首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The exaggerated K-selected life-history strategy of moa has been suggested as an important factor causing their rapid extinction. Classically, this strategy is characterized by few, large offspring and low fecundity rates. Assuming clutches with one or two eggs as derived from the fossil record, we tested if eggs of moa were larger than the average of similar-sized birds, and estimated their unknown annual breeding frequencies. Therefore, we established allometries on body mass and different reproductive traits (i.e. egg mass, clutch mass and annual clutch mass). These were derived for r-selected (r-model) and for K-selected (K-model) bird species. In agreement with our initial expectations, moa had egg to body mass relations seen in “average” extant K-selected birds. While the K-model pointed to a clutch size of one or two eggs for moa corroborating fossil data and a K-selected life-history, the r-model predicted two to three times larger sizes. Under clutch sizes between one and two eggs and an annual clutch mass as observed in other similar-sized flightless island birds (e.g. rails, ratites), the annual clutch mass allometry suggested one to three clutches per year for moa. Even when assuming less than one brood per year (K-model predicts 0.5 clutches per year); annual clutch masses were still consistent with the K-model. Further studies are needed to clarify whether or not the reproductive strategy of flightless island birds and/or of the birds underlying the K-model fits better to the moa strategy. The approach presented herein, illustrates that combining biological and paleontological data can assist in the reconstruction of species traits, which are insufficiently or not preserved in fossils, but are necessary to understand the evolution of traits.  相似文献   

2.
The question of how aridity might influence avian clutch size, through the influences of rainfall seasonality and environmental stochasticity (unpredictability), has received little attention. A marked east-west gradient in aridity across South Africa provides a unique opportunity to test for such influences. Using an extensive collection of nest records for 106 terrestrial bird species from the South African Nest Record Card Scheme, we tested three predictions related to rainfall seasonality and stochasticity. Analyses were conducted at two levels, the first examining each species independently, and the second grouping species into five dietary guilds. The first prediction, that clutch size should generally increase with higher rainfall seasonality (i.e. higher seasonal fluctuation of food availability), was supported, particularly in the most arid environments where food abundance is more closely linked to rainfall. Controlling for rainfall seasonality, the second prediction, that clutch size should generally decrease as a bet-hedging strategy in arid, stochastic environments, was also supported. Although the timing of the rainy season differs among regions in South Africa (winter, early summer, later summer, year-round), birds primarily nest during spring. The relative timing of rainfall and breeding is expected to have different consequences for seasonal variation in clutch size among rainfall regions. The third prediction, of different patterns of seasonal variation in clutch size between rainfall regions, was also supported. In the winter and early-summer rainfall regions, early-nesting birds (breeding with or soon after the rains) generally had a larger clutch size than late-nesting birds. In the late-summer rainfall region, early-nesting birds (breeding well before the rains) had a smaller clutch size than late-nesting birds.  相似文献   

3.
Models for clutch size in species where a female deposits eggs into a larval resource of limited carrying capacity are developed. Previous models of clutch size related mainly to vertebrates (notably birds) where parental care limits clutch size. Our models cover cases where a single female “saturates” a larval food patch with larvae. The main predictions are that (1) extra eggs should be laid to compensate for larval moratility; (2) clutches should generally be smaller than the size that yields the maximum number of surviving larvae/clutch; (3) in species that gain resources for eggs in the adult stage, clutch size will be unaffected by age-independent parental mortality between clutches; (4) clutch size should reduce throughout life in species that gain resources for eggs before the adult stage; (5) similar species, but which are constrained to produce constant-sized clutches, should lay smaller clutches if their total potential egg production is low; (6) clutch size should increase with increasing search costs for oviposition sites. An ESS model of double-oviposition (where two females sometimes lay in the same larval food patch) indicates that the first female should generally lay more eggs than the second female; the difference in clutch size should decrease as the probability of double-oviposition increases, and should decrease as the search costs for larval food plants decreases. Many of the predictions have some support from data on insect oviposition.  相似文献   

