首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Summary Mutations in ribosomal protein L6 cause (i) loss of viability of cells at 0° C, which can be prevented by the presence of sodium chloride or 20% sucrose in the medium, (ii) influx of compounds at low temperature that normally cannot penetrate, and (iii) a defective assembly and maturation of 30S and 50S subunits at low temperature. It is proposed that abnormal interaction of immature subunits (or mutant 70S ribosomes) with the cytoplasmic membrane is responsible for triggering breakdown of membrane stability during cold shock.  相似文献   

3.
Summary Growth of a culture of E. coli strain B or 15 in medium containing caffeine resulted in the accumulation of inviable cells in the population. A caffeine concentration of 8 mM caused the death of between 30% and 50% of the cells in 12 independent populations grown for 15 generations or more. The thymine dimer excision-defective strains Bs-1, Bs-8 and Bs-12 and the exr mutant Bs-2 were resistant to this lethal effect. The reckless, hcr + mutant Bs-11 was more sensitive than the parental B strain. Although 100mM caffeine did not impair DNA synthesis in vitro, concentrations of the drug 8 mM caused a significant decline in DNA synthesis in vivo in E. coli B cells. From the fit of an experimental growth curve to an algebraic model of growth in which a proportion of cells are inactivated at each replication it is suggested that caffeine does not affect the replication rate of the viable cells. The observed impairment of DNA synthesis in vivo is equated with this cell death (caffeine-death). For E. coli 15 or B, 8 mM caffeine induced caffeine-death at a rate of 18% per cell generation. Caffeine-resistant mutants of E. coli B and E. coli 15 were isolated. Of those studied in detail a substantial proportion proved to be U.V. and X-ray sensitive and excision-defective. Others were more U.V. and X-ray resistant than strain B. Yet another class proved highly unstable. A chromosome breakage model of caffeine-death implicating enzymes of the excision-repair process is discussed.  相似文献   

4.
Morphogenesis of the rod-shaped Escherichia coli is determined by controlled growth of an exoskeleton made of murein (peptidoglycan). Recent insights in the growth strategy of the stress-bearing murein sacculus has contributed to our understanding of how the required concerted action of murein polymerizing and hydrolyzing enzymes is achieved. The proteins involved are coordinated by the formation of multienzyme complexes. In this review, we summarize the recent results on murein structure and metabolism. On the basis of these findings, we present a model that explains maintenance of the specific rod shape of E. coli.  相似文献   

5.
6.
Saccharomyces cerevisiae was transformed with the Escherichia coli ompA gene coding for an outer membrane protein. Yeast transformants containing the pYTLJ101 plasmid, consisting of the ompA gene cloned in pSC101 and the HindIII-3 fragment of 2-μm DNA, express the foreign membrane protein. The protein synthesized in yeast has an Mr value very similar if not identical to that of the mature E. coli protein. The expressed protein is present in yeast mitochondrial and plasma membrane fractions. The yeast cell can tolerate about 250 molecules of the foreign membrane protein per cell, although the transformants show altered growth kinetics.  相似文献   

7.
【目的】探索大肠杆菌生长分裂过程中,脂肪酸作为底物在细胞膜合成过程中的掺入模式。【方法】本研究解析了以乙酰CoA为底物,合成中间产物长链脂酰-ACP,随后合成磷脂酰乙醇胺(phosphatidylethanolamine,PE)的途径,并将合成途径中的10个关键酶与绿色荧光蛋白(enhanced green fluorescent protein,EGFP)或红色荧光蛋白(monmer Cherry,mCherry)进行融合,在大肠杆菌内表达这些融合蛋白,用激光共聚焦荧光显微镜成像的方式来获得这些融合蛋白的定位信息。【结果】宽场荧光显微镜成像结果显示,磷脂酰乙醇胺合成途径中的10个酶在不同表达水平下出现不同的定位模式。在大肠杆菌中高水平表达融合蛋白EGFP-FabA、EGFP-FabB、EGFP-FabI、EGFP-FabG、EGFP-PlsB和EGFP-PssA时,细胞两极和中部有大量蛋白聚集的现象。EGFP-FabD、EGFP-FabF、EGFP-CdsA、EGFP-PSD在不同表达水平下,均匀分散在细胞质或细胞膜上。缩时影像(Time-lapse)结果显示,合成途径中的一个关键蛋白EGFP-Pls B在细胞分裂前随着细胞膜的内陷聚集到细胞隔膜,随着细胞分裂,母细胞的隔膜成为新细胞的两极。【结论】本研究通过获取磷脂酰乙醇胺合成相关蛋白酶在大肠杆菌中的定位结果,推测脂肪酸分子是在细胞分裂隔膜和两极掺入,被催化合成PE后被运送到细胞膜其他位置。  相似文献   

