首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous study, we found that niacin-related compounds induced apoptosis in human acute myelomonocytic leukemia cells, HL-60. We have investigated whether these compounds acted as inducers of apoptosis also in various other cell types. In human chronic myelogenous leukemia cells, K562, which are relatively resistant to various inducers of apoptosis, the apoptosis was induced by picolinic acid and dipicolinic acid in about 50% of the cells 5-10 mM via the caspase pathway, but was not at 1 mM. However, isonicotinamide did not induce apoptosis effectively in K562 cells. On the other hand, in normal human quiescent lymphocytes, the apoptosis was not induced by these compounds at the same concentrations. It is suggested that these compounds may induce apoptosis mainly in tumor cells. The change of intracellular peroxide levels was observed in the early phase of apoptosis induced by niacin-related compounds. We expect to make use of niacin-related compounds in the field of medicine.  相似文献   

2.
We have found that niacin-related compounds, particularly picolinic acid, induced apoptosis in human leukemia cells. In this paper, we investigated whether various picolinic acid-related compounds had apoptosis-inducing activities or not. Particularly, fusaric acid, picolinaldehyde, nicotinaldehyde, 2-aminopyridine, and 3-aminopyridine also induced apoptosis in HL-60 cells. These results suggest that pyridine substituted with various groups and the consequent change of resonance structure may have an important role in the induction of apoptosis.  相似文献   

3.
It was found that three niacin-related compounds, isonicotinic acid, nicotinamide, and nicotinamide N-oxide, induced granulocytic differentiation in HL-60 cells. We investigated the expression of CD38, which catalyzes the synthesis of cyclic ADP-ribose, a Ca2+ mobilizer, during differentiation by niacin-related compounds. It was found that CD38 was induced by isonicotinic acid, whereas nicotinamide and nicotinamide N-oxide containing an amino group did not induce it. The difference in expression of CD38 may provide some useful information for the elucidation of the mechanisms of cell differentiation.  相似文献   

4.
It was found that three niacin-related compounds, isonicotinic acid, nicotinamide, and nicotinamide N-oxide, induced granulocytic differentiation in HL-60 cells. We investigated the expression of CD38, which catalyzes the synthesis of cyclic ADP-ribose, a Ca2+ mobilizer, during differentiation by niacin-related compounds. It was found that CD38 was induced by isonicotinic acid, whereas nicotinamide and nicotinamide N-oxide containing an amino group did not induce it. The difference in expression of CD38 may provide some useful information for the elucidation of the mechanisms of cell differentiation.  相似文献   

5.
Recent studies have implicated apoptosis as one of the most plausible mechanisms of the chemopreventive effects of selenium compounds, and reactive oxygen species (ROS) as important mediators in apoptosis induced by various stimuli. In the present study, we demonstrate that Se-methylselenocysteine (MSC), one of the most effective selenium compounds at chemoprevention, induced apoptosis in HL-60 cells and that ROS plays a crucial role in MSC-induced apoptosis. The uptake of MSC by HL-60 cells occurred quite early, reaching the maximum within 1 h. The dose-dependent decrease in cell viability was observed by MSC treatment and was coincident with increased DNA fragmentation and sub-G(1) population. 50 microM of MSC was able to induce apoptosis in 48% of cell population at a 24 h time point. Moreover, the release of cytochrome c from mitochondria and the activation of caspase-3 and caspase-9 were also observed. The measurement of ROS by dichlorofluorescein fluorescence revealed that dose- and time-dependent increase in ROS was induced by MSC. N-acetylcysteine, glutathione, and deferoxamine blocked cell death, DNA fragmentation, and ROS generation induced by MSC. Moreover, N-acetylcysteine effectively blocked caspase-3 activation and the increase of the sub-G(1) population induced by MSC. These results imply that ROS is a critical mediator of the MSC-induced apoptosis in HL-60 cells.  相似文献   

