首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glyoxylate is a 2 carbon aldo acid that is formed in hepatic tissue from glycolate. Once formed, the molecule can be converted to glycine by alanine-glyoxylate aminotransferase (AGAT). In defects of AGAT, glyoxylate is transformed to oxalate, resulting in high levels of oxalate in the body. The objective of this study was 2-fold. First, it was to determine, if akin to D-glucose, D-fructose or DL-glyceraldehyde, glyoxylate was susceptible to non-enzymatic attack by amino containing molecules such as lysine, arginine or glucosamine. Second, if by virtue of its molecular structure and size, glyoxylate was as reactive a reagent in non-enzymatic reactions as DL-glyceraldehyde; i.e., a glycose that we previously demonstrated to be a more effective glycating agent than D-glucose or D-fructose. Using capillary electrophoresis (CE), high performance liquid chromatography and UV and fluorescence spectroscopy, glyoxylate was found to be a highly reactive precursor of advanced glycation like end products (AGLEs) and a more effective promoter of non-enzymatic end products than D-glucose, D-fructose or DL-glyceraldehyde.  相似文献   

2.
Highly purified sucrase accepts as a substrate α-anomers within D-glucopyranosides. Hydrolysis of sucrose and palatinose processds with the net retention of configuration at the C-1 of D-glucopyranose. The fission of the glycosidic bond takes place between the C-1 of the D-glucose ring and the glycosidic oxygen; therefore D-fructose is released as β-D-fructofuranose from sucrose. During hydrolysis, transglycosylation takes place and a few oligosaccharides are formed and in the presence of methanol α-methyl-D-glucopyranoside is also produced. Non-stoichiometric amounts of D-glucose and D-fructose are produced from sucrose, turanose and palatinose and less D-glucose than expected is present. Formation of sucrose from D-glucose and D-fructose was not observed.  相似文献   

3.
D-Glucose was recently reported to stimulate d-fructose phosphorylation by human B-cell glucokinase. The present study aims at investigating the anomeric specificity of such a positive cooperativity. The alpha-anomer of D-glucose was found to increase much more markedly than beta-D-glucose the phosphorylation of D-fructose by human liver glucokinase. Such an anomeric preference diminished at high concentrations of the D-glucose anomers, i.e. when the effect of the aldohexose upon d-fructose phosphorylation became progressively less marked. A comparison between the effects of the two anomers of D-glucose and those of equilibrated D-glucose upon D-fructose phosphorylation by human liver glucokinase indicated that the results obtained with the equilibrated aldohexose were not significantly different from those expected from the combined effects of each anomers of D-glucose. In isolated rat islets incubated for 60 min at 4 degrees C, alpha-D-glucose (5.6 mm), but not beta-D-glucose (also 5.6 mm), augmented significantly the conversion of D-[U-(14)C]fructose (5.0 mm) to acidic radioactive metabolites. Likewise, in islets prelabeled with (45)Ca and perifused at 37 degrees C, D-fructose (20.0 mm) augmented (45)Ca efflux and provoked a biphasic stimulation of insulin release from islets exposed to alpha-D-glucose (5.6 mm), while inhibiting (45)Ca efflux and causing only a sluggish and modest increase in insulin output from islets exposed to beta-D-glucose (also 5.6 mm). The enhancing action of D-glucose upon D-fructose phosphorylation by glucokinase thus displays an obvious anomeric preference for alpha-D-glucose, and such an anomeric specificity remains operative in intact pancreatic islets.  相似文献   

