首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A specific symbiotic Bacillus sp. isolated from a rhabditid entomopathogenic nematode, Rhabditis (Oscheius) sp. was found to produce large number of bioactive compounds. The present study was conducted to determine the effect of carbon and nitrogen sources for the production of antimicrobial substances by Bacillus sp. The yield of the crude antimicrobial substances and antimicrobial activity against the test micro-organism also differed significantly when carbon and nitrogen sources in the fermentation media were changed. The antifungal activity was significantly high in yeast extract plus fructose (46.5?±?2.12?mm) followed by yeast extract plus maltose, beef extract plus fructose and meat infusion plus glucose. High pressure liquid chromatography analysis of the crude antimicrobial substances revealed different peaks with different retention time indicating that they produced different compounds. When the carbon source was not included in the fermentation media, the antimicrobial production was substantially reduced. The results indicate that carbon source in the fermentation media plays a vital role in the production of antifungal substances. It is concluded that yeast extract and fructose as nitrogen and carbon sources produced maximum activity, which can effectively control the blue mould caused by Penicillium expansum in apples and pears.  相似文献   

2.
A Surface Response Model was used to study the effect of pH, temperature and agitation on growth, sporulation and production of antifungal metabolites by Bacillus subtilis CCMI 355.Strong agitation, temperature between 27 and 34 °C and pH 6 favoured cell growth. Alkaline pH, strong agitation and temperature between 28 and 34 °C favoured spore formation. No relationship was found between sporulation and the production of antifungal metabolites. According to the model, pH 8, 37 °C and the absence of agitation were the optimal conditions for the production of broad-spectrum antifungal metabolites against Botrytis cinerea, Penicillium expansum, Trichoderma sp, Trichoderma harzianum, Trichoderma koningii and Trichoderma virgatum.In situ assays using green wood impregnated with Bacillus subtilis CCMI 355 inoculated in Yeast Extract Glucose Broth medium in the conditions above, displayed an efficient protection against wood surface contaminant fungi.  相似文献   

3.
Aim: To identify the source of bisphenol A (BPA) [2,2′‐bis(4‐hydroxyphenyl) propane] in cultures of an antibiotic‐producing Bacillus sp. strain grown in polycarbonate flasks. Methods and Results: Although a culture of an antibiotic‐producing Bacillus sp. strain grown in a new, rinsed polycarbonate flask yielded BPA, duplicate cultures grown in thoroughly washed polycarbonate flasks did not. Cells of Escherichia coli strain C were grown in new polycarbonate flasks rinsed three‐times with 100 ml distilled H2O. BPA was only recovered from cultures grown in new polycarbonate flasks, but not from the autoclaved medium incubated in parallel. Conclusions: BPA was present in either Bacillus or E. coli cultures, probably due to its release from inadequately washed polycarbonate flasks. Standard autoclaving did not result in BPA appearance; microbial growth was required. Polycarbonate vessels for microbial cultures should be thoroughly washed to avoid the appearance of BPA in culture medium. Significance and Impact of the Study: This study rigorously demonstrates that the presence of BPA in culture medium was a consequence of microbial growth or metabolism in inadequately washed polycarbonate flasks. As BPA exhibits antimicrobial and oestrogenic activity, searches for novel drugs or production of recombinant chemotherapeutic agents could be derailed by the artefactual appearance of BPA.  相似文献   