6.
Rotenone, an inhibitor of NADH dehydrogenase complex, is a naturally occurring insecticide, which is capable of inducing apoptosis. Rotenone-induced apoptosis is considered to contribute to its anticancer effect and the etiology of Parkinson's disease (PD). We demonstrated that rotenone induced internucleosomal DNA fragmentation, DNA ladder formation, in human cultured cells, HL-60 (promyelocytic leukemia) and BJAB cells (B-cell lymphoma). Flow cytometry showed that rotenone induced H2O2 generation, followed by significant changes in the mitochondrial membrane potential (DeltaPsim). Caspase-3 activity increased in HL-60 cells in a time-dependent manner. These apoptotic events were delayed in HP100 cells, an H2O2-resistant clone of HL-60, confirming the involvement of H2O2 in apoptosis. Expression of anti-apoptotic protein, Bcl-2, in BJAB cells drastically inhibited DeltaPsim change and DNA ladder formation but not H2O2 generation, confirming the participation of mitochondrial dysfunction in apoptosis. NAD(P)H oxidase inhibitors prevented H2O2 generation and DNA ladder formation. These results suggest that rotenone induces O2(-)-derived H2O2 generation through inhibition of NADH dehydrogenase complex and/or activation of NAD(P)H oxidase, and H2O2 generation causes the disruption of mitochondrial membrane in rotenone-induced apoptosis.  相似文献   

7.
Inhibition of protein N-glycosylation by tunicamycin induced morphological changes characteristic of apoptosis in human promyelocytic HL-60 cells. Internu-cleosomal DMA fragmentation could be detected after short-time incubation (between 6 and 9 h) of HL-60 cells with low doses of tunicamycin (0.05 μg/ml). Under these conditions the synthesis of glycoproteins was reduced to 17% of control values, while no significant changes in the rates of total protein synthesis could be observed. Tunicamycin ability to induce DNA fragmentation was in good correlation with its potency as glycosylation inhibitor in several myeloid cell lines. Tunicamycin-induced apoptosis was potentiated by activation of protein kinease C (PKC) by phorbol esters and partially prevented by the PKC inhibitor staurosporine. Inhibitors of RNA and protein synthesis displayed a protective effect. Treatment of HL-60 cells with tunicamycin did not elicit the expression of cell surface differentiation antigens or their ability to generate superoxide anion. In contrast, tunicamycin significantly inhibited these processes during dimethyl sulfoxide (DMSO)-induced myeloid differentiation. These observations indicate that the main effect of tunicamycin in HL-60 cells is the induction of apoptosis. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Electron microscopy studies demonstrate unequivocally that the observed oligonucleosome-sized secondary DNA fragmentation in human promyelocytic HL-60 cells treated with the topoisomerase inhibitors camptothecin and teniposide is correlated with the morphological changes in cell structure typical of programmed cell death (apoptosis). Since apoptosis has been associated with potential involvement of intracellular signaling linked to the Ca2+/calmodulin and protein kinase C transduction pathways, we also investigated the effects of signaling modulators on camptothecin- and teniposide-induced secondary DNA fragmentation in HL-60 cells. Neither calcium chelators, calcium/calmodulin inhibitors (calmidazolium or cyclosporine A), protein kinase C stimulation by TPA, protein phosphatase inhibition by okadaic acid, protein kinase inhibition by staurosporine, calphostin C, genistein or H7, nor cell cycle alterations by caffeine had any detectable effect. Interestingly, most of these intracellular signaling modulators were able to induce DNA fragmentation in HL-60 cells by themselves. These results may suggest that even though modulation of these signaling pathways was unable to prevent topoisomerase inhibitor-induced apoptosis, their sole deregulations could induce apoptosis in HL-60 cells. In contrast, aphidicolin blocked camptothecin-induced secondary DNA fragmentation, indicating that replication-induced DNA damage is required for camptothecin- but not teniposide-induced secondary DNA fragmentation. Zinc, 3-aminobenzamide, and spermine also modulated both camptothecin- and teniposide-induced secondary DNA fragmentation without significant alteration of topoisomerase-mediated primary DNA strand breaks. Hence, poly(ADP-ribosyl)ation and chromatin structure may be important in modulating oligonucleosomesized DNA fragmentation associated with apoptosis in HL-60 cells treated with topoisomerase inhibitors.  相似文献   

9.
Exposure of HL-60 cells to 1,25-dihydroxyvitamin D(3) (calcitriol) induces their differentiation into monocytes. This terminal differentiation is associated with acquired resistance to many proapoptotic stimuli. Here we show that differentiated HL-60 cells undergo apoptosis upon curcumin treatment although they retain resistance to apoptosis induced by a topoisomerase poison - etoposide. Curcumin induced changes of nuclear morphology, DNA fragmentation, release of cytochrome c as well as caspase activation in both differentiated and undifferentiated cells. Experiments performed in other laboratories suggested that curcumin initiates apoptosis by DNA damage that results from topoisomerase II poisoning. We measured gammaH2AX expression, a marker of DNA double strand breaks, in both undifferentiated and differentiated HL-60 cells treated with curcumin or etoposide. In etoposide-treated undifferentiated cells early gammaH2AX expression correlated with initiation phase of apoptosis. In contrast, in curcumin-treated cells gammaH2AX expression correlated with apoptotic DNA fragmentation, which is characteristic for the execution phase of apoptosis. Our experiments show that curcumin overcomes the resistance of calcitriol-differentiated HL-60 cells to DNA-damage-induced apoptosis by activating other cell signaling pathways leading to cell death of HL-60.  相似文献   

