首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The Diffusive Conductivity of the Stomata of Wheat Leaves   总被引:2,自引:0,他引:2  
A leaf chamber (described in detail) was used alternately witha resistance porometer to measure resistance to viscous flowof air through the leaf, and with a diffusion porometer to measurethe differential diffusive flow of hydrogen and air (VHVA)through the leaf and the component of hydrogen flow (V'H) movingstraight across the leaf. The resistance of the mesophyll isneeded for interpretation: estimates by three different methodsfor viscous flow did not agree very well, but two differentmethods for diffusive flow gave good agreement. For wheat leaves,only very large errors are important. Formal analysis is in three appendixes: I. Interpretation ofviscous and diffusive flow in small pores involves some problemsin molecular physics, complicated by the particular geometryof the wheat stoma. With some uncertainty, formal expressionsare derived for the viscous resistance of a single stoma, rv,and for the resistances to diffusion of hydrogen and air, andof water vapour and carbon dioxide, all expressed as rs persquare centimetre of leaf surface. The analysis for hydrogen/airis the most uncertain; that for water vapour and carbon dioxideis more reliable. II. An indication is given of the flow characteristicsof the leaf-chamber system, from which rv can be derived, andof the basis for estimating mesophyll resistance. III. The methodof converting estimates of rs into estimates of VHVAand V'H is given. The results presented are expressed as nearly as possible interms of the quantities which were measured. For five leavesthe dependence of VHVA on V'H agrees well with theoreticalpredictions; the dependence of VHVA (and V'H) on rv,on average, agrees well with prediction, but involves the assumptionthat the stomata get shorter as they close. The agreement isgood enough to suggest that the formal expressions for rs interms of stomatal dimensions and molecular gas constants arereliable enough to be carried forward into future transpirationand assimilation studies. The minimum value of ra for watervapour (c. 3 sec cm+1) is close to values found elsewhere bydifferent techniques. At very small stomatal openings there was a large deviationfrom predicted behaviour, such as would occur if the imposedexcess air pressure further closed the stomata during viscousflow experiments.  相似文献   

2.
The impact of a heterogeneous distribution of actinic light within a leaf chamber for photosynthetic measurements by gas exchange on the photosynthesis-irradiance relationship was investigated. High-resolution light distributions were measured over the area of a commercially available clamp-on leaf chamber equipped with build-in red and blue LEDs, as well as over the area of a custom-made leaf chamber with external light source, using a low-cost digital camera and freely available software. The impact of the measured heterogeneity on the photosynthesis-irradiance response curve was calculated for two realistic scenarios. When the average light intensity over the leaf chamber area was estimated accurately, heterogeneity had minor effects on the photosynthesis-irradiance response curve. However, when the irradiance was measured in the chamber centre, which is common practice, and assumed to be homogeneous, for both leaf chambers the photosynthesis-irradiance response curve was subject to considerable error and led to serious underestimation of the light-limited quantum yield of photosynthesis. Additionally, mixed light sources with different heterogeneity patterns per light source, such as in the clamp-on leaf chamber, potentially increase errors due to heterogeneous physiological responses to light spectrum. High-resolution quantification of the leaf-chamber light distribution enables calculation of the correct average light intensity and already resolves the most pressing problems associated with heterogeneity. To exclude any light-distribution related errors in gas-exchange measurements a leaf chamber and actinic irradiance source design with a homogeneous light distribution is an absolute requirement.  相似文献   

3.
Using an improved gas-exchange technique for leaf chamber the authors' conclusions derived from electrical analogy analysis and simulation have been tested. In most devices for gas-exchange measurements, a fixed ventilation speed is used, which results in a fixed boundary layer conductance of leaf, but the results of experiments are often used to predict canopy transpiration or photosynthesis where the boundary layer conductance changes with the position of the leaf in the canopy and the wind speed above the canopy. To change the boundary layer conductance of a leaf, a barrier of variable size was inserted into the leaf chamber to decrease the wind speed over the leaf. The responses of stomatal conductance, net photosynthetic rate, and transpiration rate to light were then measured. The relationships amongst them have been tested. The experimental results matched well with the results predicted by electrical analogy analysis and simulation in most cases.  相似文献   

