YopO regulated rounding/arborization and was specifically required for inhibition of Yersinia YadA-dependent phagocytosis. Thus, YopO kinase is activated by a novel G-actin binding process, and this appears to be crucial for its anti-host cell functions.  相似文献   

19.
Type III secretion systems (TTSSs) utilized by enteropathogenic bacteria require the presence of small, acidic virulence-associated chaperones for effective host cell infection. We adopted a combination of biochemical and cellular techniques to define the chaperone binding domains (CBDs) in the translocators IpaB and IpaC associated with the chaperone IpgC from Shigella flexneri. We identified a novel CBD in IpaB and furthermore precisely mapped the boundaries of the CBDs in both translocator proteins. In IpaC a single binding domain associates with IpgC. In IpaB, we show that the binding of the newly characterized CBD is essential in maintaining the ternary arrangement of chaperone-translocator complex. This hitherto unknown function is reflected in the co-crystal structure as well, with an IpgC dimer bound to an IpaB fragment comprising both CBDs. Moreover, in the absence of this novel CBD the IpaB/IpgC complex aggregates. This dual-recognition of a domain in the protein by the chaperone in facilitating the correct chaperone-substrate organization describes a new function for the TTSS associated chaperone-substrate complexes.  相似文献   

20.
Bacteria secrete flagella subunits and deliver virulence effectors via type III export systems. During flagellar filament assembly, a chaperone escort mechanism has been proposed to enhance the export of early, minor flagellar filament components by selectively binding and cycling their chaperones. Here we identify virulence orthologues of the flagellar chaperone escort FliJ and show that the orthologues Salmonella InvI and Yersinia YscO are, like FliJ, essential for their type III export pathway and similarly, do not bind export substrates. Like FliJ, they recognize a subset of export chaperones, in particular those of the host membrane translocon components required for subsequent effector delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号