10.
Zhu XF  Liu ZC  Xie BF  Li ZM  Feng GK  Xie HH  Wu SJ  Yang RZ  Wei XY  Zeng YX 《Life sciences》2002,70(11):1259-1269
Annonaceous acetogenins have potent antitumor effect in vitro and in vivo. Squamocin is one of the annonaceous acetogenins and has been reported to have antiproliferative effect on cancer cells. Our results from this study showed that squamocin inhibited proliferation of HL-60 cells with IC50 value of 0.17 microg/ml and induced apoptosis of HL-60 cells. Investigation of the mechanism of squamocin-induced apoptosis revealed that treatment of HL-60 cells with squamocin resulted in extensive nuclear condensation. DNA fragmentation, cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and induction of caspase-3 activity. Pretreatment of HL-60 cells with caspase-3 specific inhibitor DEVD-CHO prevented squamocin-induced DNA fragmentation, PARP cleavage and cell death. The expression levels of protein bcl-2, bax have no change in response to squamocin treatment in HL-60 cells, whereas stress-activated protein kinase (SAPK/JNK) was activated after treatment with squamocin in HL-60 cells. These results suggest that apoptosis of HL-60 cells induced by squamocin requires caspase-3 activation and is related to SAPK activation.  相似文献   

11.
Gossypol is a component present in cottonseeds and has been demonstrated to be an effective contraceptive drug in preventing spermatogenesis in mammalian species. In the present, we reported that gossypol could induce apoptosis in human promyelocytic leukemia cells (HL-60), as characterized by DNA fragmentation, poly(ADP) ribose polymerase (PARP) cleavage. The efficacious induction of apoptosis was observed at 50 microM for 6 h. Further molecular analysis showed that gossypol induced the truncation of Bid protein, the loss of mitochondrial membrane potential (DeltaPsi m), cytochrome c release from mitochondria into cytosol, and activation of caspase-3, -8, and -9. However, gossypol did not increase the level of reactive oxygen species (ROS), and antioxidants including N-acetyl cysteine (NAC) and catalase could not block gossypol-induced apoptosis in the HL-60 cells. These data suggest that gossypol induces apoptosis in HL-60 cells through ROS-independent mitochondrial dysfunction pathway.  相似文献   

12.
The flavonoid from lemon fruit (Citrus limon BURM. f.) and its metabolites, particularly eriodictyol, 3,4-dihydroxyhydrocinnamic acid, and phloroglucinol had the function of DNA fragmentation in HL-60 cells when analyzed by flow cytometry. An apoptotic DNA ladder and chromatin condensation were observed in HL-60 cells when treated with these compounds. The caspase inhibitor prevented DNA fragmentation. These compounds are anticipated to be useful for medical purposes.  相似文献   

13.
Zhang QH  Sheng HP  Loh TT 《Life sciences》1999,65(16):1715-1723
bcl-2 has been shown to enhance cell survival by inhibiting apoptosis. The present study investigates the potential role of bcl-2 on apoptosis in HL-60 cells induced by different agents. HL-60/bcl-2 and control HL-60/neo cells were obtained by transfection of bcl-2 cDNA or the neomycin-resistant gene, respectively. Staurosporine (STS) promoted DNA fragmentation dose-dependently in the 6 h exposure assay while C2-ceramide was relatively slow in the induction of apoptosis (approximately 40% after 24 h) and required higher concentrations (> 20 microM). Caspases inhibitors, Ac-YVAD-cmk (100 microM) and zVAD-fmk (20 microM) had no effect on DNA fragmentation themselves. However, they blocked C2-ceramide-induced caspase-3 cleavage and apoptosis, but not the release of cytochrome c from the mitochondria. In addition, we found that both Ac-YVAD-cmk and zVAD-fmk failed to protect STS-induced apoptosis in HL-60 cells. Overexpression of bcl-2 inhibited STS and C2-ceramide induced cytochrome c redistribution, caspase-3 activation and apoptosis. These results suggest a protective role of bcl-2 in the regulation of apoptosis and cytochrome c release is unlikely to be involved in the final common pathway in apoptosis.  相似文献   