4.
Equipment is described which delivers air with concentrationsof CO2 and water vapour closely controlled in the ranges 0 to2500 ppm and 5 to 15 mb respectively, at flow rates of up to10 1 min-1, to each four leaf chambers. The leaf temperatureis controlled to ±0.5 °C and, with a light intensityof 0.3 cal cm-2 min-1 visible radiation (0.4 to 0.7 µm)leaf temperature can be maintained at 17.5 °C.The apparatusused to measure the concentration differences between the watervapour and CO2 entering and leaving the leaf chamber (used tocalculate transpiration, photosynthetic, and respiration rates)is described in detail.Results of tests, which show the necessityfor mounting a fan within the leaf chamber, are reported.Typicallight- and CO2-response curves are given for kale leaves (Brassicaoleracca var. acephala) and an attempt is made to quantify theerrors in the measurement of photosynthesis and transpiration.  相似文献   

5.
The variations of leaf carbohydrate concentration, carbon isotopediscrimination () of leaf soluble carbohydrate, gas-exchangeand growth during a soil drying cycle under 350 and 700 µmolmol-1 CO2 concentrations ([CO2]) inQuercus robur seedlings wereanalysed. In well-watered conditions, a doubling of [CO2] causedan increase of CO2 assimilation rate (A) ( +47%) and a decreaseof stomatal conductance for water vapour (g) (–25%),anddoubled the intrinsic water-use efficiency (A/g). The valuesof A were not affected by elevated [CO2] which was consistentwith the 2-fold increase of A/g. Elevated [CO2 also significantlyincreased sucrose and starch leaf concentrations as well asaerial growth and plant dry weight. The stimulating effect ofCO2 enrichment on A and A/g was maintained in moderate droughtconditions, but disappeared in the most severe drought conditions.Drought induced an increase of hexose concentrations in both[CO2], but this effect was more pronounced under elevated [CO2],which may contribute to increase osmoregulation. From the onsetof drought, starch was depleted in both [CO2]. Carbon isotopediscrimination decreased in response to drought, which correspondedto an increase in A/g according to the two-step model of isotopicdiscrimination. In contrast, the A/g values derived from instantaneousleaf gas-exchange measurements decreased along the drying cycle.The discrepancy observed between the two independent estimatesof water-use efficiency is discussed in terms of time-scaleintegration. The results obtained with the isotopic approachusing soluble carbohydrate suggest a predominant stomatal limitationof CO2 assimilation in response to drought. Soil drying cycle,elevated CO2, leaf gas-exchange, leaf carbohydrate concentrations,carbon isotope discrimination, growth, Quercus robur. Key words: soil drying cycle, elevated CO2, leaf gas-exchange, leaf carbohydrate concentrations, carbon isotope discrimination, growth, Quercus robur  相似文献   

6.
A porometer, which can be easily constructed with a common photometricunit and yet records the air flow through a leaf blade accuratelyand sensitively, was developed and used to record the flow changesthrough Brassica chinensis leaves under several light, air andwater conditions. (Received May 17, 1973; )  相似文献   

7.
An apparatus for measuring the rates of photosynthesis of leavesis described. In principle, the method consisted of interruptingthe flow of air over a leaf for 15sec, during which time aircontaining 14C dioxide was passed over it. The amount of14Cassimilated by the leaf was then measured. The results werecompared with those obtained using an infra-red gas analyser.The principal cause of the discrepancies between the resultsappeared to be preferential fixation of 12C by the leaves andloss of respiratory 12C at low light intensities. There wasa linear relation between the results obtained by the two methodsand thus, using the 14C method, the rates of net photosynthesiscould be estimated. By fitting a set of neutral-density filtersover the chamber that enclosed the leaf, the rates of net photosynthesiswere determined for several light intensities simultaneously.Examples are given of curves showing the relation between lightintensity and net photosynthesis for leaves of Beta and Phaseolusplants.  相似文献   