4.
Extinction, colonization, and species occupancy in tidepool fishes   总被引:1,自引:0,他引:1  
Despite the increasing sophistication of ecological models with respect to the size and spatial arrangement of habitat, there is relatively little empirical documentation of how species dynamics change as a function of habitat size and the fraction of habitat occupied. In an assemblage of tidepool fishes, I used maximum-likelihood estimation to test whether models which included habitat size provided a better fit to empirical data on extinction and colonization probabilities than models that assumed constant probabilities over all habitats. I found species differences in how extinction and colonization probabilities scaled with habitat size (and hence local population size). However, there was little evidence for a relationship between extinction and colonization probabilities and the fraction of occupied tidepools, as assumed in simple metapopulation models. Instead, colonization and extinction were independent of the fraction of occupied tidepools, favoring a MacArthur-Wilson island-mainland model. When I incorporated declines in extinction probability with tidepool volume in a simple simulation model, I found that predicted occupancy could change greatly, especially when colonization was low. However, the predicted fraction of occupied patches in the simulation model changed little when I incorporated the range of values reported here for extinction and colonization and the rate at which they scale with habitat size. Quantifying extinction and colonization patterns of natural populations is fundamental to understanding how species are distributed spatially and whether metapopulation models of species occupancy provide explanatory power for field populations. Received: 14 March 1997 / Accepted: 21 September 1997  相似文献   

5.
The seasonal pattern of clutch size variation in birds varies among species. In single-brooded bird species clutch sizes decline continuously with date from an early season maximum. In resident multi-brooded species, clutch sizes first increase to a mid-season maximum and then decrease again. Limited data for multi-brooded migratory birds suggest that clutches in these species also show a continuous decline throughout the season, but it remains to be resolved whether this applies generally and whether migration adds a constraint to the system. We here report on a study of the Eastern Bluebird Sialia sialis conducted using data collected by volunteers across most of its range. In the southern part of its range, where Eastern Bluebirds are largely year-round residents, clutches initially increase, reach a mid-season maximum and gradually decline later in the season. In the northern part of the range, where the majority of Eastern Bluebirds are migratory, clutch sizes decline continuously throughout the season. To determine whether seasonal changes in the clutch size of multi-brooded species are determined by migratory behaviour of the population we compared our results with published data on the Dunnock Prunella modularis and conclude that in multi-brooded species migratory behaviour is not a sufficient condition for a continuous seasonal decline in clutch size, but it could be a necessary one. We propose two mechanisms for the pattern observed among multi-brooded migrants: (i) a time or energy cost of migration, and (ii) a more abrupt increase in seasonal resources in spring at more northerly latitudes.  相似文献   

6.
China is one of the countries with the richest bird biodiversity in the world. Among the 1372 Chinese birds, 146 species are considered threatened and three species are regionally extinct according to the officially released China Biodiversity Red List in 2015. Here, we conducted the first extensive analysis to systematically investigate the patterns and processes of extinction and threat in Chinese birds. We addressed the following four questions. First, is extinction risk randomly distributed among avian families in Chinese birds? Second, which families contain more threatened species than would be expected by chance? Third, which species traits are important in determining the extinction risk in Chinese birds using a multivariate phylogenetic comparative approach? Finally, is the form of the relationship between traits additive or nonadditive (synergistic)? We found that the extinction risk of Chinese birds was not randomly distributed among taxonomic families. The families that contained significantly more threatened species than expected were the hornbills, cranes, pittas, pheasants and hawks and eagles. We obtained eleven species traits that are commonly hypothesized to influence extinction risk from the literature: body size, clutch size, trophic level, mobility, habitat specificity, geographical range size, nest type, nest site, flocking tendency, migrant status and hunting vulnerability. After phylogenetic correction, model selection based on Akaike's information criterion identified the synergistic interaction between body size and hunting vulnerability as the single best correlate of extinction risk in Chinese birds. Our results suggest that, in order to be effective, priority management efforts should be given both to certain extinction‐prone families, particularly the hornbills, pelicans, cranes, pittas, pheasants and hawks and eagles, and to bird species with large body size and high hunting vulnerability.  相似文献   

7.
Land‐cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land‐cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981–1985 and 2001–2005 are correlated with land‐cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land‐cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land‐cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land‐cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction.  相似文献   

8.
One of the most important tasks in conservation biology is identifying species at risk from extinction and establishing the most likely factors influencing this risk. Here, we consider an ecologically well-defined, monophyletic group of organisms, the true hawks of the family Accipitridae, which are not only among the most studied, but also contain some of the rarest bird species in the world. We investigate which intrinsic and extrinsic factors, covering morphology, life history and ecology, covary with International Union for the Conservation of Nature and Natural Resources threat status, as well as global population size and geographic range size. By decomposing threat status into population size and range size, we test whether any factors are generally important: we found that species with less habitat specialization, a larger clutch size and more plumage polymorphism were associated with lower extinction risk and larger population and range sizes. Species with special habitat requirements might be less capable of dealing with habitat transformation and fragmentation, while species with small clutch sizes might not be able to reverse population declines. Plumage polymorphism might indicate the size of the species' gene pool and could be a good marker of extinction risk. The analyses also emphasized that no single factor is likely to be sufficient when predicting the threat of extinction.  相似文献   