14.
TAS-103, a new anticancer drug, induces DNA cleavage by inhibiting the activities of topoisomerases I and II. We investigated the mechanism of TAS-103-induced apoptosis in human cell lines. Pulsed field gel electrophoresis revealed that in the leukemia cell line HL-60 and the H(2)O(2)-resistant subclone, HP100, TAS-103 induced DNA cleavage to form 1-2-Mb fragments at 1 h to a similar extent, indicating that the DNA cleavage was induced independently of H(2)O(2). TAS-103-induced DNA ladder formation in HP100 cells was delayed compared with that seen at 4 h in HL-60 cells, suggesting the involvement of H(2)O(2)-mediated pathways in apoptosis. Flow cytometry revealed that H(2)O(2) formation preceded increases in mitochondrial membrane potential (DeltaPsim) and caspase-3 activation. Inhibitors of poly(ADP-ribose) polymerase (PARP) prevented both TAS-103-induced H(2)O(2) generation and DNA ladder formation. The levels of NAD(+), a PARP substrate, were significantly decreased in HL-60 cells after a 3-h incubation with TAS-103. The decreases in NAD(+) levels preceded both increases in DeltaPsim and DNA ladder formation. Inhibitors of NAD(P)H oxidase prevented TAS-103-induced apoptosis, suggesting that NAD(P)H oxidase is the primary enzyme mediating H(2)O(2) formation. Expression of the antiapoptotic protein, Bcl-2, in BJAB cells drastically inhibited TAS-103-induced apoptosis, confirming that H(2)O(2) generation occurs upstream of mitochondrial permeability transition. Therefore, these findings indicate that DNA cleavage by TAS-103 induces PARP hyperactivation and subsequent NAD(+) depletion, followed by the activation of NAD(P)H oxidase. This enzyme mediates O(2)(-)-derived H(2)O(2) generation, followed by the increase in DeltaPsim and subsequent caspase-3 activation, leading to apoptosis.  相似文献   

15.
Terminally differentiated HL-60 cells undergoing programmed cell death (apoptosis) in culture were found to have a disrupted microtubular network. Treatment of undifferentiated HL-60 cells with microtubule-disrupting agents alone was found to induce apoptosis en masse in these cells. In contrast, disruption of microfilaments did not induce apoptosis; instead these cells underwent necrosis, the pathological mode of cell death. Apoptosis in response to microtubule disruption in HL-60 cells was characterized by cell shape changes, nuclear condensation followed by fragmentation and the separation of the cell into numerous intact fragments, termed apoptotic bodies. Apoptosis of these cells was further confirmed by DNA analysis, which demonstrated the activation of an endogenous endonuclease which cleaved the DNA of these cells into oligonucleosomal fragments. Microtubule disrupting agents were found to exert these effects over a wide range of doses. Apoptosis was also inducible in HL-60 cells, in a dose-dependent manner, by the calcium ionophore A23187. Since microtubules are known to be highly sensitive to intracellular calcium fluctuations, this suggests that calcium influx could act at the microtubule level in effecting apoptosis.  相似文献   

16.
Rhein is an anthraquinone compound enriched in the rhizome of rhubarb, a traditional Chinese medicine herb showing anti-tumor promotion function. In this study, we first reported that rhein could induce apoptosis in human promyelocytic leukemia cells (HL-60), characterized by caspase activation, poly(ADP)ribose polymerase (PARP) cleavage, and DNA fragmentation. The efficacious induction of apoptosis was observed at 100 microM for 6h. Mechanistic analysis demonstrated that rhein induced the loss of mitochondrial membrane potential (DeltaPsi(m)), cytochrome c release from mitochondrion to cytosol, and cleavage of Bid protein. Rhein also induced generation of reactive oxygen species (ROS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. However, these actions seem not to be associated with the apoptosis induction because antioxidants including N-acetyl cysteine (NAC), Tiron, and catalase did not block rhein-induced apoptosis, although they could block the generation of ROS and the phosphorylation of JNK and p38 kinase. Our data demonstrate that rhein induces apoptosis in HL-60 cells via a ROS-independent mitochondrial death pathway.  相似文献   