8.
Factors affecting the supply of air to leaves enclosed in assimilationchambers have been studied using models and leaves of appleand plum. The rate of CO2 assimilation of a leaf does not increaselinearly with increasing rate of air flow. Explanations of thisand other observations are put forward in terms of the boundary-layerconcept and diffusion paths. Comparisons are made with free-airconditions, and it is concluded that air should be suppliedat the same rate (ml/min) for leaves of different size in thesame chamber. Three cup designs were also studied. A methodis described for making valid comparisons of assimilation ratesper unit area by extrapolation to an infinitely high rate ofair flow. Measurements of different sized leaves with chambersand cups can be compared in this way. Rates expressed per unitarea can be correctly compared only if the resistance to diffusionoutside the leaf is negligible, or under special conditions.Assimilation rates measured with rates of air flow giving CO2availability equivalent to that occurring in static free airshould be expressed per unit perimeter. Methods of correctionof assimilation rates for the depletion of carbon dioxide fromthe air stream are considered.  相似文献   

9.
The respective effects of meristem temperature, vapour pressuredeficit (VPD) and photosynthetic photon flux density (PPFD)on leaf elongation rate (LER) of maize, in the absence of waterdeficit in the soil have been quantified. This analysis wascarried out in a series of field experiments in northern andsouthern France over several seasons and years, and in growthchamber experiments. LER was measured with 10 min steps, togetherwith meristem temperature, VPD and PPFD at leaf level in threetypes of experiments: in growth chamber experiments with stepsin PPFD or VPD at constant meristem temperature, in growth chamberexperiments with several combinations of constant, but contrasting,PPFDs, VPDs and meristem temperatures, and in the field withfluctuating conditions, (i) When evaporative demand was low(night or day with low air VPD), LER was only linked to meristemtemperature, regardless of other climatic conditions, (ii) Lighthad no effect per se on LER in the range from 0 to 1500 molm–2 s–1 for time-scales longer than 2 h, providedthat its indirect effects on meristem temperature and on evaporativedemand were corrected (in the growth chamber) or taken intoaccount (in the field), and provided that cumulated PPFD overa weekly time-scale was compatible with field conditions, (iii)Evaporative demand sensed by growing leaves, as estimated bymeristem-to-air vapour pressure difference, markedly affectedLER in the range from 1–4 kPa, at all time-scales understudy, with a unique relationship in the growth chamber (constantconditions) and in the field (fluctuating conditions). Thiseffect was only observed when PPFD was high enough for stomatato open. The negative effect of evaporative demand on LER wasprobably not due to long distance root-to-shoot signalling,since soil was wet, calculated root water potential remainedclose to 0 MPa and concentration of ABA in the xylem sap wasvery low. Therefore, it is proposed to model maize LER witha two-step process, involving the calculation of the maximumLER at a given meristem temperature and then the calculationof the reduction in LER due to evaporative demand. Joint analysisof the whole set of data by using the two equations yieldeda r2 of 0.75. This two-step process would be more accurate thanthe provision of LER from temperature only in cases where airVPD frequently exceeds 2 kPa. Key words: Leaf growth, light, evaporative demand, temperature, thermal time, water deficit, ABA, Zea mays L.  相似文献   