4.
Aims: This work was conducted to identify the antifungal compounds produced by two previously isolated Bacillus sp. strains: ARP23 and MEP218. Both strains were subjected to further analysis to determine their taxonomic position and to identify the compounds responsible for their antifungal activity as well as to evaluate the efficiency of these strains to control sclerotinia stem rot in soybean. Methods and Results: The antifungal compounds were isolated by acid precipitation of cell‐free supernatants, purified by RP‐HPLC and then tested for antagonistic activity against Sclerotinia sclerotiorum. Mass spectra from RP‐HPLC eluted fractions showed the presence of surfactin C15, fengycins A (C16–C17) and B (C16) isoforms in supernatants from strain ARP23 cultures, whereas the major lipopeptide produced by strain MEP218 was iturin A C15. Alterations in mycelial morphology and sclerotial germination were observed in the presence of lipopeptides‐containing supernatants from Bacillus strains cultures. Foliar application of Bacillus amyloliquefaciens strains on soybean plants prior to S. sclerotiorum infection resulted in significant protection against sclerotinia stem rot compared with noninoculated plants or plants inoculated with a nonlipopeptide‐producing B. subtilis strain. Conclusions: Both strains, renamed as B. amyloliquefaciens ARP23 and MEP218, were able to produce antifungal compounds belonging to the cyclic lipopeptide family. Our data suggest that the foliar application of lipopeptide‐producing B. amyloliquefaciens strains could be a promising strategy for the management of sclerotinia stem rot in soybean. Significance and Impact of the Study: Sclerotinia stem rot was ranked as one of the most severe soybean disease in Argentina and worldwide. The results of this study showed the potential of B. amyloliquefaciens strains ARP23 and MEP218 to control plant diseases caused by S. sclerotiorum.  相似文献   

5.
A specific symbiotic Bacillus species isolated from a rhabditid entomopathogenic nematode, Rhabditis (Oscheius) sp. was found to produce a number of bioactive compounds. The present study was conducted to determine the effect of six different nitrogen sources in combination with fructose on the production of antifungal crude extract by Bacillus sp. against Penicillium expansum. The yield of crude extract and antifungal activity against the test fungi differed significantly when the nitrogen sources in the fermentation media were changed. The highest yield was recorded for beef extract plus fructose (921?mg/L). The antifungal activity was higher in yeast extract plus fructose [P. expansum (46.5?±?2.12?mm)], followed by beef extract. High performance liquid chromatography analysis of the crude antimicrobial substances revealed different peaks with different retention times indicating that they produced different compounds. When a carbon source was not included in the fermentation medium, the antimicrobial production was substantially reduced almost eight times. Carbon source in the fermentation medium plays a vital role in the production of antimicrobial substances. Yeast extract and fructose as nitrogen and carbon sources in the fermentation medium produced maximum antimicrobial activity.  相似文献   

6.
A specific symbiotic Bacillus species isolated from a rhabditid entomopathogenic nematode, Rhabditis (Oscheius) sp., was found to produce a number of bioactive compounds. The present study was conducted to determine the effect of six different carbon sources in combination with beef extract on the production of antifungal substances by Bacillus sp. The yield of crude antimicrobial substances and antimicrobial activity against the test microorganism also differed significantly when the carbon sources in the fermentation media were changed. The highest yield was recorded for fructose plus beef extract (956?mg/l). The antifungal activity was significantly high in beef extract plus maltose (21?±?1.5?mm) followed by beef extract plus glucose and beef extract plus fructose. Antifungal activity was significantly reduced in beef extract plus lactose and sucrose. High pressure liquid chromatography analysis of the crude antimicrobial substances revealed different peaks with different retention times indicating that they produced different compounds. When a carbon source was not included in the fermentation media, the antifungal production was substantially reduced. Carbon source in the fermentation medium plays a vital role in the production of antimicrobial substances. Beef extract and maltose as nitrogen and carbon sources in the fermentation medium produced maximum antifungal activity. It is concluded that Beef extract and maltose as nitrogen and carbon sources produced maximum activity which can effectively control the Fusarium oxysporum which causes vascular fusarium wilt in tomato, tobacco, legumes, cucurbits, sweet potatoes, banana, etc.  相似文献   

7.
Bacillus amyloliquefaciens CCMI 1051 displays antifungal activity against surface contaminant fungi, blue stain fungi and phytopathogenic fungi. The antifungal potential ofB. amyloliquefaciens CCMI 1051 is based on the production of metabolites with antifungal activity. The activity was revealed both in the exponential growth phase and in the stationary phase, being associated both to microbial growth and to secondary metabolism.  相似文献   