4.
The metabolism of D-glucose and/or D-fructose was investigated in pancreatic islets from control rats and hereditarily diabetic GK rats. In the case of both D-glucose and D-fructose metabolism, a preferential alteration of oxidative events was observed in islets from GK rats. The generation of 3HOH from D-[5-3H]glucose (or D-[5-3H]fructose) exceeded that from D-[3-3H]glucose (or D-[3-3H]fructose) in both control and GK rats. This difference, which is possibly attributable to a partial escape from glycolysis of tritiated dihydroxyacetone phosphate, was accentuated whenever the rate of glycolysis was decreased, e.g., in the absence of extracellular Ca(2+) or presence of exogenous D-glyceraldehyde. D-Mannoheptulose, which inhibited D-glucose metabolism, exerted only limited effects upon D-fructose metabolism. In the presence of both hexoses, the paired ratio between D-[U-14C]fructose oxidation and D-[3-3H]fructose or D-[5-3H]fructose utilization was considerably increased, this being probably attributable, in part at least, to a preferential stimulation by the aldohexose of mitochondrial oxidative events. Moreover, this coincided with the fact that D-mannoheptulose now severely inhibited the catabolism of D-[5-3H]fructose and D-[U-14C]fructose. The latter situation is consistent with both the knowledge that D-glucose augments D-fructose phosphorylation by glucokinase and the findings that D-mannoheptulose, which fails to affect D-fructose phosphorylation by fructokinase, inhibits the phosphorylation of D-fructose by glucokinase.  相似文献   

5.
Tinti JM  Nofre C 《Chemical senses》2001,26(3):231-237
A behavioural study on the ant Lasius niger was performed by observing its feeding responses to 85 compounds presented in a two-choice situation (tested compound versus water control or sucrose solution). Among these compounds, only 21 were phagostimulating: six monosaccharides (D-glucose, 6-deoxy-D-glucose, L-galactose, L-fucose, D-fructose, L-sorbose), four derivatives of D-glucose (methyl alpha-D-glucoside, D-gluconolactone and 6-chloro- and 6-fluoro-deoxy-D-glucose), five disaccharides (sucrose, maltose, palatinose, turanose and isomaltose), one polyol glycoside (maltitol), three trisaccharides (melezitose, raffinose and maltotriose) and two polyols (sorbitol and L-iditol). None of the 16 non-carbohydrate non-polyol compounds tested, although perceived as sweet in humans, was found to be active in ants. The molar order of effectiveness of the major naturally occuring compounds (melezitose > sucrose = raffinose > D-glucose > D-fructose = maltose = sorbitol) is basically different from the molar order of their sweetness potency in humans (sucrose > D-fructose > melezitose > maltose > D-glucose = raffinose = sorbitol). On a molar basis melezitose is in L. niger about twice as effective as sucrose or raffinose, while D-glucose and D-fructose are three and four times less effective, respectively, than sucrose or raffinose. From a structure-activity relationship study it was inferred that the active monosaccharides and polyols should interact with the ant receptor through only one type of receptor, through the same binding pocket and the same binding residues, via a six-point interaction. The high effectiveness of melezitose in L. niger mirrors the feeding habits of these ants, which attend homopterans and are heavy feeders on their honeydew, which is very rich in this carbohydrate.  相似文献   

6.
D-fructose (10 mM) augments, in rat pancreatic islets, insulin release evoked by 10 mM D-glucose. Even in the absence of D-glucose, D-fructose (100 mM) displays a positive insulinotropic action. It was now examined whether the insulinotropic action of D-fructose could be attributed to an increase in the ATP content of islet cells. After 30-60 min incubation in the presence of D-glucose and/or D-fructose, the ATP and ADP content was measured by bioluminescence in either rat isolated pancreatic islets (total ATP and ADP) or the supernatant of dispersed rat pancreatic islet cells exposed for 30 s to digitonine (cytosolic ATP and ADP). D-fructose (10 and 100 mM) was found to cause a concentration-related decrease in the total ATP and ADP content and ATP/ADP ratio below the basal values found in islets deprived of exogenous nutrient. Moreover, in the presence of 10 mM D-glucose, which augmented both the total ATP content and ATP/ADP ratio above basal value, D-fructose (10 mM) also lowered these two parameters. The cytosolic ATP/ADP ratio, however, was increased in the presence of D-glucose and/or D-fructose. Under the present experimental conditions, a sigmoidal relationship was found between such a cytosolic ATP/ADP ratio and either (86)Rb net uptake by dispersed islet cells or insulin release from isolated islets. These data provide, to our knowledge, the first example of a dramatic dissociation between changes in total ATP content or ATP/ADP ratio and insulin release in pancreatic islets exposed to a nutrient secretagogue. Nevertheless, the cationic and insulinotropic actions of d-glucose and/or d-fructose were tightly related to the cytosolic ATP/ADP ratio.  相似文献   