9.
Werner J  Griebeler EM 《PloS one》2011,6(12):e28442
Janis and Carrano (1992) suggested that large dinosaurs might have faced a lower risk of extinction under ecological changes than similar-sized mammals because large dinosaurs had a higher potential reproductive output than similar-sized mammals (JC hypothesis). First, we tested the assumption underlying the JC hypothesis. We therefore analysed the potential reproductive output (reflected in clutch/litter size and annual offspring number) of extant terrestrial mammals and birds (as "dinosaur analogs") and of extinct dinosaurs. With the exception of rodents, the differences in the reproductive output of similar-sized birds and mammals proposed by Janis and Carrano (1992) existed even at the level of single orders. Fossil dinosaur clutches were larger than litters of similar-sized mammals, and dinosaur clutch sizes were comparable to those of similar-sized birds. Because the extinction risk of extant species often correlates with a low reproductive output, the latter difference suggests a lower risk of population extinction in dinosaurs than in mammals. Second, we present a very simple, mathematical model that demonstrates the advantage of a high reproductive output underlying the JC hypothesis. It predicts that a species with a high reproductive output that usually faces very high juvenile mortalities will benefit more strongly in terms of population size from reduced juvenile mortalities (e.g., resulting from a stochastic reduction in population size) than a species with a low reproductive output that usually comprises low juvenile mortalities. Based on our results, we suggest that reproductive strategy could have contributed to the evolution of the exceptional gigantism seen in dinosaurs that does not exist in extant terrestrial mammals. Large dinosaurs, e.g., the sauropods, may have easily sustained populations of very large-bodied species over evolutionary time.  相似文献   

10.
Clutch size variation in passerine birds: The nest predation hypothesis   总被引:4,自引:0,他引:4  
Tore Slagsvold 《Oecologia》1982,54(2):159-169
Summary The hypothesis that a negative relationship exists between clutch size and the probability that the nest will be robbed is tested, using data for passerine birds given in the literature. The data for four separate groups of species, viz. hole-nesters, semi hole-nesters and open-nesters nesting above and on the ground, respectively, were examined in relation to geographical gradients and seasonal and annual variation. In general, the data analysis results support the hypothesis, but cannot yet be considered as proven. More data on the riks of nest predation are needed. The most serious discrepancy is that for the Fieldfare, the protection from predation provided by nesting in colonies does not seem to be accompanied by a corresponding increase in clutch size. However, the clutch size of the Brambling, a species with seeks out such colonies for its breeding sites, does tend to increase in these hatitats.The pattern of clutch size variation was similar for the two groups of hole-nesting species, but differed significantly from that found for the two groups of open-nesters. The difference in the clutch size variation of the two groups of open-nesting species predicted from the hypothesis, viz. that, in northern regions, both latitudinal and altitudinal increases in clutch size should more commonly be found for those species which nest on the ground, compared to those nesting above ground level, was confirmed.A seasonal decrease in clutch size, in temperate regions, was found to be typical for species whose nests are subject to relatively little predation, particularly for those species which have a short breeding season. Advantages of laying small clutches, resulting in fewer nestlings than the number which would be possible for the parents to rear successfully, are discussed, and a simple model is presented which does not assume that nest predation is dependent on clutch size.  相似文献   

11.
Aim  Our aim was to test whether extinction risk of frog species could be predicted from their body size, fecundity or geographical range size. Because small geographical range size is a correlate of extinction risk in many taxa, we also tested hypotheses about correlates of range size in frogs.
Location  Global.
Methods  Using a large comparative data set ( n  = 527 species) compiled from the literature, we performed bivariate and multiple regressions through the origin of independent contrasts to test proposed macroecological patterns and correlates of extinction risk in frogs. We also created minimum adequate models to predict snout–vent length, clutch size, geographical range size and IUCN Red List status in frogs. Parallel non-phylogenetic analyses were also conducted. We verified the results of the phylogenetic analyses using gridded data accounting for spatial autocorrelation.
Results  The most threatened frog species tend to have small geographical ranges, although the relationship between range and extinction risk is not linear. In addition, tropical frogs with small clutches have the smallest ranges. Clutch size was strongly positively correlated with geographical range size ( r 2 = 0.22) and body size ( r 2 = 0.28).
Main conclusions  Our results suggest that body size and fecundity only affect extinction risk indirectly through their effect on geographical range size. Thus, although large frogs with small clutches tend to be endangered, there is no comparative evidence that this relationship is direct. If correct, this inference has consequences for conservation strategy: it would be inefficient to allocate conservation resources on the basis of low fecundity or large body size; instead it would be better to protect areas that contain many frog species with small geographical ranges.  相似文献   