8.
Lactic acid bacteria with potential to eliminate fungal spoilage in foods   总被引:4,自引:0,他引:4  
Aims: To investigate antifungal activity produced by lactic acid bacteria (LAB) isolated from malted cereals and to determine if such LAB have the capacity to prevent fungal growth in a particular food model system. Methods and Results: The effect of pH, temperature and carbon source on production of antifungal activity by four LAB was determined. Pediococcus pentosaceus was used to conduct a trial to determine if it is feasible to eliminate Penicillium expansum, the mould responsible for apple rot, using an apple model. Penicillium expansum was incapable of growth during the trial on apple‐based agar plates inoculated with the antifungal‐producing culture, whereas the mould did grow on apple plates inoculated with an LAB possessing no antifungal activity. Conclusion: Partial characterization of the antifungal compounds indicates that their activity is likely to be because of production of antifungal peptides. The trial conducted showed that the antifungal culture has the ability to prevent growth of the mould involved in apple spoilage, using apples as a model. Significance and Impact of the study: The ability of an LAB to prevent growth of Pen. expansum using the apple model suggests that these antifungal LAB have potential applications in the food industry to prevent fungal spoilage of food.  相似文献   

9.
Aims: The aim of the present study was to purify and characterize a natural antimicrobial compound from Bacillus sp. strain N associated with a novel rhabditid entomopathogenic nematode. Methods and Results: The cell‐free culture filtrate of a bacterium associated with a novel entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by column chromatography, and two bioactive compounds were isolated and their chemical structures were established based on spectral analysis. The compounds were identified as 3,4′,5‐trihydroxystilbene (1) and 3,5‐dihydroxy‐4‐isopropylstilbene (2). The presence of 3,4′,5‐trihydroxystilbene (resveratrol) is reported for the first time in bacteria. Compound 1 showed antibacterial activity against all the four test bacteria, whereas compound 2 was effective against the Gram‐positive bacteria only. Compounds 1 and 2 were active against all the five fungi tested and are more effective than bavistin, the standard fungicide. The antifungal activity of the compounds against the plant pathogenic fungi, Rhizoctonia solani is reported for the first time. Conclusions: Cell‐free extract of the bacterium and isolated stilbenes demonstrated high antibacterial activity against bacteria and fungi especially against plant pathogenic fungi. We conclude that the bacterium‐associated EPN are promising sources of natural bioactive secondary metabolites. Significance and Impact of the Study: Stilbene compounds can be used for the control of fungi and bacteria.  相似文献   

10.
Aims: Producing granular cultures of obligate aphid pathogen Pandora nouryi for improved sporulation and storage. Methods and Results: Small millet–gel granules were made of the mixtures of 80–95% millet powder with 5–20% polymer gel (polyacrylamide, polyacrylate or acrylate‐acrylamide copolymer) and inoculated with mycelia at 30 mg biomass g?1 dry granules plus 87·5% water, followed by static incubation at 20°C for 4–12 days. The fungus grew well on 12 preparations but best on that including 10% copolymer. An 8‐day culture of this preparation discharged maximally 58·5 × 104 conidia mg?1 granule at 100% RH and was capable of ejecting conidia at the nonsaturated regimes of 86–97% RH. During storage at 6°C, granular cultures with >85% water content had twofold longevity (120 days) and half‐decline period (34–36 days) of those stored at room temperature. The steadily high water content preserved the cultures better than that decreasing at 6°C. However, conidia from 70‐day‐stored granules were less infective to Myzus persicae nymphs than those from fresh ones based on their LC50s. Conclusions: The millet–gel granules had higher sporulation capacity than reported Pandora cultures and a capability of spore discharge at nonsaturated humidity. Significance and Impact of the Study: The granular cultures are more useful for aphid control.  相似文献   

