首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown previously that binding of a monoclonal antibody (MAb) to Tp44 molecules increased the proliferation of anti-CD3-activated T cells by causing enhanced IL 2 receptor expression and IL 2 release. We now show that anti-CD5 (Tp67) antibodies have a similar effect under conditions in which monocytes are suboptimally activated or where monocytes are not present. The activity did not depend on antibody isotype or on the precise CD5 epitope recognized. Functional experiments indicated that both IL 2 production and IL 2 receptor expression were enhanced by antibody binding. Anti-Tp67 and anti-Tp44 appear to augment proliferation through distinct mechanisms, because both antibodies together had greater activity than either antibody alone. In neither system is the Fc portion of the antibody required, because F(ab')2 fragments had activity equivalent to that of the intact antibody and were effective at concentrations as low as 10 ng/ml. Fab fragments of anti-Tp67 were active, but Fab fragments of anti-Tp44 had no effect. Anti-Tp67 and anti-Tp44 were able to sustain continuous proliferation of anti-CD3-Sepharose-stimulated T cells for up to 2.5 wk without exogenous IL 2 or feeder cells. These experiments suggest that Tp67 and Tp44 are receptors that play a critical regulatory role in the control of T cell proliferation.  相似文献   

2.
We have studied the relationship of valency of CD3 stimulation and modulation of the CD3 receptor complex with biochemical and proliferative responses of T cells. Anti-CD3 Fab, as well as F(ab')2 and whole antibody caused rapid modulation of the CD3 antigen, whereas anti-CD3 conjugated to Sepharose did not. In the absence of monocytes, T cells stimulated with anti-CD3 Fab, F(ab')2, or F(ab')2-Sepharose showed differences in their ability to respond to second signals given by PMA, IL 1, IL 2, or antibodies to Tp67 and Tp44. None of the anti-CD3 signals alone caused resting T cells to produce IL 2, and only the Sepharose-bound anti-CD3 F(ab')2 caused T cells to express high levels of functional IL 2 receptors. Anti-CD3 F(ab')2-Sepharose-stimulated T cells produced IL 2 and proliferated in response to each of the second signals. Because anti-CD3-Sepharose did not cause modulation of the CD3 antigen, the ability of the Sepharose-bound antibody to induce T cells to express IL 2 receptors and to respond to individual second signals may be related to lack of modulation rather than valency of binding. Anti-CD3 Fab-stimulated T cells responded to PMA but required combinations of other second signals. T cells stimulated with unmodified anti-CD3 antibody or F(ab')2 fragments responded to PMA but did not respond to any other second signals alone or in combination. Stimulations that resulted in modulation (i.e., anti-CD3 whole antibody, anti-CD3 F(ab')2, or anti-CD3 Fab fragments) caused an increase in cytoplasmic calcium levels in resting T cells but blocked proliferation of T cells in response to mitogenic lectins or CD2 stimulation. Anti-CD3 F(ab')2 on Sepharose, however, did not block T cell proliferation. Whole bivalent anti-CD3 antibody or F(ab')2 fragments, but not monovalent Fab fragments, caused a rapid translation of protein kinase C activity from cytosol to membrane in the Jurkat T cell line. Because all of these modulate the receptor, these data indicate that the functional difference between monovalent and bivalent binding to CD3 is related to antibody valency and not to antigenic modulation. The use of Fab anti-CD3 stimulation that requires combinations of second signals for proliferation allowed an analysis of the functional relationships between IL 1, anti-Tp67, and anti-Tp44.  相似文献   

