首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The influence of calcium on the binding of phencyclidine (PCP) to acetylcholine (ACh) receptor-rich membrane fragments was investigated. Calcium decreased the equilibrium affinity for PCP in the presence, but not in the absence, of the cholinergic agonist carbamylcholine. The effect of calcium was rapidly reversible by EGTA, indicating that it was not attributable to a calcium-activated protease or a phospholipase. Following detergent solubilization of the nicotinic ACh receptor, the calcium effect on PCP remained, suggesting that calcium may interact directly with the receptor to exert its effect. Other divalent cations (Mn2+, La2+ Co2+, Mg2+) had similar effects. A correlate of "desensitization" of the ACh receptor can be observed using PCP binding, and a two-step "desensitization" process can be observed. Calcium seemed to increase the amplitude of a rapid component of receptor "desensitization." The results presented in this paper suggest that calcium may play a role in the modulation of the nicotinic ACh receptor.  相似文献   

2.
The composition of phospholipids from electric organ and from membranes enriched in acetylcholine receptors (AChRs) is analyzed in three elasmobranch fish (Torpedo marmorata, Torpedo californica, and Discopyge tschudii). Irrespective of their purity, AChR-containing membranes are similar to electric organ in lipid and fatty acid composition. The following characteristics are common to the three species: (a) Choline, ethanolamine, and serine glycerophospholipids account for 80-90% of the phospholipids. (b) Their major fatty acid constituents are monoenes, saturates, and long-chain (n-3) polyenes (especially docosahexaenoate). (c) A large proportion of the ethanolamine glycerophospholipids (30-50%) is made up by plasmenylethanolamine, which contains fewer polyenes than phosphatidylethanolamine per mole of lipid. (d) Polyphosphoinositides represent 20-30% of the inositides of electric organ. (e) Phosphatidylinositol and phosphatidate have large proportions of 20- and 22-carbon polyenes. (f) Diphosphatidylglycerol and triacylglycerols are rich in oleate but also contain long-chain polyenes. (g) Sphingomyelin has monoenes and saturates ranging from 14 to 26 carbons. Species-related variations are observed (a) in the ratios between some phospholipid classes and subclasses and (b) in the relative abundance of the major polyunsaturated acyl chains of phospholipids. Despite these differences, the average unsaturation and length of fatty acids in major phospholipid classes are similar for the three species.  相似文献   

3.
Incubation of rat brain synaptic membranes under phosphorylating conditions (i.e., in the presence of Mg2+, ATP, and cyclic AMP) leads to a loss in muscarinic acetylcholine receptors, detectable as specific binding of the muscarinic antagonist L-[3H]quinuclidinyl benzilate. A role for protein phosphorylation in this receptor loss is indicated by the finding that 5'-adenylyl imidodiphosphate, a nonhydrolysable analogue of ATP, does not support receptor loss. Furthermore, receptor loss is inhibited by adenosine and 2-deoxyadenosine, both of which inhibit protein kinase activity. The loss of muscarinic receptors is calmodulin dependent, and it has been demonstrated here that this requirement is probably at the level of calmodulin-dependent phosphorylation. An investigation of the effects of phosphorylation on the binding of the agonist carbachol to synaptic membranes from the cortex and cerebellum demonstrated that phosphorylation altered the relative proportions of the super-high-, high-, and low-affinity binding sites. The results were consistent with an apparent conversion of high- into super-high-affinity sites. In the presence of 5'-guanylyl imidodiphosphate, agonist binding demonstrated the properties expected of a population of largely low-affinity sites. This conversion of super-high- and high-affinity sites into low-affinity sites by 5'-guanylyl imidodiphosphate was partially inhibited by phosphorylation.  相似文献   