8.
对细胞膜通透性变化的研究是认识微波杀菌机理的途径之一。用荧光探针检测微波处理后细胞内Ca2 浓度的变化,可以精确地表征细胞膜通透性的改变。选用二乙酸荧光素(FDA)和Fluo-3/AM两种荧光染料,对大肠杆菌(Escherichiacoli)和金黄色葡萄球菌(Staphylococcus aureus)经微波处理后的酯酶活性及细胞膜通透性进行研究,结果表明大肠杆菌与金黄色葡萄球菌的胞内非特异性酯酶(NSE)活性及细胞膜通透性的变化情形有所不同。在50℃、55℃、60℃和65℃微波处理条件下,大肠杆菌细胞膜通透性分别增加了20.7%、28.1%、74.8%、89.8%,而金黄色葡萄球的增加不显著,分别比对照组提高了4.1%、6.0%、21.9%和19.7%。细胞膜通透性的改变与微生物致死率有一定的相关性,也可能是微波杀菌非热效应的表现之一。  相似文献   

9.
A complex containing lipopolysaccharides, phospholipids and proteins is released into the culture medium by Escherichia coli during normal growth. It can be separated from the medium by gelfiltration on Sephadex G-200 or by centrifugation. Electron microscopy revealed that this material is released as vesicles and membrane fragments. To determine the origin of these fragments, they were compared to outer and cytoplasmic membranes with respect to keto-deoxyoctulosonic acid, phospholipid, and protein content, phospholipid composition, fatty acid composition, protein distribution on sodium dodecyl sulfate-polyacrylamide gels, buoyant density, and content of several membrane marker enzymes. The results of this comparison indicate that the membrane fragments found in the culture supernatant of normally growing Escherichia coli consist of practically unmodified outer membrane. Possible mechanisms as to the cause of the release of outer membrane fragments, and its relationship to cell-division, are discussed.  相似文献   

10.
Summary The photoreversibility of UV-induced mutations to Trp+ in strain Escherichia coli WP2 uvrA trp (unable to excise pyrimidine dimers) was lost at different rates during incubation in different media. In Casamino acids medium after a short initial lag, photoreversibility was lost over about one generation time; in minimal medium with tryptophan, photoreversibility persisted for more than two generations; in Casamino acids medium with pantoyl lactone photoreversibility was lost extremely slowly. The rate of loss of photoreversibility was unaffected by UV dose in either Casamino acids medium or in minimal medium. The same eventual number of induced mutants was obtained when cells were incubated for two generations in any of the three media before being transferred to selective plates supplemented with Casamino acids. Thus in each the proportion of cells capable of giving rise to a mutant was the same and only the rate at which these cells did so during post-irradiation growth varied, suggesting that there might be a specific fraction of pyrimidine dimers at a given site capable of initiating a mutagenic repair event, and that the size of this fraction is dose dependent. Segregation experiments have shown that error-prone repair appears to occur once only and is not repeated in subsequent replication cycles, in contrast to (presumed error-free) recombination repair.The results are discussed in the light of current models of UV mutagenesis.  相似文献   

11.
12.
The Escherichia coli chromosome is a circular DNA molecule that is approximately 1000 times compacted in the living cell, where it occupies approximately 15% of the cellular volume. The genome is organized in a way that facilitates chromosome maintenance and processing. Despite huge efforts, until recently little has been known about how the chromosome is organized within cells, where replication takes place, and how DNA is segregated before cell division. New techniques for labeling genetic loci and molecular machines are allowing the simultaneous tracking of genetic loci and such machines in living cells over time. These studies reveal remarkable organization, yet a highly dynamic flux of genetic loci and macromolecules. It seems likely that the cellular positioning of chromosomal loci is the outcome of the formation of two chromosome arms (replichores) by replication, followed by sequential chromosome segregation, rather than from the presence of cellular positioning markers.  相似文献   

13.
Summary A certain proportion of protein S7 exists in an altered form in E. coli rpsD (S4) mutants. Depending on the type of S4 mutation involved, two different forms of the altered S7 can be distinguished. The unusual form is longer than normal S7 by about 500 daltons due to extra material at the carboxyl end of the protein. It is suggested that a mutationally altered S4 might lower the efficiency of termination during translation of the messenger for S7. This results in an increased frequency of translational read-through, which gives the observed longer forms of S7. Data are interpreted to mean that one class of S4 mutants might suppress UGA and UAG whereas another class only suppresses UGA.  相似文献   

14.
Summary Escherichia coli K12 Hfr H Tsxs Strs and F- Pro- Tsxr His- Arg- Strr bacteria were conjugated in the absence of arginine with or without glucose. The efficiency of conjugation, measured by the frequency of Pro+ and His+ recombinants was not affected. Arginine starvation alone did not affect the tsx s gene expression which occurred in all the zygotes which had received the gene. In contrast, argine and glucose starvation allows tsx s expression only in those zygotes in which the donor gene had been integrated in the genome. As the glucose starvation brings on a destabilization of the messenger RNA synthesized by the F- cells in absence of arginine, the results can be interpreted as follows: the transferred tsx s genes are transitorily expressed in all the zygotes at the unintegrated state. After this transient period, only those genes integrated in the chromosomes of the zygotes continue to be expressed.  相似文献   