10.
Accurate prediction of the timing of leaf area development isessential to analyse and predict the responses of crops to theenvironment. In this paper, we analyse the two processes determiningthe chronology of leaf development—initiation of leafprimordia by the shoot meristem and production of expanded leavesout of the shoot tip—in several pea (Pisum sativumL.)cultivars in response to air temperature and plant growth rate.Contrasting levels of air temperature and plant growth rateduring leaf development were induced by a wide range of sowingdates and plant densities in glasshouse or field experiments.Full leaf expansion was found to occur one phyllochron afterfull leaf unfolding, whatever the leaf nodal position. Primordiuminitiation and expanded leaf production rates presented similarquantitative responses to air temperature (linear response andcommonx-intercept), whatever the plant growth rate, cultivaror period of cycle. As a consequence, they were co-ordinatedand the numbers of initiated primordia or expanded leaves wereeasily deduced from simple visual observation of leaf unfolding.The change, over time, of the numbers of initiated leaf primordiaand fully expanded leaves correlated with cumulated degree-days,with stable relationships in a wide range of environmental conditions.Two phases, with different production rates, had to be considered.These results allowed us to predict accurately the beginningand the end of individual leaf development from daily mean airtemperatures. The relationships obtained here provide an effectiveway of analysing and predicting leaf development responses tothe environment. Pisum sativumL.; pea; number of leaf primordia; number of leaves; temperature; modelling  相似文献   

11.
Five different methods for measuring transpiration, which include gravimetric analysis (control), heat pulse velocity (HPV), time domain reflectometry (TDR), single leaf and whole plant infrared gas-exchange measurements, have been tested on two cultivars (Redcort and Empire) of young apple trees (Malus communis L.). The objective was to compare these methods and establish the most affordable one to be used in greenhouse conditions in order to determine and/or estimate the amount of water for an efficient irrigation management. Results obtained with TDR were particularly accurate and not statistically different with respect to the control (–4.2 %) and this was supported by the correlation coefficient (r = 0.94) found. The HPV method was sufficiently accurate and reliable for small stems, however, in our conditions this method generally underestimated the transpiration (–32.4 %). Single leaf and particularly whole plant infrared gas-exchange measurements suffered an overestimation of the transpiration with respect to the control.  相似文献   

12.
Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc., Lincoln, NE, USA) leaf chambers with polymer foam gaskets and enclosing either 2 or 6 cm(2) leaf area, and conducted a sensitivity analysis of the diffusion leak effects on Farquhar et al. photosynthesis model parameters - the maximum carboxylase activity of ribulose 1 x 5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), capacity for photosynthetic electron transport (J(max)) and non-photorespiratory respiration rate in light (R(d)). In addition, net assimilation rate (A(n)) versus intercellular CO(2) (C(i)) responses were measured in leaves of Mediterranean evergreen species Quercus ilex L. enclosing the whole leaf chamber in a polyvinyl fluoride bag flushed with the exhaust air of leaf chamber, thereby effectively reducing the CO(2) and water vapour gradients between ambient air and leaf chamber. For the empty chambers, average diffusion leak for CO(2), K(CO2), (molar flow rate corresponding to unit CO(2) mole fraction difference) was ca. 0.40 micromol s(-1). K(CO2) increased ca. 50% if a dead leaf was clamped between the leaf chamber. Average diffusion leak for H(2)O was ca. 5- to 10-fold larger than the diffusion leak for CO(2). Sensitivity analyses demonstrated that the consequence of a CO(2) diffusion leak was apparent enhancement of A(n) at high CO(2) mole fraction and reduction at lower CO(2) mole fraction, and overall compression of C(i) range. As the result of these modifications, Farquhar et al. model parameters were overestimated. The degree of overestimation increased in the order of V(cmax) < J(max) < R(d), and was larger for smaller chambers and for leaves with lower photosynthetic capacity, leading to overestimation of all three parameters by 70-290% for 2 cm(2), and by 10-60% for 6 cm(2) chamber. Significant diffusion corrections (5-36%) were even required for leaves with high photosynthetic capacity measured in largest chamber. Water vapour diffusion leaks further enhanced the overestimation of model parameters. For small chambers and low photosynthetic capacities, apparent C(i) was simulated to decrease with increasing A(n) because of simultaneous CO(2) and H(2)O diffusion leaks. Measurements in low photosynthetic capacity Quercus ilex leaves enclosed in 2 cm(2) leaf chamber exhibited negative apparent C(i) values at highest A(n). For the same leaves measured with the entire leaf chamber enclosed in the polyvinyl fluoride bag, C(i) and A(n) increased monotonically. While the measurements without the bag could be corrected for diffusion leaks, the required correction in A(n) and transpiration rates was 100-500%, and there was large uncertainty in Farquhar et al. model parameters derived from 'corrected'A(n)/C(i) response curves because of uncertainties in true diffusion leaks. These data demonstrate that both CO(2) and water vapour diffusion leaks need consideration in measurements with clamp-on leaf cuvettes. As plants in natural environments are often characterized by low photosynthetic capacities, cuvette designs need to be improved for reliable measurements in such species.  相似文献   