12.
Life history theory predicts an inverse relationship between annual adult survival and fecundity. Globally, clutch size shows a latitudinal gradient among birds, with south temperate species laying smaller clutches than north temperate species, but larger clutches than tropical species. Tropical birds often have higher adult survival than north temperate birds associated with their smaller clutches. However, the prediction that tropical birds should also have higher adult survival than south temperate birds because of smaller clutch sizes remains largely untested. We measured clutch size and apparent annual breeding adult survival for 17 south temperate African species to test two main predictions. First, we found strong support for a predicted inverse relationship between adult survival and clutch size among the south temperate species, consistent with life‐history theory. Second, we compared our clutch size and survival estimates with published estimates for congeneric tropical African species to test the prediction of larger clutch size and lower adult survival among south temperate than related tropical species. We found that south‐temperate species laid larger clutches, as predicted, but had higher, rather than lower, apparent adult survival than related tropical species. The latter result may be an artefact of different approaches to measuring survival, but the results suggest that adult survival is generally high in the south temperate region and raises questions about the importance of the cost of reproduction to adult survival.  相似文献   

13.
JAIME A. RAMOS 《Ibis》2001,143(1):83-91
Seasonal variation in egg-laying, egg size, hatching success, hatchling mass, fledging success and chick growth of Roseate Terms Sterna dougallii breeding on Aride Island (Seychelles), Indian Ocean, were studied in 1997 and 1998. I investigated to what extent two patterns, common in a range of species, were followed by tropical Roseate Terns: (a) seasonal decrease in clutch size, egg size and breeding success and (b) an increase in breeding success with increasing egg weight. In 1997 (a poor year), the earliest nesting birds laid significantly smaller eggs, and chicks were lighter at hatching than those of peak nesting birds. The mean clutch size, of 1.04 eggs, showed no seasonal variation and no 'b'-eggs hatched. In 1998 (a good year) the earliest nesting birds laid eggs of similar size and their chicks were of similar weight to those of peak nesting birds. Mean clutch size, of 1.25 eggs, increased significantly through the season and about 60% of the 'b'-eggs hatched. In 1997, hatching success was 57% whereas in 1998 it was 80%. In both years, breeding success declined significantly through the season. The fact that the earliest breeding birds laid smaller eggs in a poor year and smaller clutches in a good year is in marked contrast to a range of other species, and to temperate-nesting Roseate Terns. Egg volume explained about half of the variance in hatchling mass in both years, but only 15% of the variation in linear growth rate. Hatching date was the only variable with a significant effect on fledging success. Roseate Terns on Aride seemed to sacrifice egg size and clutch size for earliness of laying. Presumably it is a strategy of older birds to lay as early as possible and may be regarded as a response of tropical Roseate Terns to breeding under relatively poor, and seasonally declining, food conditions.  相似文献   