4.
In this study, we investigated the mechanisms underlying the release of preformed and of newly synthesized acetylcholine (ACh) from isolated Torpedo nerve terminals (synaptosomes). This was pursued by examining and comparing the effects of anticytoskeletal and anticalmodulin drugs and of activating the presynaptic muscarinic ACh receptors on the release of preformed endogenous ACh and of newly synthesized radiolabeled ACh. The anticytoskeletal drugs vinblastine, cytochalasin B, and colchicine inhibit the Ca2+-dependent K+-mediated release of newly synthesized radiolabeled ACh, but have no effect on the release of preformed ACh. By contrast, the muscarinic agonist oxotremorine markedly inhibits the release of preformed ACh, but has little effect on the release of newly formed ACh. Treatment of the synaptosomes with the calmodulin antagonist trifluoperazine inhibits the release of both ACh pools concomitantly. These findings show that preformed and newly synthesized ACh are released by different routes and suggest that their secretion is mediated by converging pathways. The significance of these results in view of the previously demonstrated preferential release of newly synthesized ACh is discussed.  相似文献   

5.
Huntington's disease (HD) causes neurological impairments, as well as muscle dysfunction, including smaller neuromuscular junctions (NMJs). This study assessed the expression levels of the subunits of the nicotinic acetylcholine receptor (nAChR) in muscles of the R6/2 mouse model of HD. Based on our previous findings of reduced NMJ size in R6/2 mice, it was hypothesized that muscles from R6/2 mice would also show an altered expression pattern of nAChR subunits compared to wild-type (WT) mice. Therefore, the mRNA levels of nAChR subunits were quantified in R6/2 and WT mouse muscles using qRT-PCR. Denervated muscles from WT mice served as positive controls for alterations in nAChR expression. Although some changes in nAChR subunit expression occurred in R6/2 muscles, the expression levels closely resembled WT. However, the expression of nAChR subunit-ε (Chrne) was significantly decreased in R6/2 muscles relative to WT. This study demonstrates that only minor changes in nAChR subunit expression occurs in R6/2 mouse muscles and that reduction in Chrne expression may be related to a reduction in NMJ size in R6/mice.  相似文献   

6.
Calmodulin binding proteins (CBPs) have been identified using a gel overlay technique for fractions isolated from Torpedo electromotor nerve endings. Different fractions possessed characteristic patterns of CBPs. Synaptosomes showed five major CBPs--Mr 220,000, 160,000, 125,000, 55,000, and 51,000. Polypeptides of Mr 55,000 and 51,000 were found in the cytoplasm and the others are membrane-associated. The Triton X-100-insoluble cytoskeleton of synaptosomes was isolated in the presence or absence of calcium. The major CBPs had Mr of 19,000, 18,000, and 16,000. In the presence of calcium, no other CBPs were seen. In the absence of calcium, an Mr 160,000 polypeptide was present in the Triton cytoskeleton. Synaptic vesicles showed CBPs of Mr 160,000, 25,000, and 20,000. Membrane fragments enriched in acetylcholine receptors contained two major CBPs, Mr 160,000 and 125,000, together with a less prominent protein at Mr 26,000. A protein of Mr similar to that of fodrin was present in synaptosomes and acetylcholine receptor membrane fragments, but only in small amounts relative to the other polypeptides observed. The heavy and light chains of clathrin-coated vesicles from pig brain did not bind calmodulin, although strong labelling of an Mr 47,000 polypeptide was found. Results showed that calelectrin does not bind calmodulin. The possible identity of the calmodulin binding proteins is discussed.  相似文献   