7.
Human B-cell glucokinase displays sigmoidal kinetics towards D-glucose or D-mannose, but fails to do so towards D-fructose. Yet, D-glucose, D-mannose and 2-deoxy-D-glucose confer to the enzyme positive cooperativity towards D-fructose. For instance, in the presence of 5 mM D-[U-14C]fructose, its rate of phosphorylation is increased to 214.3 ± 11.0%, 134.0 ± 4.3% and 116.5 ± 3.0% of paired control value by D-glucose, D-mannose and 2-deoxy-D-glucose (each 6 mM), respectively. D-glucose and, to a lesser extent, D-mannose also display reciprocal kinetic cooperativity. D-fructose, however, fails to affect D-glucose or D-mannose phosphorylation under conditions in which positive cooperativity is otherwise observed. These findings are relevant to the reciprocal effects of distinct hexoses upon their phosphorylation by B-cell glucokinase and, as such, to the metabolic and functional response evoked in pancreatic islet B-cells by these sugars, when tested either separately or in combination. (Mol Cell Biochem 175: 263–269, 1997)  相似文献   

8.
A gene encoding an ADP-dependent phosphofructokinase homologue has been identified in the hyperthermophilic archaeon Methanococcus jannaschii via genome sequencing. The gene encoded a protein of 462 amino acids with a molecular weight of 53,361. The deduced amino acid sequence of the gene showed 52 and 29% identities to the ADP-dependent phosphofructokinase and glucokinase from Pyrococcus furiosus, respectively. The gene was overexpressed in Escherichia coli, and the produced enzyme was purified and characterized. To our surprise, the enzyme showed high ADP-dependent activities for both glucokinase and phosphofructokinase. A native molecular mass was estimated to be 55 kDa, and this indicates the enzyme is monomeric. The reaction rate for the phosphorylation of D-glucose was almost 3 times that for D-fructose 6-phosphate. The K(m) values for D-fructose 6-phosphate and D-glucose were calculated to be 0.010 and 1.6 mm, respectively. The K(m) values for ADP were 0.032 and 0.63 mm when D-glucose and D-fructose 6-phosphate were used as a phosphoryl group acceptor, respectively. The gene encoding the enzyme is proposed to be an ancestral gene of an ADP-dependent phosphofructokinase and glucokinase. A gene duplication event might lead to the two enzymatic activities.  相似文献   

9.
D-Fructose (3.3 to 33.0 mmol/liter) caused a concentration-related increase in insulin output from rat islets exposed to D-glucose (3.3 to 7.0 mmol/liter), such an increase not being more marked in mouse islets. The fructose-induced increment in insulin release, relative to that evoked by D-glucose, was two times higher in islets exposed to D-glucose than in islets stimulated by D-mannose, 2-ketoisocaproate, or nonnutrient secretagogs. Likewise, the metabolism of D-fructose in islet cells was significantly different in the absence or presence of D-glucose. Thus, the ketose was largely channeled into the pentose phosphate pathway in glucose-deprived, but not so in glucose-stimulated, islets. In both glucose-deprived and glucose-stimulated islets, however, the magnitude of the secretory response to D-fructose was commensurate with the increase in ATP production attributable to its catabolism. These findings indicate that the metabolic fate of hexoses--and, hence, their insulinotropic capacity--is not ruled solely at the level of their phosphorylation.  相似文献   