14.
The deciduous tree-herbivorous caterpillar-insectivorous bird food chain is a well-studied system for investigating the impacts of climate change across trophic levels. To date, across Europe, most attention has focused on the impacts of increasing spring temperature on changes to phenology in Oak-dominated (Quercus spp.) woodlands. Paridae species and Pied Flycatcher Ficedula hypoleuca are the most studied secondary consumers, all of which demonstrate an advancement in reproductive phenology with increases in spring temperature. Shifts in climate and phenology may also impact on reproductive investment in clutch size, and the effects of climate on phenology and clutch size may vary depending on woodland composition. To date, the effects of among-habitat variation in phenology and reproductive investment have received little attention. Insectivorous birds inhabiting woodlands that differ in tree composition may differ in the timing of breeding, due to local tree leafing phenology acting as a cue for egg-laying date and/or clutch size. Moreover, for most insectivorous birds, woodland composition within a territory is likely to be the main determinant of food availability for both adults and chicks. Consequently, if warming springs affect the temporal patterns of food availability differently across different woodland compositions, this may affect the optimal average local phenology for nesting birds. Here, using data from 34 long-term (mean 15 years) nest monitoring sites across the UK, we investigate the effect of woodland tree composition and temperature on Blue Tit Cyanistes caeruleus first egg date (FED) and clutch size. We supplemented the nest monitoring data by quantifying woodland composition, at a site level, through modified point counts. We predict that birds breeding in woodlands with greater proportions of late-leafing species, such as Oak and Ash Fraxinus excelsior, will breed later than those breeding in woodlands with greater proportions of early-leafing species, such as Birch Betula spp. and Beech Fagus sylvatica. We found no evidence for differences in Blue Tit FED or clutch size in relation to the proportion of any of the tree species investigated, after controlling for temperature and latitude (FED: −3.4 and 2.2, clutch size: −0.4 and − 0.2 eggs for one-unit increase in temperature and latitude, respectively). In recent decades and across all sites, clutch size has decreased as spring temperatures have increased, a strategy which could allow birds flexibly to adjust their breeding phenology such that nestling demand coincides with peak food availability. The lack of an effect of woodland composition on Blue Tit phenology suggests Blue Tits do not fine-tune their reproductive phenology to the local tree composition. Whether this lack of evidence for phenological divergence is due to an absence of divergent selection on breeding phenology and clutch size or to gene flow is not clear.  相似文献   

15.
Differences in reproductive success (RS) between different groups of individuals are of interest to researchers studying natural and sexual selection. Since it is often not feasible to quantify RS in the wild, researchers make use of proxies instead. One such proxy is clutch size. However, research on species providing parental care (mainly birds and mammals) has learned that a large clutch size does not guarantee a large number of offspring. In contrast, much less is known on the link between clutch size and RS for species lacking parental care, such as many reptiles and insects. Here, we ask whether clutch size provides a satisfactory estimate of RS for a polymorphic insect. Our study species is a damselfly showing two distinct female morphs for which RS (estimated by clutch size) has been studied to evaluate the evolutionary role of sexual conflict. However, in this system not only among family variation in offspring viability, but also differences between female morphs, may affect how clutch size relates to offspring number and quality. To evaluate the use of clutch size as estimate of RS, we examined how clutch size correlated with subsequent success measures of developing offspring by rearing damselfly from eggs to adults under two laboratory food treatments. In both treatments, we detected that clutch size correlated well with offspring number early in larval life, but that this relation is reduced by among family variation in survival in later developmental stages. Clutch size was moderately correlated with the number of offspring that successfully metamorphosed to winged adults. Patterns did not differ between female morphs and the nature of the correlation could not be explained from offspring quantity-quality trade-offs.  相似文献   

16.
Cooperative breeding is not common in birds but intriguingly over-represented in several families, suggesting that predisposing factors, similar ecological constraints or a combination of the two facilitate the evolution of this breeding strategy. The life-history hypothesis proposes that cooperative breeding is facilitated by high annual survival, which increases the local population and leads to a shortage of breeding opportunities. Clutch size in cooperative breeders is also expected to be smaller. An earlier comparative analysis in a small sample of birds supported the hypothesis but this conclusion has been controversial. Here, I extend the analysis to a larger, worldwide sample and take into account potential confounding factors that may affect estimates of a slow pace of life and clutch size. In a sample of 81 species pairs consisting of closely related cooperative and non-cooperative breeders, I did not find an association between maximum longevity and cooperative breeding, controlling for diet, body mass and sampling effort. However, in a smaller sample of 37 pairs, adult annual survival was indeed higher in the cooperative breeders, controlling for body mass. There was no association between clutch size and cooperative breeding in a sample of 93 pairs. The results support the facilitating effect of high annual survival on the evolution of cooperative breeding in birds but the effect on clutch size remains elusive.  相似文献   