11.
The effects of cultural parameters such as carbon and nitrogen source and environmental factors including temperature and pH were investigated on spore and mycelial yield of Trichoderma viride, which has potential as a biocontrol agent against species of Fusarium in batch culture and fed-batch culture where there was limiting nutrient. The results obtained indicated that growth and sporulation of T. viride were greatly influenced by various carbon and nitrogen sources, and by environmental factors such as pH and temperature. Mannitol, wheat bran and rice bran as sole carbon sources appear to stimulate high mycelial growth and spore yield in fed-batch culture. Growth and sporulation were also favoured by NaNO3, peptone and NH4SO4 as the nitrogen sources in fed-batch and batch cultures. Maximum growth and sporulation was between pH 4.5 and 6.0. Temperatures between 30 and 37 °C were good for mycelium growth of T. viride while temperatures between 30 to 45 °C were good for sporulation. The amount of spore and mycelium produced and the time required for attainment of maximum spore yield increased with increasing carbon and nitrogen source in batch culture. The final spore yield obtained in fed-batch culture was two times higher than the apparent spore-carrying capacity of batch culture. These results show that T. viride is capable of growing and sporulating with varied nutritional and environmental conditions, and, therefore, this strain of T. viride may be useful as a biocontrol agent under diverse physiological and environmental conditions.  相似文献   

12.
Chitinases (EC 3.2.1.14) are enzymes that hydrolyze chitin by cleaving β‐1,4 N‐glycosidic bonds. These enzymes have been used for multiple applications in biotechnology, especially for controlling insect pests and phytopathogenic fungi. In the present study, we isolated two chitinase‐producing bacteria strains from insects (strain SCH‐1 from Moechotypa diphysis and strain SCH‐2 from Sphedanolestes impressicollis). Serratia sp. SCH‐1 was a short, rod‐shaped facultative anaerobe, while Bacillus strain SCH‐2 was a rod‐shaped endospore‐forming anaerobe. Strains SCH‐1 and SCH‐2 were identified as Serratia sp. and Bacillus sp., respectively based on 16S rRNA gene sequencing. Strain SCH‐1 shared maximum homology (99.44%) with Serratia nematodiphila DZ0503SBS1 and Serratia marcescens subsp. sakuensis KRED. Strain SCH‐2 had a maximum homology of 99.24% with Bacillus thuringiensis ATCC 10792 and Bacillus toyonensis BCT‐7112. Serratia sp. SCH‐1 contained greater levels of saturated fatty acids, but the concentration of branched acids, especially iso‐C15:0, was highest in Bacillus sp. SCH‐2. Serratia sp. SCH‐1 possessed chitinase activity of 1.59 unit/mg protein after 5 days of incubation in culture medium. In contrast, Bacillus sp. SCH‐2 had a maximum activity of 0.84 unit/mg protein after 4 days of incubation. Chitinase isozymes produced by Serratia sp. SCH‐1 appeared as five bands with sizes of 20, 26, 36, 45 and 54 kDa. Bacillus sp. SCH‐2 showed a chitinase isozyme profile with three bands having sizes of 36, 45 and 50 kDa on SDS‐PAGE gels.  相似文献   

13.
Micromonospora echinospora differentiates in both submerged and surface cultures producing abundant dark spores after a period of vegetative mycelial growth. In submerged batch cultures, under either carbon or nitrogen limiting conditions, protease activity was found to coincide with sporulation indicating a relationship between proteolytic activity and differentiation in this organism. Further evidence for this link was provided from surface grown cultures wherein sporulation was inhibited by the serine protease inhibitors TLCK and TPCK. The association between proteolysis and differentiation apparent in this organism correlates with evidence of a similar phenomenon observed in the streptomycetes, suggesting that this may be a common response associated with differentiation in filamentous actinomycetes.  相似文献   