13.
Use of the Pressure Chamber in Membrane Damage Studies   总被引:2,自引:0,他引:2  
The ability to detect membrane damage in plant leaves by thepressure chamber technique was evaluated. Membrane damage wasinduced by freezing and thawing, absorption of the host-specifictoxin victorin, ozonation, inoculation with Helminthosporiummaydis, and spraying with the phytotoxin, fusicoccin. The pressure-volumerelationships, i.e. the volume of sap expressed from a leafwith incremental increases in pressure, were compared in leaveswith intact or damaged membranes. Where membrane damage waswidespread throughout the leaf, sap was expressed at pressuresas low as one tenth of those needed in leaves with intact membranesand at low pressures the amount of water expressed from leaveswith damaged membranes was up to 10 times that from leaves withintact membranes. Further, the pressure-volume curves of healthyleaves became linear when the leaf turgor potential was reducedto zero, but were non-linear in leaves with damaged membranes.Ozone treatment, inoculation with H. maydis, or spraying withfusicoccin damaged only a proportion of the leaf cells, andpressure-volume relationships more nearly resembled those obtainedwith healthy leaves rather than those obtained with freezingand thawing and absorption of victorin. It is concluded that the pressure chamber can be used to observemembrane integrity, but its ability to detect damage may belimited to conditions in which the majority of cells in theleaf are damaged.  相似文献   

14.
Soil and ecosystem trace gas fluxes are commonly measured using the dynamic chamber technique. Although the chamber pressure anomalies associated with this method are known to be a source of error, their effects have not been fully characterized. In this study, we use results from soil gas-exchange experiments and a soil CO2 transport model to characterize the effects of chamber pressure on soil CO2 efflux in an annual California grassland. For greater than ambient chamber pressures, experimental data show that soil-surface CO2 flux decreases as a nonlinear function of increasing chamber pressure; this decrease is larger for drier soils. In dry soil, a gauge pressure of 0.5 Pa reduced the measured soil CO2 efflux by roughly 70% relative to the control measurement at ambient pressure. Results from the soil CO2 transport model show that pressurizing the flux chamber above ambient pressure effectively flushes CO2 from the soil by generating a downward flow of air through the soil air-filled pore space. This advective flow of air reduces the CO2 concentration gradient across the soil–atmosphere interface, resulting in a smaller diffusive flux into the chamber head space. Simulations also show that the reduction in diffusive flux is a function of chamber pressure, soil moisture, soil texture, the depth distribution of soil CO2 generation, and chamber diameter. These results highlight the need for caution in the interpretation of dynamic chamber trace gas flux measurements. A portion of the frequently observed increase in net ecosystem carbon uptake under elevated CO2 may be an artifact resulting from the impact of chamber pressurization on soil CO2 efflux.  相似文献   