10.
Isolated hepatocytes from fed rats were exposed for 120 min to D-glucose (10 mM) and either D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]fructose (also 10 mM) in the presence of D2O. The identification and quantification of 13C-enriched D-fructose and its metabolites (D-glucose, L-lactate, L-alanine) in the incubation medium and the measurement of their deuterated isotopomers indicated, by comparison with a prior study conducted in the absence of exogenous D-glucose, that the major effects of the aldohexose were to increase the recovery of 13C-enriched D-fructose, decrease the production of 13C-enriched D-glucose, restrict the deuteration of the 13C-enriched isotopomers of D-glucose to those generated by cells exposed to D-[2-13C]fructose, and to accentuate the lesser deuteration of the C2 (as compared to C5) of 13C-enriched D-glucose derived from D-[2-13C]fructose. The ratio between C2-deuterated and C2-hydrogenated L-lactate, as well as the relative amounts of the CH3-, CH2D-, CHD2 and CD3- isotopomers of 13C-enriched L-lactate were not significantly different, however, in the absence or presence of exogenous D-glucose. These findings indicate that exogenous D-glucose suppressed the deuteration of the C1 of D-[1-13C]glucose generated by hepatocytes exposed to D-[1-13C]fructose or D-[6-13C]fructose, as otherwise attributable, in part at least, to gluconeogenesis from fructose-derived [3-13C]pyruvate, and apparently favoured the phosphorylation of D-fructose by hexokinase isoenzymes, probably through stimulation of D-fructose phosphorylation by glucokinase.  相似文献   

11.
In mechanistic studies by isotope-exchange tecniques of the conversion of D-fructose and D-glucose into 2-(hydroxyacetyl)furan, it was shown that both sugars are converted in acidified, tritiated water into the furan containing essentially no carbon-bound tritium. As the hydroxymethyl carbon atom of the furan corresponds to C-1 of the hexose, this result suggests that one of the hydrogen atoms in this group, when it is produced from D-glucose, must arise intramolecularly. This hypothesis was verified by synthesizing D-glucose-2-3H and converting it into the furan in acidified water. The 2-(hydroxyacetyl)furan obtained was labeled exclusively on the hydroxymethyl carbon atom, thus showing that intramolecular hydrogen-transfer occurs, during the conversion, from C-2 of D-glucose to the carbon atom corresponding to C-1. The specific activities of the product and reactant permitted calculation of the tritium isotope-effect (kh/kt=4.4) for the reaction. The precise step for the transfer from C-2 of the aldose to the carbon atom corresponding to C-1 was found to be during the isomerization of D-glucose to D-fructose, as evidenced by the conversion of D-glucose-2-3H into D-fructose-1-3H in acidified water.  相似文献   

12.
The ability to convert D-glucose into D-fructose was found in 14 out of 74 species of actinomycetes and bacteria tested. High intracellular glucose isomerase activity was displayed by Arthrobacter sp. and actinomycetes Streptomyces viridobrunneus, Streptomyces sp. 1 and Streptomyces sp. 32. The first showed maximal glucose-converting potential when cultured in both glucose and xylose media, while glucose isomerase activity of Streptomyces species could be found solely in medium supplemented with xylose. The ketose enzymatically formed from D-glucose was identified as D-fructose.  相似文献   