3.
We previously described a cell surface antigen, termed Tp44, detected by monoclonal antibody 9.3 on approximately 80% of mature human T lymphocytes. Analysis by SDS-polyacrylamide gel electrophoresis and isoelectric focusing demonstrated that this antigen consists of two identical 44 kilodalton glycopeptides that form a disulfide-linked homodimer. Competitive binding experiments showed that antibody 9.3 and an anti-CD3 antibody (64.1) recognize distinct antigenic determinants; furthermore, the binding of antibody 9.3 was unaffected by prior modulation of CD3. Thus, Tp44 has no detectable cell surface association with CD3. By itself, antibody 9.3 had no detectable effect on either IL 2 receptor expression or IL 2 release, and did not cause T cell proliferation even when monocytes were present and exogenous IL 2 was provided, indicating that binding of antibody 9.3 does not provide a primary signal for T cell activation. However, the proliferative responses of T lymphocytes activated by phytohemagglutinin, concanavalin A, or an anti-CD3 monoclonal antibody were strikingly enhanced in the presence of antibody 9.3, an effect associated with increased IL 2 receptor expression and increased IL 2 secretion. Antibody 9.3 enabled anti-CD3-Sepharose-activated T cells and anti-CD3 antibody-activated Jurkat cells to release IL 2 in the absence of monocytes. Fab fragments of antibody 9.3 had no effect on anti-CD3-induced IL 2 release by Jurkat cells, whereas F(ab')2 fragments had activity comparable to that of unmodified antibody, indicating that bivalent binding of Tp44 molecules is required for IL 2 secretion. Together, these results suggest that TP44 may function as a receptor for accessory signals in the activation of T cells.  相似文献   

4.
The capacity of the monoclonal antibodies (Mab) 64.1 and OKT3 directed at CD3 molecules to induce T4 cell proliferation and interleukin 2 (IL 2) production was examined. Each was tested in soluble form or was immobilized by adhering it to the wells of plastic microtiter wells. Soluble anti-CD3 did not induce proliferation of accessory cell (AC)-depleted T4 cells. In contrast, immobilized anti-CD3 induced T4 cell IL 2 production and proliferation in the complete absence of AC. When T4 cells were stimulated with high density immobilized anti-CD3, responses did not require AC, IL 2, or Mab directed at the Tp44 molecule (9.3). In contrast, responses stimulated by lower densities of immobilized anti-CD3 were enhanced by IL 2, AC, and 9.3, and with even lower densities of immobilized anti-CD3 proliferation, required these additional signals. A variety of other immobilized Mab directed at T cell surface proteins including class I major histocompatibility complex encoded gene products, CD2, CD5, 4F2, and Tp44, did not induce proliferation even in the presence of IL 2. Anti-CD4 Mab (66.1) inhibited immobilized anti-CD3-stimulated T4 cell responses, with a greater degree of inhibition noted when lower densities of immobilized anti-CD3 were used to stimulate T4 cells. The data demonstrate that stimulation of T4 cells by anti-CD3 is completely AC independent when the antibody is immobilized onto a surface. Furthermore, the results indicate that maximal stimulation requires multiple interactions with anti-CD3 without internalization of the CD3 molecule. The observation that additional signals are required to support T4 cell proliferation when the density of immobilized anti-CD3 is diminished suggests that these are necessary only when insufficient interactions with the CD3 molecule have occurred to transmit a maximal activation signal to the cell. Finally, the results indicate that anti-CD4 provides a direct inhibitory signal to the T4 cell, the effect of which is inversely proportional to the intensity of the activation signal.  相似文献   

5.
A novel triggering signal for human proliferating and cytotoxic T lymphocytes defined by a 103 kD T cell-specific activation antigen (Tp103) is described. Tp103 is expressed on all proliferating normal T cells but is not present, or present only in low amounts, on resting peripheral blood T lymphocytes. Cross-linking of T cell and Fc receptor-positive accessory or target cells by an antibody against Tp103 leads to activation of the T cell. The proliferative response is due to an autocrine IL 2-dependent mechanism and can be inhibited by antibodies against the IL 2 receptor or by Cyclosporin A. Resting Tp103-positive T cells also respond to anti-Tp103. Although Tp103 is not linked to the antigen receptor/T3 complex, triggering via Tp103 can be inhibited by modulation of the T3 molecule. Thus, Tp103 defines a new antigen-independent pathway of T cell activation that can be regulated via other T cell surface structures.  相似文献   