15.
Transpiration rates of single leaves of Pelargonium and wheatwere measured under constant conditions of light, temperature,and air flow. Concurrently, stomatal movement was followed withthe resistance porometer during cycles of changing water contentof the leaf and changes induced by light and darkness. Stomatalmovement was found to exert a large controlling influence onthe transpiration rate, whereas water content had an extremelysmall or negligible effect. An approximately inverse linearrelation between transpiration rate and logarithm of resistanceto viscous flow through the leaf is believed to be the resultantof an inverse curvilinear relationship between the diffusiveconductance of the stomata and log. leaf resistance and thedecreasing difference of vapour pressure arising from the highertranspiration rates with increasing stomatal conductances. Nevertheless,the relation demonstrates that the transpiration rate is influencedby the degree of stomatal opening throughout its entire range. There was some evidence of lower transpiration rates duringand after recovery from wilting than before wilting. This isattributed to a decrease in a cell-wall conductance, the evaporatingsurface being located within the cell wall. During wilting partiallyirreversible contraction of the cell wall occurs. There wasalso evidence of slow changes in cell volume at full turgidityattributable to plastic flow. These occurred when the leaf wastransferred from environments of a high to low potential forevaporation. Extensive movement of the stomata followed changes in leaf water,passive opening resulting from decrease and closure from increaseof leaf water. It is suggested that the direction and extentof stomatal changes induced by water deficits is a consequenceof the rate of change of leaf water content and not of the absolutevalues. The stomata also showed an enhanced tendency to closein dry moving air following a period of wilting even after theleaf had regained turgidity.  相似文献   

16.
The effects of elevated atmospheric CO2 concentrations on theecophysiological responses (gas exchange, chlorophyll a fluorescence,Rubisco activity, leaf area development) as well as on the growthand biomass production of two poplar clones (i.e. Populus trichocarpax P. deltoides clone Beaupré and P. x euramericana cloneRobusta) were examined under open top chamber conditions. Theelevated CO2 treatment (ambient + 350 µmol mol-1) stimulatedabove-ground biomass of clones Robusta and Beaupré afterthe first growing season by 55 and 38%, respectively. This increasedbiomass production under elevated CO2 was associated with asignificant increase in plant height, the latter being the resultof enhanced internode elongation rather than an increased productionof leaves or internodes. Both an increased leaf area index (LAI)and a stimulated net photosynthesis per unit leaf contributedto a significantly higher stem biomass per unit leaf area, andthus to the increased above-ground biomass production underthe elevated CO2 concentrations in both clones. The larger LAIwas caused by a larger individual leaf size and leaf growthrate; the number of leaves was not altered by the elevated CO2treatment. The higher net leaf photosynthesis was the resultof an increase in the photochemical (maximal chlorophyll fluorescenceFm and photochemical efficiency Fv/Fm) as well as in the biochemical(increased Rubisco activity) process capacities. No significantdifferences were found in dark respiration rate, neither betweenclones nor between treatments, but specific leaf area significantlydecreased under elevated CO2 conditions.Copyright 1995, 1999Academic Press Biomass, chlorophyll a fluorescence, elevated CO2, growth, Populus, poplar, photosynthesis, respiration, Rubisco  相似文献   

17.
The decrease in diffusive conductance of a leaf exposed to waterstress or to exogenous abscisic acid (ABA) was smaller in leavesof sunflower plants (Helianthus annuus L. cv. NK285) that hadbeen grown in a phytotron in humid air than in leaves of sunflowersgrown outdoors. Stomata of the phytotron-grown plants were slowerto close after detachment of a leaf than those of the outdoorplants. When stomata closed rapidly, as they did in detachedleaves and after treatment with ABA, the extent of closure wasvaried over the leaf's surface, in particular in the case ofphytotron-grown plants, and the extent of the heterogeneitywas greater in the phytotrongrown plants than in the outdoorplants. When stomata closed gradually, for example, under conditionsof limited moisture in the soil, closure occurred uniformlyover leaves of plants of both types. The smaller decrease indiffusive conductance of leaves from phytotron-grown plantsafter treatment with ABA resulted from the presence of patcheson the surface in which stomata remained open. The smaller decreaseof diffusive conductance in the phytotron-grown plants underconditions of limited moisture in the soil resulted from theuniformly lower responsiveness of stomata on a leaf to the decreasein water potential. When estimates are made of the intercellularconcentration of CO2 (Ci) from gas-exchange measurements, heterogeneityin stomatal closure should be monitored when stomata close rapidly,in particular in plants grown in humid air, because heterogeneousstomatal closure can lead to overestimates of Ci. (Received April 18, 1994; Accepted May 25, 1995)  相似文献   