7.
Synthesis of Acetylcholine from Acetate in a Sympathetic Ganglion   总被引:1,自引:9,他引:1  
Abstract: The present experiments tested whether acetate plays a role in the provision of acetyl-CoA for acetylcholine synthesis in the cat's superior cervical ganglion. Labeled acetylcholine was identified in extracts of ganglia that had been perfused for 20 min with Krebs solution containing choline (10−5 M ) and [3H], [1-4C], or [2-14C]acetate (103 M ); perfusion for 60 min or with [3H]acetate (10−2 M ) increased the labeling. The acetylcholine synthesized from acetate was available for release by a Ca2+-dependent mechanism during subsequent periods of preganglionic nerve stimulation. When ganglia were stimulated via their preganglionic nerves or by exposure to 46 m M K+, the labeling of acetylcholine from [3H]acetate was reduced when compared with resting ganglia. The reduced synthesis of acetylcholine from acetate during stimulation was not due to acetate recapture, shunting of acetate into lipid synthesis, or the transmitter release process itself. In ganglia perfused with [2-14C]glucose, the amount of labeled acetylcholine formed was clearly enhanced during stimulation. An increase in acetylcholine labeling from [3H]acetate was shown during a 15-min resting period following a 60-min period of preganglionic nerve stimulation (20 Hz). It is concluded that acetate is not the main physiological acetyl precursor for acetylcholine synthesis in this sympathetic ganglion, and that during preganglionic nerve stimulation there is enhanced delivery of acetyl-CoA to choline acetyltransferase from a source other than acetate.  相似文献   

8.
Acetylcholine receptor (AChR) purified from human skeletal muscle affinity-alkylated with bromoacetyl[methyl-3H]choline bromide ([3H]BAC) in mildly reducing conditions to yield a specifically radiolabeled polypeptide, Mr 44,000, the alpha-subunit. The binding of [125I]alpha-bungarotoxin to AChR was completely inhibited by affinity-alkylation, indicating that the human AChR's binding site for alpha-bungarotoxin is closely associated with the alpha-subunit's acetylcholine binding site. Structures in the vicinity of the alpha-bungarotoxin binding sites of AChRs from human muscle and Torpedo electric organ were compared by varying the conditions of alkylation. Under optimal conditions of reduction and alkylation, both human and Torpedo AChR incorporated BAC in equivalence to the number of alpha-bungarotoxin binding sites. However, with limited conditions of reduction but sufficient BAC to alkylate 100% of the alpha-bungarotoxin binding sites of human AChR, only 71% of the Torpedo AChR's binding sites were alkylated. In optimal conditions of reduction but with the minimal concentration of BAC that permitted 100% alkylation of the human AChR's alpha-bungarotoxin sites, only 74% of the Torpedo AChR's binding sites were alkylated. These data suggest that the neurotransmitter binding region of human muscle AChR is structurally dissimilar from that of Torpedo electric organ, having a higher binding affinity for BAC and an adjacent disulfide bond that is more readily accessible to reducing agents.  相似文献   

9.
Calmodulin-dependent kinase activity was investigated in cold-stable microtubule fractions. Calmodulin-dependent kinase activity was enriched approximately 20-fold over cytosol in cold-stable microtubule preparations. Calmodulin-dependent kinase activity in cold-stable microtubule preparations phosphorylated microtubule-associated protein-2, alpha- and beta-tubulin, an 80,000-dalton doublet, and several minor phosphoproteins. The endogenous calmodulin-dependent kinase in cold-stable microtubule fractions was identical to a previously purified calmodulin-dependent kinase from rat brain by several criteria including (1) subunit molecular weights, (2) subunit isoelectric points, (3) calmodulin-binding properties, (4) subunit autophosphorylation, (5) calmodulin-binding subunit composition on high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (6) isolation of kinase on calmodulin affinity resin, (7) kinetic parameters, (8) phosphoamino acid phosphorylation sites on beta-tubulin, and (9) phosphopeptide mapping. Endogenous cold-stable calmodulin-dependent kinase activity was isolated from the microtubule fraction by calmodulin affinity resin column chromatography and specifically eluted with EGTA. This kinase fraction contained the calmodulin-binding, autophosphorylating rho and sigma subunits of the previously purified kinase. The rho and sigma subunits of this kinase represented the major calmodulin-binding proteins in the cold-stable microtubule fractions as assessed by denaturing and non-denaturing procedures. These results indicate that calmodulin-dependent kinase is a major calmodulin-binding enzyme system in cold-stable microtubule fractions and may play an important role in mediating some of the effects of calcium on microtubule and cytoskeletal dynamics.  相似文献   