6.
Two monoclonal antibodies (CLB-CD 27/1 and CLB-CD 27/2) were raised against a novel determinant on human T lymphocytes. One of these antibodies, CLB-CD 27/1 (clone 9F4), was grouped by the Third International Workshop and Conference on Human Leucocyte Differentiation Antigens together with three other monoclonal antibodies (VIT 14, OKT 18A, and S152) in the new cluster CD27. In this paper we show that antibodies belonging to this cluster recognize an antigen present on a large subset of peripheral T lymphocytes and most medullary thymocytes. At least two different nonoverlapping epitopes were identified with directly labeled monoclonal antibodies. Immunoprecipitation studies indicate that the target antigen of CD27 antibodies is a polypeptide of 55 kDa, which appears in the form of a disulfide-linked homodimer on the T lymphocyte membrane (Tp55). Stimulation of T cells via the T3/T cell antigen-receptor complex, with either phytohemagglutinin or CD3 monoclonal antibodies, resulted in a fivefold increase in the membrane expression of Tp55, whereas activation by phorbol myristate acetate caused a marked down-regulation. Moreover, an additional molecule of 32 kDa was precipitated from the membrane of activated but not of resting T cells. Addition of CD27 antibodies to cultures stimulated with either phytohemagglutinin or CD3 monoclonal antibody led to enhanced proliferation, whereas no effect was observed in phorbol myristate acetate or interleukin 2-stimulated cultures. The possible role of the Tp55 antigen in T cell activation is discussed.  相似文献   

7.
The antigen receptor molecules on human T lymphocytes are noncovalently associated on the cell surface with the CD3 (T3) molecular complex. Perturbation of this complex with anti-CD3 monoclonal antibodies induces T cell activation. Previous studies have demonstrated that this process requires the participation of monocytes. In the present report, we demonstrate that purified, resting (G0 phase) T cells incubated with monoclonal anti-CD3 antibodies proliferate in response to purified interleukin 2 (IL 2), in a lymphokine dose-dependent fashion. Anti-CD3 antibody or IL 2 alone did not trigger cell division. The effect was specific for anti-CD3 antibodies because monoclonal antibodies reactive with other surface molecules (OKT4, OKT8, L368) were inactive. Furthermore, the same phenomenon was observed when anti-CD3 antibody Leu-4 (IgG1) was incubated with cells of individuals whose monocytes cannot process antibodies of the IgG1 subclass (Leu-4 nonresponders). In addition, both F(ab')2 and Fab fragments of anti-CD3 antibody OKT3 were also capable of rendering T cells receptive to the IL 2 growth signal. These data indicate that neither monocytes nor CD3 receptor cross-linking are required absolutely for resting T cell activation, provided that IL 2 is supplied exogenously. T lymphocytes treated with anti-CD3 antibodies proliferated in response to both purified mitogen-induced and recombinant IL 2. Antibodies to the IL 2 receptor (anti-Tac) inhibited the proliferation. Thus, the most likely mechanism for anti-CD3 antibody-mediated triggering is induction of IL 2 receptors.  相似文献   

8.
Adenosine is an immunosuppressive molecule that is associated with the microenvironment of solid tumors. Mouse T cells activated with anti-CD3 antibody in the presence of adenosine with or without coformycin (to prevent adenosine breakdown by adenosine deaminase) exhibited decreased tyrosine phosphorylation of some intracellular proteins and were inhibited in their ability to proliferate and synthesize interleukin (IL)-2. In addition, adenosine interfered with activation-induced expression of the co-stimulatory molecules CD2 and CD28. Activation-induced CD2 and CD28 expression was also diminished when T cells were activated in the presence of anti-IL-2 and anti-CD25 antibodies to neutralize IL-2 bioactivity. Collectively, these data suggest that CD2 and CD28 up-regulation following T cell activation is IL-2-dependent; and that adenosine inhibits activation-induced T cell expression of CD2 and CD28 by interfering with IL-2-dependent signaling. The inhibitory effect of adenosine on activation-induced CD2 and CD28 expression could not be attributed to cyclic AMP (cAMP) accumulation resulting from the stimulation of adenylyl cyclase-coupled adenosine receptors, even though cAMP at concentrations much higher than those generated following adenosine stimulation was inhibitory for both CD2 and CD28 expression. We conclude that adenosine interferes with IL-2-dependent T cell expression of co-stimulatory molecules via a mechanism that does not involve the accumulation of intracellular cAMP.  相似文献   