15.
Summary A mutant of Escherichia coli K12 has been isolated which shows an alteration in the ribosomal protein S18. Genetic analyses have revealed that the mutation causing this alteration maps at 99.3 min of the E. coli genetic map, between dnaC and deo. This indicated that the mutation has occurred in a gene different from the structural gene for this protein which has been located at 94 min. From the N-terminal amino acid sequence analysis it is concluded that the mutation has resulted in loss of the N-terminal acetyl group of this protein. The gene which is affected in this mutant is termed rimI that most likely specifies an enzyme acetylating the N-terminal alanine of protein S18. The mutation does not affect the acetylation of two other ribosomal proteins, S5 and L12, both of which are known to be acetylated in wild-type E. coli K12.  相似文献   

16.
Summary Among mutants of E. coli selected for temperaturesensitive growth, four were found to possess alterations in ribosomal proteins L7/L12. Of these, three apparently lack protein L7, the acetylated form of protein L12. Genetic analyses have revealed that the mutation responsible for this alteration maps at a locus around 34 min of the current E. coli genetic map, which is clearly different from the location for the structural gene for protein L7/L12 which is situated at 89 min. Hence, the gene affected in these mutants was termed rimL. Tryptic and thermolysin fingerprints of the protein L12 purified from the rimL mutants showed a profile indistinguishable from that of wild-type protein. It was found that the acetylase activity specific for protein L12 was negligible, when assayed in vitro, in the high-speed supernatant prepared from mutant cells. These results indicated that the three mutants contain mutations in the gene rimL that codes for an acetylating enzyme specific for ribosomal protein L12.Previous paper in this series is Isono and Isono (1980)  相似文献   

17.
The product of the malE—lacZ gene fusion was reported to compete with some proteins including outer membrane lipoprotein in the protein translocation across the Echerichia coli membrane. The fusion product also inhibited colicin E1 export. Furthermore, globomycin, which accumulated prolipoprotein in the membrane, inhibited the translocation of colicin E1 in the wild-type cells, but not in lipoprotein-negative mutant cells. Since colicin E1 contains the internal signal-like sequence [Proc. Natl. Acad. Sci. USA (1982) 79, 2827–2831], these results suggest that colicin E1 is exported by the aid of this sequence at a common site for maltose-binding protein and lipoprotein translocation.  相似文献   

18.
Summary Effect of temperature-sensitive, assembly-defective mutations in Escherichia coli RNA polymerase (rpoB) or subunit gene (rpoC) was investigated on the expression of wild-type rpoB +C+operon, which was introduced by infection of a lambda transducing phage drif + (rpoB +)-6 after UV-irradiation of the mutant cells. In rpoB2·rpoB7 strain which accumulates assembly-intermediates, free , 2 complex and premature core, the expression of rpoB +C+operon measured by the rate of subunit synthesis was considerably inhibited whereas that of EF(translation elongation factor)-Tu, ribosomal proteins L1 and L7/L12, and some -coded proteins remained unaffected. On the other hand, the expression was enhanced specifically for only rpoB +C+operon in either rpoC4 or rpoC1 mutants, which are defective in the association of 2 complex and subunit or the activation of premature core enzyme, respectively. Upon preincubation of the mutant cells at 42° C prior to phage infection, during which assembly intermediates degraded rapidly, the rate of subunit synthesis relative to other phage-corded proteins increased remarkably in rpoB2·rpoB7 mutant as well as in rpoC4 and rpoC1 mutants. These observations strongly suggested the autogenous regulation for at least (rpoB +C+) operon by some trans-active diffusible protein complexes built of RNA polymerase subunits. Nature of the regulatory molecules is discussed.Paper VI in this series is Saitoh and Ishihama (1977)  相似文献   

19.
Summary A tyrosyl-tRNA synthetase mutant of Escherichia coli was isolated and the tyrS gene assigned a map position between man and pdxH at 36.0 min on the chromosome. The tyrS mutant grew badly on broth as did previously described tyrS mutants. This sensitivity to broth was suppressed by tyrR mutations. F-prime factors were found to complement the tyrS mutation.  相似文献   

20.
A secondary structure of Escherichia coli 10Sa RNA (tmRNA) recently proposed on the basis of a variety of chemical and enzymatic probing data combined with phylogenetic analysis (Felden et al, in press), indicates a highly folded structure. Several long-range interactions including pseudoknots are proposed based on comparative analysis of 10 tmRNA genes. Whereas most of the probing data support these predicted secondary structures, several atypical reactivities in specific domains of the molecule suggest structural dynamics, perhaps relating to the complex functions of the molecule as both tRNA and mRNA. The structure of tmRNA has three modular units: a tRNA-like domain, an mRNA-like domain and an intricate connecting unit probably responsible for correct orientation of the two functional parts of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号