10.
The spontaneous acetylcholine secretion and endogenous acetylcholine content were measured by means of chemiluminescent assay from isolated embryonic rat spinal motoneurons. The sensitivity of the detection allows to study the kinetics of the acetylcholine secretion with short time intervals. Following the demonstration of the presence of acetylcholine and glutamate in embryonic motoneurons, the aim of this work was to study the characteristics of acetylcholine secretion and the effect of glutamate in its modulation. The involvement of NMDA and AMPA glutamatergic receptors was mainly studied. Our data show that spontaneously acetylcholine secretion, is not calcium-dependent and is significantly enhanced by glutamate (1 mM). Pharmacological approaches show that glutamate effect on acetylcholine secretion is decreased in presence of APV (50 M and 100 M), or in presence of GYKI 53655 (10 M), demonstrating that both NMDA and AMPA receptors are present at the membrane of embryonic spinal motoneurons and involved in the modulation of acetylcholine secretion. Presence of glutamate in the embryonic motoneuron and secretion may represent a mechanism of control of extracellular acetylcholine concentration, which was shown to control neuritic growth at early embryonic stage.  相似文献   

11.
α-Bungarotoxin Binding in House Fly Heads and Torpedo Electroplax   总被引:2,自引:2,他引:0  
Abstract: House fly heads contain a site that binds α-bungarotoxin with high affinity. It is present at about 23 pmol/g of heads and binds α-bungarotoxin (labeled with [3H]pyridoxamine phosphate) reversibly with a K d of 6 nM. The effects of 48 drugs have been compared on the α-bungarotoxin binding sites of house fly and Torpedo. The pharmacology of the house fly site is similar to that previously reported for neuronal α-bungarotoxin binding sites in both vertebrates and invertebrates and is distinguishable from that of the classic nicotinic neuromuscular acetylcholine receptor, as exemplified by that of Torpedo electroplax. Differences between the house fly site and Torpedo include higher affinities of the Torpedo receptor for decamethonium, hexamethonium, carbamylcholine, and acetyl-β-methylcholine, but lower affinities for nicotine, atropine, and dihydro-β-erythroidine.  相似文献   

12.
Abstract: Nicotinic acetylcholine receptors (nAChR) are diverse members of the ligand-gated ion channel superfamily of neurotransmitter receptors and play critical roles in chemical signaling throughout the nervous system. The present study tests whether nAChR are potential targets for steroids. Acute or short-term (5 min) preexposure to steroids such as progesterone (which acts most potently), estradiol, corticosterone, or dexamethasone inhibits function of human muscle-type (α1β1γδ) or ganglionic (α3β4) nAChR measured using 86Rb+ efflux assays in TE671/RD clonal or SH-SY5Y neuroblastoma cells. Absolute (high nanomolar to intermediate micromolar range) and rank-order potencies for steroid-mediated functional inhibition are similar across nAChR subtypes but differ for some steroid derivatives. At concentrations that produce blockade of nAChR function, steroids do not affect binding of radioligands such as 125I-labeled α-bungarotoxin or [3H]acetylcholine to muscle-type or ganglionic nAChR or to neuronal toxin-binding nAChR that contain α7 subunits (α7-nAChR). Steroid-mediated blockade of nAChR function is insurmountable by increasing agonist concentrations, and cell-impermeant progesterone:bovine serum albumin conjugates have full potency as inhibitors of ganglionic or muscle-type nAChR function. Chronic (48 h) exposure to progesterone or estradiol, but not the other steroids, also produces blockade of nAChR function, without significant effects on numbers of nAChR radioligand-binding sites. Collectively, these results suggest that steroids act noncompetitively at extracellular sites to inhibit nAChR function with unique potencies for different steroid-nAChR subtype combinations. Thus, nAChR could be among the targets mediating physiologically relevant effects of steroid action in the nervous system.  相似文献   