9.
ATP has been reported to inhibit or stimulate lymphoid cell proliferation, depending on the origin of the cells. Agents that increase cAMP, such as PGE(2), inhibit human CD4(+) T cell activation. We demonstrate that several ATP derivatives increase cAMP in both freshly purified and activated human peripheral blood CD4(+) T cells. The rank order of potency of the various nucleotides was: adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) approximately 2'- and 3'-O-(4-benzoylbenzoyl) ATP (BzATP) > ATP > 2-methylthio-ATP > dATP, 2-propylthio-beta,gamma-dichloromethylene-D-ATP, UDP, UTP. This effect did not involve the activation of A(2)Rs by adenosine or the synthesis of prostaglandins. ATPgammaS had no effect on cytosolic calcium, whereas BzATP induced an influx of extracellular calcium. ATPgammaS and BzATP inhibited secretion of IL-2, IL-5, IL-10, and IFN-gamma; expression of CD25; and proliferation after activation of CD4(+) T cells by immobilized anti-CD3 and soluble anti-CD28 Abs, without increasing cell death. Taken together, our results suggest that extracellular adenine nucleotides inhibit CD4(+) T cell activation via an increase in cAMP mediated by an unidentified P2YR, which might thus constitute a new therapeutic target in immunosuppressive treatments.  相似文献   

10.
Human T cell clones contain enzymes that can cleave the substrate N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT). All CTL clones tested in this study secreted BLT-serine esterase activity, whereas only one of three tested non-cytolytic T cell clones secreted this enzymatic activity upon Ag-specific activation. BLT-serine esterase secretion could also be induced by the Fc gamma+ target cell Daudi in the presence of mAb specific for the TCR/CD3 complex, CD2, or the T cell activation Ag Tp 103. In addition, anti-CD3 and a mitogenic combination of anti-CD2 mAb, induced secretion of BLT-serine esterase in the absence of target cells, whereas anti-Tp 103 failed to do so. The secreted BLT-serine esterase activity induced by the various ligands was inhibited by the serine esterase inhibitors PMSF and m-ABA, but not by N-alpha-p-tosyl-L-lysine chloromethyl ketone. Significant BLT-serine esterase activity was induced by target cells or soluble anti-CD3 in the absence of extracellular Ca2+ ions, provided that extracellular Mg2+ ions were present. The cytotoxic activities by the human CTL clones were completely blocked under these conditions. All ligands that induced BLT-serine esterase secretion in the absence of extracellular Ca2+, induced a transient rise of intracellular Ca2+. Soluble anti-CD3 mAb did not induce a transient rise in intracellular Ca2+ or secretion of BLT serine esterase in CTL preincubated for 2 h with 5 mM EGTA. These findings indicate that mobilization of intracellular Ca2+ in human CTL clones is required for induction of secretion of BLT-serine esterase.  相似文献   