13.
High-pressure liquid chromatography and microcalorimetry have been used to study the thermodynamics of the hydrolysis reactions of a series of disaccharides. The enzymes used to bring about the hydrolyses were: beta-galactosidase for lactulose and 3-o-beta-D-galactopyranosyl-D-arabinose; beta-glucosidase for alpha-D-melibiose; beta-amylase for D-trehalose; isomaltase for palatinose; and alpha-glucosidase for D-turanose. The buffer used was sodium acetate (0.02-0.10 M and pH 4.44-5.65). For the following processes at 298.15 K: lactulose(aq) + H2O(liq) = D-galactose(aq) + D-fructose(aq), K0 = 128 +/- 10 and delta H0 = 2.21 +/- 0.10 kJ mol-1; alpha-D-melibiose(aq) + H2O(liq) = D-galactose(aq) + D-glucose(aq), K0 = 123 +/- 42 and delta H0 = -0.88 +/- 0.50 kJ mol-1; palatinose(aq) + H2O(liq) = D-glucose(aq) + D-fructose(aq), delta H0 = -4.44 +/- 1.1 kJ mol-1; D-trehalose(aq) + H2O(liq) = 2 D-glucose(aq), K0 = 119 +/- 10 and delta H0 = 4.73 +/- 0.41 kJ mol-1; D-turanose(aq) + H2O(liq) = D-glucose(aq) + D-fructose(aq), delta H0 = -2.68 +/- 0.75 kJ mol-1; and 3-o-beta-D-galactopyranosyl-D-arabinose(aq) + H2O(liq) = D-galactose(aq) + D- arabinose(aq),0H0 = 107 +/- 10 and delta H0 = 2.97 +/- 0.10 kJ mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The ability to convert D-glucose into D-fructose was found in 14 out of 74 species of actinomycetes and bacteria tested. High intracellular glucose isomerase activity was displayed by Arthrobacter sp. and actinomycetes Streptomyces viridobrunneus, Streptomyces sp. 1 and Streptomyces sp. 32. The first showed maximal glucose-converting potential when cultured in both glucose and xylose media, while glucose isomerase activity of Streptomyces species could be found solely in medium supplemented with xylose. The ketose enzymatically formed from D-glucose was identified as D-fructose.  相似文献   

15.
In pancreatic islets prepared from fed rats and incubated at a low concentration (1.7 mM) of D-glucose, D-mannoheptulose (10.0 mM) virtually fails to affect the metabolism of the hexose. Likewise, in islets from starved rats, the relative extent of the inhibitory action of D-mannoheptulose upon D-glucose metabolism is much more marked at high (16.7 mM) than low (1.7 mM) hexose concentration. Nevertheless, despite decreasing the metabolism of D-glucose, starvation augments the sensitivity to D-mannoheptulose in the islets incubated at a low concentration of the hexose, D-galactose, but not D-fructose, also augments the inhibitory action of D-mannoheptulose upon D-glucose metabolism in islets prepared from fed rats and exposed to the low concentration of D-glucose. A comparable situation prevails in islets exposed to 2-ketoisocaproate. Forskolin, however, which decreases D-glucose catabolism in the islets from fed rats exposed to 1.7 mM D-glucose, fails to affect significantly the inhibitory action of D-mannoheptulose on D-glucose metabolism. It is proposed that hexoses transported by the same carrier as D-glucose and non-glucidic nutrient secretagogues somehow increase D-mannoheptulose uptake by the islet cells. The latter two conditions may be operative in islets exposed to a high concentration of D-glucose, this accounting for the exquisite sensitivity to D-mannoheptulose of glucose-stimulated islets.  相似文献   

16.
In a concentration-dependent manner (5.5-27.5 mmol/l), D-glucose incubated in vitro with human erythrocyte membranes at 37 degrees C for 1 h inhibited membrane Ca(2+)-ATPase activity by up to 75%. The IC50 was 11 mmol/l. L-Glucose was ineffective, as were 3-O-methylglucose, 2-deoxyglucose, sorbitol and myo-inositol. In contrast, D-fructose decreased Ca(2+)-ATPase activity nearly as effectively as D-glucose and mannose and galactose at 11 mmol/l were less than 50% as effective as D-glucose. Tunicamycin (12 pmol/l), but not 10 mmol/l aminoguanidine, progressively antagonized in vitro the D-glucose effect on the enzyme. Erythrocyte membrane Ca(2+)-ATPase activity may be regulated by glycosylation, rather than nonenzymatic glycation.  相似文献   