17.
The seasonal decline in clutch size in birds can be a response to the environmentally conditioned decrease in prospects for offspring or a consequence of a lower physical ability of late‐breeding females. To find out which of the explanations apply in Tree Swallows Tachycineta bicolor, we assessed whether replacement clutch size in this species is affected by an individual female's ability to lay a certain number of eggs. To do this, we measured the decline in clutch size as a function of laying date between first and replacement clutches in individuals that re‐nested following natural failure, and compared this with the rate of decline in clutch size with laying date for Tree Swallows that laid only a single clutch in that season. Additionally, we assessed whether the clutch size and the rate of its seasonal decline varied across years. We accounted for the truncated and under‐dispersed nature of clutch size data by using a Bayesian approach in the analysis. We found little variation in the rate of clutch size decline across years at our breeding site. Accounting for this seasonal decline in clutch size, mean clutch size was similar between single‐time breeding females and those that laid replacement clutches, implying that the number of eggs laid on the second attempt by female Tree Swallows is determined by laying date, rather than by the female's physical ability to produce a clutch of a certain size.  相似文献   

18.
The relationship between sexual selection and extinction risk has rarely been investigated. This is unfortunate because extinction plays a key role in determining the patterns of species richness seen in extant clades, which form the basis of comparative studies into the role that sexual selection may play in promoting speciation. We investigate the extent to which the perceived risk of extinction relates to four different estimates of sexual selection in 1030 species of birds. We find no evidence that the number of threatened species is distributed unevenly according to a social mating system, and neither of our two measures of pre-mating sexual selection (sexual dimorphism and dichromatism) was related to extinction risk, after controlling for phylogenetic inertia. However, threatened species apparently experience more intense post-mating sexual selection, measured as testis size, than non-threatened species. These results persisted after including body size as a covariate in the analysis, and became even stronger after controlling for clutch size (two known correlates of extinction risk). Sexual selection may therefore be a double-edged process-promoting speciation on one hand but promoting extinction on the other. Furthermore, we suggest that it is post-mating sexual selection, in particular, that is responsible for the negative effect of sexual selection on clade size. Why this might be is unclear, but the mean population fitness of species with high intensities of post-mating sexual selection may be especially low if costs associated with multiple mating are high or if the selection load imposed by post-mating selection is higher relative to that of pre-mating sexual selection.  相似文献   

19.
The onset of incubation varies in birds, with many species beginning incubation prior to clutch completion. Here we examine whether early onset is more likely to occur during high temperatures, a critical prediction of the egg-viability hypothesis, which suggest that birds begin incubation prior to clutch completion in order to maintain egg-viability. We examined onset of incubation in tree swallows Tachycineta bicolor at two locations at the extremes of their breeding range, Alaska and Tennessee. A majority of individuals (68%) began incubation prior to clutch completion. While females in Tennessee were more likely to begin incubation early, there was no difference between sites when differences in temperatures inside nestboxes were controlled in analyses. Rather, early onset of incubation was predicted by the proportion of daily temperatures above physiological zero during laying, a critical prediction of the egg viability hypothesis. Both warm weather and early onset led to shorter incubation periods and increased levels of hatching asynchrony. We found no effect of timing of nesting, female body condition index or clutch size on the probability of beginning incubation prior to clutch completion. Our results are consistent with the egg viability hypothesis, not consistent with a threshold clutch size rule, and do not support the hurry-up hypothesis, that individuals breeding later in the season would begin incubation early to reduce the time spent nesting. Overall, our results suggest that broad scale geographic differences in incubation behaviour may be explained by individual-level responses to environmental conditions.  相似文献   

20.
Aim The size of the climatic niche of a species is a major factor determining its distribution and evolution. In particular, it has been proposed that niche width should be associated with the rate of species diversification. Here, we test whether species niche width affects the speciation and extinction rates of three main clades of vertebrates: amphibians, mammals and birds. Location Global. Methods We obtained the time‐calibrated phylogenies, IUCN conservation status, species distribution maps and climatic data for 2340 species of amphibians, 4563 species of mammals and 9823 species of birds. We computed the niche width for each species as the mean annual temperature across the species range. We estimated speciation, extinction and transition rates associated with lineages with either narrow (specialist) or wide (generalist) niches using phylogeny‐based birth–death models. We also tested if current conservation status was correlated with the niche width of species. Results We found higher net diversification rates in specialist species than in generalist species. This result was explained by both higher speciation rates (for the three taxonomic groups) and lower extinction rates (for mammals and birds only) in specialist than in generalist species. In contrast, current specialist species tended to be more threatened than generalist species. Main conclusions Our diversification analysis shows that the width of the climatic niche is strongly associated with diversification rates and may thus be a crucial factor for understanding the emergence of diversity patterns in vertebrates. The striking difference between our diversification results and current conservation status suggests that the current extinction process may be different from extinction rates estimated from the whole history of the group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号