14.
15.
16.
In this study, Ni (II) biosorption capacity of immobilized cells of Bacillus sp. was investigated. Biosorption of Ni (II) was carried out in batch experiments and the important environmental conditions were optimized. The uptake of metal was rapid, and equilibrium was attained within 270 min. Bacillus strains (ten cultures) were isolated from nickel electroplating effluent by heat shock method. These isolates were grown up in nutrient broth supplemented with Ni (II)(50 mg/L). The culture, exhibiting maximum biosorption capacity (qmax: 118 mg/g), was selected and labeled Bacillus Bio‐4. In order to develop an economical biosorption process cell mass of Bacillus, Bio‐4 was immobilized in Na‐alginate. It was concluded from the results that biosorption of nickel is highly dependent on the type of sorbent and experimental conditions employed. Our results demonstrate that 6.0 mg immobilized cells (18 mg cell biomass in 3.0 mL of 1% Na alginate) had a maximum biosorption capacity of 113 mg Ni(II) per liter of suspension at pH 8.0, 100 rpm and 25°C. The Ni (II) removal was estimated to be 97.4%.  相似文献   

17.
Of the two antifungal antibiotics produced by Bacillus subtilis F-29-3, the dipeptide compound bacilysin inhibits yeasts (and bacteria), whereas the formerly unknown fengymycin, a complex of closely related lipopeptide components, shows antibiotic activity against filamentous fungi. Bacilysin production, formerly known for a few strains only, could be demonstrated for all 12 wild-type cultures of Bacillus subtilis tested during this study. The antibiotic also occurs in some strains of three other Bacillus species considered as closely realted to B. subtilis. Members of the lipopeptide class of antifungal Bacillus metabolites were formed by 8 of 12 Bacillus subtilis-isolates and several other Bacillus strains. The antibiotics of F-29-3 were compared with antifungal metabolites of other Bacillus isolates using TLC, agar-diffusion techniques and tests demonstrating the capacity of six lipopeptide and peptide preparations to protect rice seedlings from phytomycosis due to Rhizoctonia solani. Fengymycin proved to be different from the other compounds tested. It was less toxic to the test plants and protected them better from Rhizoctonia disease than the other antibiotics of the study did.  相似文献   

18.
Summary Ultraviolet light induced abundant sporulation in two, out of the three strains ofAlternaria solani studied. Scraped cultures produced larger number of spores than unscraped ones. Ten seconds' exposure was found optimum for maximum sporulation. The optimum temperature of incubation subsequent to irradiation was 20°C. Young cultures were more responsive to ultraviolet light than the older ones. However, old cultures were more tolerant to a greater time of exposure than the younger ones. Intense ultraviolet light greatly reduced or even completely inhibited sporulation whereas low intensity of ultraviolet light was less effective in inducing sporulation. More irradiations than one greatly enhanced sporulation which reached its maximum with four irradiations. Spore length was considerably influenced by the age of the mycelium, temperature of incubation and the intensity and number of irradiations.  相似文献   

19.
A strain of Bacillus subtilis was examined for antifungal activity against phytopathogenic and wood-surface contaminant fungi. The bacterium was grown in five culture media with different incubation times in order to study cell development, sporulation, and the production of metabolites with antifungal activity. The anti-sapstain and anti-mould activity of the bacterium grown in yeast extract glucose broth (YGB) medium in wood was also evaluated. In YGB, the bacterium inhibited the growth of several fungi and displayed a broader spectrum of activity than in the other media tested. A relationship between bacterial spore production and the formation of metabolites with antifungal activity was detected. YGB medium displayed effective control in wood block tests. YGB medium was extracted with solvents of increasing polarity and the dry residues were applied to silicagel plates, resolved with the appropriate solvent and sprayed with different solutions, detecting the presence, of amines, and higher alcohols. The bioautographic method revealed the presence of at least two active compounds against the blue-stain fungus Cladosporium cucumerinum.  相似文献   

20.
Summary Eight strains of Bacillus were able to grow on alkane in a mixed culture with Candida parapsilosis. The growth of Bacillus was dependent on that of the yeast. Every variation of culture parameters influenced directly the growth of the yeast and then that of Bacillus. Myristic acid, produced by Candida parapsilosis, was presumably the principal carbon source for the growth of Bacillus in a mixed culture.Dedicated to Prof. Dellweg to his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号