18.
Nelumbo nucifera (Gaertn.) grows by extending a creeping rhizome through anaerobic sediments. Nodes form at intervals along the rhizome, each producing a single leaf, and gas canals channel air from the leaves throughout the petioles and rhizomes. The gas flow pathway was mapped by casting the canals in growing shoots with silicone and by blowing air through complexes of rhizomes and petioles. Air from a leaf flows to a rhizome through one of two petiolar canal pairs, joining with the lowermost of three canal pairs in the rhizome through a chamber in the node. The lowermost canal pair links these nodal chambers along the length of a rhizome, allowing air from a node to flow both forward, toward a growing shoot, and backward, toward preceding leaves. These linked chambers also connect with the middle pair of canals on their proximal side, enabling flow to proceed backward along the rhizome to an adjacent node. A chamber in the next node then diverts the flow into the upper canal pair. This pair leads to a third node and chamber from which the air vents to the atmosphere through the second petiolar canal pair. Thus, pressurised air from one leaf must flow backward through two nodes before it returns to the atmosphere. Forward flow also ventilates a shoot's growing tip, with air from the lowermost canal pair entering a chamber in the developing node which, as described above, connects with the middle canal. This allows the air to reverse direction at the tip and enter the vent flow pathway.  相似文献   

19.
A leaf chamber is described which allows continuous measurementof transpiration from an attached leaf while leaf temperatureis controlled independently of air temperature. Leaf temperaturecan be varied from approximately 3 °C below air temperatureto 12 °C above air temperature while air temperature remainsrelatively constant (±2 °C). Leaf temperature canbe varied rapidly (by up to 12 °C in 30 s) in order to simulatethe rapid, short-term temperature fluctuations to which leavesare frequently exposed in the field. The chamber operates overa wide range of conditions of visible and total radiation, ofair and leaf temperatures, and of ambient carbon dioxide concentrationand water vapour density  相似文献   

20.
Xylem conduction and cavitation in Hevea brasiliensis   总被引:2,自引:0,他引:2  
Clones of Hevea were studied in an attempt to discover the reasonsfor differences in the hydraulic performance of xylem. Differencesbetween clones were determined, including hydraulic conductivityand conduit width and length distributions. However, it hasproved difficult to reconcile anatomical differences with physiologicalperformance for use in future plant breeding programmes. When leaf relative water content (RWC) had been reduced fromabout 95% to 85%, the hydraulic conductivity of petioles decreasedsharply to about 40% of the initial value. This value correspondedwith xylem sap tensions of 1.8–2.0 MPa. Acoustic detectionexperiments revealed that this reduction in hydraulic conductivitycoincided with the greatest occurrence of cavitation. It seemsinescapable that the reduction in hydraulic conductivity wascaused by embolization; thereafter gas bubbles blocked the flowof water inside many of the conduits. There was some indicationthat eventually such bubbles might be dissolved, because thehydraulic conductivity increased again if specimens were fullyrehydrated. Apparently, the incidence of cavitation coincides with the entryof gas bubbles via ultramicroscopic pores into the conduitsthrough the walls according to the air-seeding hypothesis. Whena petiolate leaf is tested in a pressure chamber it is impossibleto make satisfactory measurements of a balancing pressure beyondc. 1.8–2.0 MPa, because air bubbles, mixed with sap andescaping from the conduits, form a persistent froth. Xylem transportin Hevea seems to be disrupted relatively easily under waterstress which is a feature of other tropical species adaptedto rainforest–type environments Key words: Hevea, xylem, cavitation, conduit, hydraulic conductivity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号