17.
Abstract. Terminally differentiated HL-60 cells undergoing programmed cell death (apoptosis) in culture were found to have a disrupted microtubular network. Treatment of undifferentiated HL-60 cells with microtubule-disrupting agents alone was found to induce apoptosis en masse in these cells. In contrast, disruption of microfilaments did not induce apoptosis; instead these cells underwent necrosis, the pathological mode of cell death. Apoptosis in response to microtubule disruption in HL-60 cells was characterized by cell shape changes, nuclear condensation followed by fragmentation and the separation of the cell into numerous intact fragments, termed apoptotic bodies. Apoptosis of these cells was further confirmed by DNA analysis, which demonstrated the activation of an endogenous endonuclease which cleaved the DNA of these cells into oligonucleosomal fragments. Microtubule disrupting agents were found to exert these effects over a wide range of doses. Apoptosis was also inducible in HL-60 cells, in a dose-dependant manner, by the calcium ionophore A23187. Since microtubules are known to be highly sensitive to intracellular calcium fluctuations, this suggests that calcium influx could act at the microtubule level in efTftctino annntnsis  相似文献   

18.
R F Huang  S M Huang  B S Lin  J S Wei  T Z Liu 《Life sciences》2001,68(25):2799-2811
The cytotoxicity of homocysteine derivatives on chromosomal damage in somatic cells is not well established. The present study used reactive homocysteine derivative of homocysteine thiolactone (Hcy) to investigate its causal effect on apoptotic DNA injury in human promyeloid HL-60 cells. Our results demonstrated that Hcy induced cell death and features of apoptosis including increased phosphotidylserine exposure on the membrane surface, increased apoptotic cells with hypoploid DNA contents, and internucleosomal DNA fragmentation, all of which occurred in a time- and concentration-dependent manner. Hcy treatment also significantly increased intracellular reactive oxygen species H2O2, which coincided with the elimination of caspase 3 proenzyme levels and increased caspase 3 activity at the time of the appearance of apoptotic DNA fragmentation. Preincubation of Hcy-treated HL-60 cells with catalase completely scavenged intracellular H2O2, thus inhibiting caspase 3 activity and protecting cells from apoptotic DNA damage. In contrast, superoxide dismutase failed to inhibit Hcy-induced DNA damage. Taken together, these results demonstrate that Hcy exerted its genotoxic effects on HL-60 cells through an apoptotic pathway, which is mediated by the activation of caspase 3 activity induced by an increase in intracellular hydrogen peroxide.  相似文献   

19.
It has been reported that inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase suppress cell proliferation and induce apoptosis. One inhibitor which induces apoptosis is mevastatin. However, the molecular mechanism of apoptosis induction is not well understood so the effects of mevastatin on various functions of HL-60 cells were investigated. We confirmed that mevastatin activated caspase-3 by release of cytochrome c (Cyt. c) from mitochondria through a membrane permeability transition mechanism and also induced typical fragmentation and ladder formation of DNA in HL-60 cells. These effects were inhibited by mevalonate, a metabolic intermediate of cholesterol biosynthesis. Mevalonate and geranylgeraniol (GGOH) inhibited DNA fragmentation whereas farnesol (FOH) did not. Mevastatin also induced cell differentiation to monocytic cells via a mevalonate inhibitable mechanism. Furthermore, mevastatin decreased the amount of an isoprenylated membrane bound Rap1 small GTPase concomitant with an increase in cytosolic Rap1 which occurred before apoptosis and differentiation. On the contrary, both mevastatin and geranylgeranylacetone (GGA), which competes with geranylgeranyl pyrophosphate, induced membrane depolarization of isolated mitochondria without swelling and Cyt. c release. These results suggest that mevastatin-induced apoptosis of HL-60 cells might be caused indirectly by activation of the caspase cascade through the modulation of mitochondrial functions and that some relationship between a certain small GTPase molecule, such as Rap1, and mevastatin-induced apoptosis may exist.  相似文献   

20.
羊栖菜多糖诱导HL-60细胞凋亡的研究   总被引:7,自引:0,他引:7  
用MTT法观察羊栖莱多糖(SFPS)在体外抗人白血病HL-60细胞增殖作用;扫描电镜、透射电镜、DNA电泳和流式细胞仪检测HL-60细胞凋亡。结果表明SFPS对HL-60细胞具有显著生长抑制作用,并呈量效和时效关系,药物作用24,36,48,72h的IC50分别为390,362,402,421mg/L;药物浓度为300mg/L和500mg/L作用HL-60细胞后,琼脂糖凝胶电泳显示有凋亡细胞特有的DNA梯状条带,细胞微绒毛减少、染色质固缩、边集,凋亡小体形成;DNA直方图出现亚G1峰。在一定浓度范围内,SFPS诱导细胞凋亡的作用呈现浓度和时间依赖性,同时G2/M期细胞比例增多。因此,SFPS抗肿瘤作用与诱导细胞凋亡和G2/M期细胞阻滞有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号