13.
Abstract: Regulation of gene expression is one of the mechanisms by which neuronal activity elicits long-term changes in neuronal phenotype and function. Although activity-dependent induction of immediate-early genes has been extensively studied, much less is known about the late-response genes. We have investigated the activity-dependent regulation of δ-opioid receptor (DOR) mRNA levels in NG108-15 cells. Transsynaptic activation was mimicked by depolarization with 55 m M KCl or veratridine. Both treatments lead to a time-dependent increase of DOR mRNA levels. Ca2+ entry through L-type voltage-dependent Ca2+ channels activated by depolarization appears to be involved, because L-type channel blockers reduced the induction of DOR expression. Ca2+ binding to calmodulin is the next step in the signal transduction pathway, because a calmodulin antagonist, W7, reduced the effect of veratridine. A selective inhibitor of calmodulin kinases (KN-62) and cyclosporin, an inhibitor of calcineurin, also antagonized the depolarization-induced increase in DOR mRNA levels, which indicates that both calcium/calmodulin-dependent enzymes are involved in the activity-dependent induction of DOR gene expression. Induction of DOR gene expression by an activity-dependent increase in intracellular Ca2+ concentration may serve as a feedback regulatory mechanism because activation of DOR leads to hyperpolarization and lower excitability of neurons.  相似文献   

14.
We have identified and partially purified an acidic, heat-stable, noncalmodulin protein from bovine brain cytosol that stimulates Ca2+-dependent phosphorylation of an Mr 90K substrate in crude rat brain synaptic membranes. We show that this modulator of phosphorylation (MOP) enhances Ca2+- and phospholipid-dependent protein kinase (C kinase) phosphorylation of this 90K substrate. The 90K substrate is a higher Mr form of an 87K substrate that is a major C kinase substrate in rat brain. The Ca2+-dependent phosphorylation of both substrates is inhibited by the Ca2+-binding proteins S-100 and calmodulin. Both substrates yield phosphopeptide fragments of Mr 9K and 13K after limited proteolysis with V8 protease. Two-dimensional polyacrylamide gel electrophoresis reveals that they have similar acidic isoelectric points (pI 5.0). MOP enhances Ca2+-dependent phosphorylation of the 90K substrate whereas the phosphorylation of 87K is diminished. This reciprocal relationship suggests that the mobility of the 87K substrate in sodium dodecyl sulfate-polyacrylamide gels is decreased to 90K with increasing phosphorylation. MOP may be a novel protein modulator of C kinase-mediated phosphorylation in the nervous system.  相似文献   

15.
Abstract: Skeletal muscle cells of newborn rats, cultured in the absence of neuronal influence, were found to contain two types of cell surface acetylcholine receptors as demonstrated by isoelectric focusing. The isoelectric points of the two types of receptors were indistinguishable from those of junctional and extrajunctional types of receptors in mature animals. The cultured cells had two classes of intracellular α-bungarotoxin (αBT) binding components; one had the same sedimentation coefficient as that of surface receptors (9S), and the other had much smaller apparent molecular weights. Only a single major component was detected by isoelectric focusing analysis of the 9s intracellular aBT binding component, with a PI value close to that of the extra junctional receptor. These results suggest that the junctional and extrajunctional types of receptors may be synthesized through a common precursor.  相似文献   

16.
Abstract: Incubation of intact Xenopus oocytes with the opioid radioligand [3H]diprenorphine (0.5 n M ) resulted in specific binding of 1.7 ± 0.3 fmol per oocyte. Morphine (10 μ M ) inhibited the uptake of 45Ca2+ into the oocyte by 66 ± 9%. The opioid antagonist naltrexone partially blocked this effect of morphine. Preincubation of oocytes with morphine (10 μ M , 2 min) partially inhibited the fast and slow responses of the oocyte to acetylcholine by 26 and 52%, respectively. We conclude that native Xenopus oocytes possess opioid receptors that may modulate the muscarinic response by limiting calcium influx into the cell.  相似文献   