11.
We have analyzed cells of the B lineage for expression of the Tp44 antigen, a 44,000 homodimer detected by monoclonal antibody 9.3 on approximately 80% of mature human T lymphocytes. Previous evidence has suggested that Tp44 may function as a receptor for accessory signals in T cell activation. High level Tp44 expression was observed on plasmacytomas grown in cell culture and on plasma cells from bone marrow biopsies of multiple myeloma patients. This antigen is not present on resting B cells from either peripheral blood or lymphoid organs, or on any other B cell tumor. The growth kinetics and Ig production in plasmacytomas are not affected by the binding of antibody 9.3. Moreover, the Tp44 molecule is co-expressed with PCA-1, an antigen characteristic of plasma cells, on peripheral blood B cells stimulated in vitro to differentiate toward plasma cells. Tp44 may represent a later stage of B cell differentiation than PCA-1 because unlike the PCA-1 antigen, this molecule could not be detected on any EBV-transformed cell line or Burkitt's lymphoma lines. The m.w. of the Tp44 molecule expressed on plasma cells and on T cells is identical, as determined by immunoprecipitation of radioiodinated cell surface proteins with monoclonal antibody 9.3. This antigen might be useful in studying the mechanism of growth and differentiation of human B cells, the heterogeneity within plasma cell populations, and B cell interactions with other components of the immune system.  相似文献   

12.
The expression and function of the T cell activation molecule Tp103 on human cloned cytotoxic CD3+ and CD3- cells were studied. All in vitro growing CD3+ and CD3- clones expressed Tp103 regardless of their phenotype and the expression of a CD3-associated TCR complex. Whereas the CD2 pathway was functional in all these clones, only CD3-expressing clones could be triggered via Tp103 to kill target cells. In contrast, both CD2 and Tp103 pathways were suppressed after modulation of the TCR complex with anti-CD3 mAb. This indicates that the function of Tp103 but not of CD2 is dependent on the expression of a functional Ag receptor on cytotoxic T cells. Furthermore, modulation of the Ag receptor induces a state of unresponsiveness in cytotoxic T cells that cannot be attributed to just the removal of the CD3/TCR complex from the cell membrane.  相似文献   

13.
The signal requirements for activation and proliferation of CD1+ thymocytes have been studied in order to define whether this immature cell population could function as mature T cells do. We found that CD1+ cells expressed high levels of CD25 antigen upon triggering with specific monoclonal antibodies (mAbs) (anti-CD3, anti-CD2, anti-CD28) in association with low doses of Phorbol-13-myristate-12-acetate (PMA). More interestingly, we described that in the presence of PMA CD1+ thymocytes proliferate upon stimulation with anti-CD28 mAb as well as with a pair of anti-CD2 mAbs, without the need of exogenous interleukin-2 (IL2), whereas they respond to anti-CD3 mAb only if exogenous IL2 was provided. Furthermore, CD1+ cells stimulated under optimal proliferative conditions, gave rise to cell populations capable of lysing natural killer (NK)-sensitive (K562) and NK-resistant (MEL 10, Daudi, EPA1) tumor target cells. These data strongly support the idea that CD1+ thymocytes, under appropriate stimulations, display some of the functional capabilities of mature T cells.  相似文献   

14.
We show that antibodies to the CD44 molecule trigger proliferation of human CD3+/CD4+ T-cell clones. Such effect is IL2-dependent, as shown by IL2 production induced by anti-CD44 mAb and by inhibition of cell proliferation in the presence of anti-IL2 antibodies or cyclosporin A (CsA). Moreover, anti-CD44 mAb triggered human cytolytic CD4+ and CD8+ TCR /+ clones, and V1 or V2 TCR Y/+ clones to lyse Fc-gamma-R+ P815 cells and to release granule trypsin-like esterase enzymes. Anti-CD44 mAb-triggered proliferation and cytotoxicity were blocked by the PTK-inhibitor, genestein. In addition, ligation of the CD44 molecule induced tyrosine phosphorylation of proteins identical, by molecular weight, to those phosphorylated following anti-CD3 mAb-stimulation. Notably, anti-CD44 mAb does not induce tyrosine phosphorylation of a 21 kD protein (the phosphorylated zeta chain of the TcR molecular complex) typically observed upon anti-CD3 mAb stimulation.  相似文献   