17.
In mechanistic studies by isotope-exchange tecniques of the conversion of D-fructose and D-glucose into 2-(hydroxyacetyl)furan, it was shown that both sugars are converted in acidified, tritiated water into the furan containing essentially no carbon-bound tritium. As the hydroxymethyl carbon atom of the furan corresponds to C-1 of the hexose, this result suggests that one of the hydrogen atoms in this group, when it is produced from D-glucose, must arise intramolecularly. This hypothesis was verified by synthesizing D-glucose-2-3H and converting it into the furan in acidified water. The 2-(hydroxyacetyl)furan obtained was labeled exclusively on the hydroxymethyl carbon atom, thus showing that intramolecular hydrogen-transfer occurs, during the conversion, from C-2 of D-glucose to the carbon atom corresponding to C-1. The specific activities of the product and reactant permitted calculation of the tritium isotope-effect (kh/kt4.4) for the reaction. The precise step for the transfer from C-2 of the aldose to the carbon atom corresponding to C-1 was found to be during the isomerization of D-glucose to D-fructose, as evidenced by the conversion of D-glucose-2-3H into D-fructose-1-3H in acidified water.  相似文献   

18.
In the post-microsomal supernatant of pancreatic islets, prepared from fasted or fed rats, D-fructose 1-phosphate increased the activity of glucokinase by 20-30% as measured in the presence of D-glucose 6-phosphate and D-fructose 6-phosphate. Such an activation was less marked than that found in liver extracts. The islet cytosol was also found to inhibit purified liver glucokinase, and this effect was antagonized by D-fructose 1-phosphate. In the presence of hexose 6-phosphates, partially purified islet glucokinase was inhibited by the hepatic glucokinase regulatory protein in a D-fructose-1-phosphate-sensitive manner. In intact islets, D-glyceraldehyde stimulated the generation of 14C-labelled D-fructose 1-phosphate from D-[U-14C]glucose and increased the production of 3H2O from D-[5-3H]glucose. These findings suggest that the activity of glucokinase in islet cells may be regulated by a protein mediating the antagonistic effects of D-fructose 6-phosphate and D-fructose 1-phosphate in a manner qualitatively similar to that operating in hepatocytes, but with lower efficiency.  相似文献   

19.
Non-enzymatic glycation is a common post-translational modification of tissue and plasma proteins which can impair their functions in living organisms. In this study, the authors have demonstrated for the first time an inhibitory effect of in vitro glycation on the catalytic activity of alanine aminotransferase (ALT, EC 2.6.1.2), a pyridoxal phosphate enzyme with several lysine residues in the molecule. The porcine heart enzyme was incubated with 50 mmol/l D-fructose, D-glucose, D,L-glyceraldehyde, or D-ribose in 0.1 mol/l phosphate buffer (pH 7.4) at 25°C for up to 20 days. The strongest glycation effect was shown by D,L-glyceraldehyde, which caused complete enzyme inhibition within 6 days. After 20 days of incubation, the ALT activity in samples with D-fructose and D-ribose was less than 7% of the initial enzyme activity. A statistically significant effect of D-glucose on the enzymatic activity of ALT was not found. Incubation of ALT with D-fructose, D,L-glyceraldehyde and D-ribose minimized its catalytic activity both in the glycated and non-glycated fractions of the samples. Markedly higher activity was found in the glycated fraction with glucose. The inhibitory effect of glycation of ALT with D-fructose and D-ribose was found to be more intensive in the presence of L-alanine and weaker in the presence of 2-oxoglutarate. The findings suggest that glycation of the e-amino group of Lys313 as a crucial part of the catalytic site of ALT may contribute to ALT inactivation in the presence of glycating sugars. Nevertheless, glycation of lysine residues outside the active center of ALT seems to be primary.  相似文献   

20.
Homogenates of rat pancreatic islets that had been heated for 5 min at 70 degrees C to inactive hexokinases, catalyzed the ATP-dependent phosphorylation of D-fructose. This reaction was dependent on the presence of K+ and was inhibited by D-tagatose although not by D-glucose or D-glucose 6-phosphate. The phosphorylation product was identified as fructose 1-phosphate through its conversion to a bisphosphate ester by Clostridium difficile fructose 1-phosphate kinase. These findings allowed the conclusion that fructokinase (ketohexokinase) was responsible for this process. Similar results were observed with tumoral insulin-producing cells (RINm5F line). Fructokinase may account for a large share of fructose phosphorylation in intact islets, particularly in the presence of D-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号