17.
The effects of temperature on the interaction of various ligands with the benzodiazepine receptor were studied in rat brain membrane preparations. The affinities of all ligands studied were reduced on raising the temperature from 4 to 37 degrees C. The variation of affinity constant with temperature deviated from the classical relationship for both the anticonvulsant ligand [3H]flunitrazepam and the proconvulsant ligand [3H]ethyl beta-carboline-3-carboxylate. This implies a variation of observed enthalpy change of binding with temperature. Possible reasons for this are discussed. Gamma-Aminobutyric acid and sodium chloride both enhance the binding of [3H]flunitrazepam--the former by an increase in the entropic component of the binding energy, and the latter by an increase in the enthalpic component. In a series of ligands of different biological activities, no simple correlation was observed between biological activity and temperature dependence of binding.  相似文献   

18.
Cholinergic synaptic vesicles obtained from Torpedo electric organ have an active transport system for acetylcholine (ACh). Linked to ACh transport is a cytoplasmically oriented receptor for the inhibitory drug (-)-trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol, formerly AH5183). Storage of freshly isolated vesicles for several days leads to more vesamicol binding. This can be induced immediately by hyposmotic lysis of the vesicles, which reseal to form right-side-out ghosts. The increased drug binding was due to a twofold increase in the affinity and a 20% increase in the amount of the receptor expressed, probably as a result of the release of an endogenous factor. Binding of vesamicol to ghosts was specifically inhibited by exogenous ACh acting with a dissociation constant of 18 mM. This suggests that the vesamicol binding site probably is linked to a low-affinity ACh binding site that is different from the higher affinity transport binding site. Equilibrium and kinetic attempts to determine whether exogenous ACh acts on the outside or the inside of the ghost membrane to inhibit vesamicol binding failed because of rapid equilibration of exogenous ACh across the ghost membrane. It is argued that the endogenous factor released by hyposmotic lysis might be ACh. Potential roles for such a transmembrane signal regulating the vesamicol receptor are discussed.  相似文献   

19.
The honeybee, Apis mellifera, is a valuable model system for the study of olfactory coding and its learning and memory capabilities. In order to understand the synaptic organisation of olfactory information processing, the transmitter receptors of the antennal lobe need to be characterized. Using whole-cell patch-clamp recordings, we analysed the ligand-gated ionic currents of antennal lobe neurons in primary cell culture. Pressure applications of acetylcholine (ACh), γ-amino butyric acid (GABA) or glutamate induced rapidly activating ionic currents. The ACh-induced current flows through a cation-selective ionotropic receptor with a nicotinic profile. The ACh-induced current is partially blocked by α-bungarotoxin. Epibatidine and imidacloprid are partial agonists. Our data indicate the existence of an ionotropic GABA receptor which is permeable to chloride ions and sensitive to picrotoxin (PTX) and the insecticide fipronil. We also identified the existence of a chloride current activated by pressure applications of glutamate. The glutamate-induced current is sensitive to PTX. Thus, within the honeybee antennal lobe, an excitatory cholinergic transmitter system and two inhibitory networks that use GABA or glutamate as their neurotransmitter were identified.  相似文献   

20.
A vertical-type in vivo microdialysis probe and a sensitive, specific radioimmunoassay (RIA) were used to study the mechanism of acetylcholine (ACh) release in the striatum of anesthetized rats. Without the use of physostigmine, a cholinesterase inhibitor, our RIA could still detect the amount of ACh present in the perfusate (5.6 +/- 0.6 fmol/min, n = 16). Tetrodotoxin (1 microM) produced a significant decrease in the amount of ACh collected in the perfusate, suggesting that basal ACh determined under the present experimental conditions was related to cholinergic neural activity. Atropine (0.1-1 microM) applied topically via the dialysis probe did not affect the amount of ACh recovered in the perfusate in the absence of physostigmine. Addition of physostigmine (10 microM) to the perfusion fluid produced about a 100-fold increase in the amount of ACh collected. In the presence of physostigmine, topical administration of atropine and pirenzepine (0.01-1 microM) through a dialysis probe produced a further three- to fourfold increase in ACh output, whereas a slight increase was produced by AF-DX 116 at the highest concentration (1 microM). These results indicate that presynaptic modulation of ACh release in the striatum does not occur under basal conditions, and that presynaptic M1 muscarinic receptors are involved in the modulation of ACh release when the ACh concentration is raised under certain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号