15.
Tp103 is a 103-kDa T cell activation molecule that defines an alternative activation signal for human T lymphocytes. It is absent from or present in only low amounts on resting T cells but is expressed strongly after activation. Cross-linking of Tp103 via a mAb CB.1 leads to triggering of functional activities in preactivated CD3+ T lymphocytes. By using mAb CB.1 in immunohistology we found that Tp103 is expressed in epithelial cells of various tissues, such as kidney, prostate, epidermis and on endothelia of liver, spleen, lungs, and most vessels, and in bile duct canaliculi in the liver. We found a carcinoma cell line expressing Tp103 and could precipitate a 110-kDa molecule from the surface of these cells. We considered several known molecules of similar distribution and molecular mass for identity with Tp103 and show here that Tp103 is probably identical to the proteolytic enzyme dipeptidyl aminopeptidase IV. When we purified Tp103 by affinity chromatography, typical dipeptidyl aminopeptidase IV activity copurified with Tp103. On activated T cells the enzymatic activity associated with Tp103 is expressed on the outside of the cell. We show that mAb CB.1 recognizes the same molecule as the anti-CD26 mAb anti-Ta1. The anti-Ta1 mAb was found to have T cell-activating activity too, but to differ in its requirements for triggering of T lymphocytes.  相似文献   

16.
Previous work has shown that CD4 engagement can promote the development of interleukin-4-producing cells from naive CD4+ T cells activated with anti-CD3 antibody and interleukin-2 in the absence of other exogenous signals, including interleukin-4 itself. When CD44low CD4+ T cells were activated with immobilized anti-CD3 antibody and interleukin-2, they proliferated and produced interferon-gamma but not interleukin-4. Co-immobilization of antibodies to CD3 and CD4 enhanced cell recoveries and induced interleukin-4 as well as interferon-gamma synthesis. Here we show that these effects of CD4 ligation were not observed when anti-CD4 antibody was replaced with another CD4 ligand, interleukin-16, or when the anti-CD3 and anti-CD4 antibodies were spatially separated by immobilization on different beads. Removal of the anti-CD4 antibodies within the first three days of stimulation also prevented the development of detectable interleukin-4-producing cells. The data suggest that interleukin-4-independent priming of interleukin-4-producing cells in this system requires sustained stimulation via both the T cell receptor and CD4 with close physical association between the ligands for these two receptors.  相似文献   

17.
T lymphocyte activation with monoclonal antibodies directed against the CD2 (T,p50) sheep red blood cell receptor antigen and against CD3 (T,p19,29) has been investigated. Co-stimulation of purified T lymphocytes with anti-CD3 (SP34) and anti-CD2 (9-1), which detects a unique epitope on the CD2 molecule, results in T cell activation and cell proliferation. Each antibody alone is unable to mediate this effect. Co-stimulation of purified T cells with two different anti-CD2 antibodies, 9-1 and 9.6, which detect two different epitopes on the CD2 molecule, are also mitogenic. In contrast, the combination of anti-CD3 (SP34) and anti-CD2 (9.6) cannot induce T cell activation. These data suggest that the CD2 epitope defined by the 9-1 antibody is functionally important for T cell activation via the CD3/Ti complex. Furthermore, it is demonstrated that anti-CD3 (SP34) induces epitopic modulation of the CD2 molecule, resulting in enhanced expression of the CD2, 9-1 epitope. This epitope modulation of the CD2 (9-1) epitope by anti-CD3 (SP34) occurs instantaneously at 4 degrees C and in the presence of NaN3. The functional interaction between CD3 and CD2 occurs in spite of any evidence of complex formation between these two molecules. These data suggest that the T cell differentiation antigens CD3 and CD2 are jointly involved in antigen-specific T cell activation. The data are consistent with a model for antigen-specific T cell activation involving both the CD3/Ti complex and subsequent activation of the CD2 complex T cell activation by co-stimulation with anti-CD3 (SP34) and anti-CD2 (9-1) is substantially enhanced by the addition of exogenous, purified interleukin 1 (IL 1). These data would suggest that the CD2 complex, as well as the putative IL 1 receptor, are involved in separate and complementary receptor-ligand interactions, resulting in the amplification of antigen-specific T cell responses.  相似文献   

18.
CD2 (T11, the T cell E receptor), a nonpolymorphic 47- to 55-kDa glycoprotein, is a T cell-specific surface protein that plays an important role in T lymphocyte adhesion, signal transduction, and differentiation. A natural ligand of CD2 is lymphocyte function associated Ag-3 (LFA-3 (CD58)), a widely expressed glycoprotein of 50 to 70 kDa. The physiologic interaction of CD2 with LFA-3 functions to increase intercellular adhesion and plays a role in T cell activation. This interaction, however, in the absence of other stimuli, has not previously been shown to induce intracellular signals such as Ca2+ mobilization or IL-2 production. To investigate whether cAMP may play a role in ligand-triggered CD2-mediated signal transduction, we have studied the ability of purified LFA-3 and anti-CD2 mAb to induce changes in intracellular cAMP content in murine Ag-specific T cell hybridomas that stably express wild-type and mutated human CD2 molecules. By using a RIA sensitive to the femtomolar range and specific for cAMP, we demonstrate that purified LFA-3, like anti-CD2 mAb, is capable of inducing marked, transient increases in the intracellular concentration of cAMP. Presentation of purified LFA-3, like anti-CD2 mAb, is capable of inducing marked, transient increases in the intracellular concentration of cAMP. Presentation of purified LFA-3 alone to CD2-expressing hybridoma cells, however, did not stimulate phosphatidylinositol turnover nor IL-2 production. The cytoplasmic domain of CD2 is necessary for these ligand-induced cAMP changes, demonstrating that LFA-3 binding to CD2 transduces a signal to the cell. Experiments using the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine showed that CD2-mediated regulation of cAMP levels occurs primarily by the stimulation of cAMP production rather than by the inhibition of cAMP degradation. These results demonstrate that the interaction of LFA-3 with CD2, in the absence of other stimuli, is capable of initiating intracellular biochemical changes and suggest that CD2/LFA-3 interactions may regulate T cell function at least in part through the generation of intracellular cAMP.  相似文献   

19.
20.
Activation of human peripheral blood T cells by the anti-CD3 antibody OKT3 has been shown to require not only cross-linking of CD3 molecules with multimeric binding of the Fc part of OKT3 to a solid support, but also a second accessory cell-provided signal. Accordingly, measurement of T cell activation in cultures of highly enriched T cells with solid-phase-bound OKT3 can be used to investigate whether other agents can replace accessory cells. In this study we examined the capacity of anti-CD5 monoclonal antibodies to provide the additional activation signal. Resting T cells were prepared by isolating E rosette-positive cells, by removing OKM1(+) and HLA-DR(+) cells by panning, and by subsequent treatment of the cells with L-leucine methyl ester to kill remaining monocytes. These T cells were unresponsive to phytohemagglutinin (PHA) or to solid-phase-bound OKT3. However, when cultured in the presence of an anti-CD5 monoclonal antibody (anti-Leu-1, OKT1, or anti-T1), a proliferative response to solid-phase-bound OKT3 (but not to soluble OKT3 or to PHA) was observed. Anti-CD5 had no functional effect by itself, but in association with solid-phase-bound OKT3 it enhanced IL 2 receptor expression and IL 2 production and it initiated T cell proliferation. T cell proliferation under these conditions could be inhibited by an IL 2 receptor blocking antibody anti-Tac, thus confirming that anti-CD5 provides the second signal for an IL 2-dependent pathway of T cell proliferation. Preincubation of T cells with anti-Leu-1 or OKT1 resulted in complete loss of CD5 antigenicity, and such CD5 modulation was sufficient to induce a proliferative response to solid-phase-bound OKT3. It is concluded that in T cell activation by solid-phase-bound OKT3 the necessary additional signal can be provided by modulation of the CD5 antigen with an anti-CD5 antibody. CD5 therefore appears to be a positive signal receptor on the T cell membrane, whose physiologic ligand still has to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号