首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Recent studies from this laboratory have demonstrated the presence of thyroid hormone response elements (TREs) in the 5'-flanking region of the rat alpha and TSH beta subunit genes. Using an avidin-biotin complex DNA binding assay, we have shown that these TREs bind the thyroid hormone (T3) receptor present in nuclear extracts of GH3 cells, as well as the in vitro synthesized Hc-erbA beta, which has been identified as a member of the family of T3 receptors. The binding of Hc-erbA beta to the alpha subunit TRE can be enhanced 3-4-fold by including GH3 nuclear extract in the binding assay. Binding to the TRE present in the TSH beta gene or the rat growth hormone gene was similarly enhanced, although to a lesser degree. The enhanced binding activity is trypsin-sensitive and heat labile, and is not reproduced by the addition of histones, bovine serum albumin, or cytosol instead of nuclear extract. Gel exclusion chromatography suggests a molecular size of approximately 65,000 Da. This protein, which is present in several different cell types, is also able to complement binding of the rat erbA alpha-1 and the pituitary-specific erbA beta-2 forms of the receptor. These data suggest that the binding of the T3 receptor to a TRE is augmented by another nuclear protein, which may be involved in the mechanism of action of thyroid hormone.  相似文献   

2.
3.
Long-chain fatty acids and their acyl-CoA esters are potent inhibitors of nuclear thyroid hormone (T3) receptor in vitro. In the present study, we obtained evidence for acyl-CoA binding activity in the nuclear extract from rat liver. The activity sedimented at a position (3.5 S) identical with that of the T3 receptor, and the two activities sedimented together. Similarly, they coeluted on DEAE-Sephadex. After partial purification of the receptor, it was again inhibited strongly by acyl-CoAs. Heat stability and a partial trypsin digestion of the receptor both suggested that the action site of oleoyl-CoA overlapped the T3-binding domain of the receptor. In addition, thyroid hormone receptor β1, synthesized in vitro, bound oleoyl-CoA specifically and its T3-binding activity was inhibited. The dissociation constant for oleoyl-CoA binding to the partially purified receptor was 1.2 × 10?7 M. This value as well as its molecular size distinguished the nuclear binding sites from the cytoplasmic fatty acid/acyl-CoA binding proteins. Oleoyl-CoA had no effect on the glucocorticoid receptor, another member of the nuclear hormone-receptor superfamily. From these results, we propose that thyroid hormone receptor is a specific acyl-CoA binding protein of the cell nucleus.  相似文献   

4.
5.
6.
Rifamycin AF/013, a potent inhibitor of nucleic acid polymerizing enzymes and of some hormone receptors, strongly inhibited thyroid hormone-binding to the isolated nuclear receptor. Fifty percent inhibition was obtained at AF/013 concentration of as low as 8 micrograms/ml. AF/013, however, only weakly promoted dissociation of the bound hormone from the receptor. The inhibitory action of AF/013 was competitive with respect to and reduced the receptor's affinity for the hormone.  相似文献   

7.
We have examined the binding of nuclear proteins and recombinant thyroid hormone receptors (TRs) to the palindromic thyroid hormone responsive element AGGTCATGACCT (TREp) using a gel electrophoretic mobility shift assay. Four specific protein-DNA complexes were detected after incubation of nuclear extracts (NE) from T3-responsive pituitary (GH3) cells with a TREp-containing DNA fragment. This was compared with the TREp binding of reticulocyte lysate-synthesized TRs. TR alpha 1 and TR beta 2 each formed a single major TR:TREp complex which comigrated with the least retarded complex formed by GH3 NE, while TR beta 1 formed multiple complexes suggesting that it can bind to TREp as an oligomer. Interestingly, coincubation of 35S-TR alpha 1, GH3 NE, and unlabeled TREp resulted in not only the 35S-TR:TREp complex, but in two additional more greatly retarded complexes containing 35S-TR alpha 1 and comigrating with those formed by GH3 extract alone. Incubation of each of the TRs with NE from COS-7 cells, which do not possess sufficient endogenous TRs to mediate T3-responses, resulted in formation of a new, more greatly shifted complex. A similar, heat labile activity which altered mobility of the TR:TRE complex was also present in NE from T3-unresponsive JEG-3 cells. At high concentration of NE, all of the TR bound to TREp was more greatly retarded than in the absence of NE. Truncation of TR alpha 1 at amino acid 210 prevented additional complex formation in the presence of NE without affecting DNA binding, suggesting that the carboxyl-terminus of the TRs is essential for interaction with nuclear proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have previously identified sequences required for thyroid hormone (T3) induction of the rat GH (rGH) promoter, which lie in a region from -188 to -164 upstream of the mRNA start site. Within this region, Domains A, -189 to -184 and B, -179 to -174, are imperfect direct repeats, and domain C, -172 to -167, is a divergent inverted copy that matches the A domain at 4/6 positions. A series of synthetic mutant versions of this sequence were inserted upstream of a truncated rGH promoter, or as a replacement for wild-type sequences in a synthetic 237 base pair rGH promoter or upstream of the heterologous thymidine kinase promoter. Mutations changing the B domain to a perfect copy of the A domain significantly increased T3 induction (21.3-fold) relative to the wild type (3.6-fold). A single point mutation making the C domain a better match to the A domain also increased T3 induction to 16.2-fold. Combining this up-mutation with any of three down-mutations in the A, B, or C domains strongly decreased response, showing that all three domains contribute to the amplified T3 response. Binding affinity of the various mutant oligonucleotides was assessed using in vitro translated receptor and affinity paralleled the functional responses for most binding site mutations. Requirements for in vitro binding were, however, less rigorous than those for functional T3 induction. Based on these results, we propose a consensus T3 receptor binding half-site, AGGT(C/A)A, at least two copies of which are required for a T3 response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have previously demonstrated that binding of in vitro synthesized thyroid hormone receptor (TR) to thyroid hormone response elements (TREs) is enhanced by the addition of nuclear extracts from several different cell types, suggesting that binding of TR is partially dependent on a T3 receptor auxiliary protein (TRAP). We have used the avidin-biotin complex DNA-binding assay to discriminate between regions of TREs that bind TR alone and sites that are influenced by interactions with TRAP. Mutations in the TREs from rat GH and glycoprotein hormone alpha-subunit genes show that a specific DNA sequence is required for TRAP-mediated enhancement of TR binding. Mutations in the B half-site of the rat GH TRE or in similar sequences [(T/A)GGGA] in the alpha-subunit TRE ablate the enhancement of TR binding by TRAP. Furthermore, binding of TR to a natural half-site in the TSH beta-subunit gene (bases -16 to 6), which lacks an additional AGGGA-like sequence, is not enhanced by the addition of TRAP. Binding of TR to TREs was also tested at physiological salt concentrations in the avidin-biotin complex DNA-binding assay. Binding of human TR beta to TREs decreases dramatically at 140 mM KCl compared to binding at 50 mM KCl; however, the addition of TRAP enhances the binding to almost 4-fold of basal binding, suggesting that TRAP may be important for stabilization of TR binding to TREs in the cell.  相似文献   

10.
Juvenile hormones (JH) regulate a wide variety of developmental and physiological processes in insects. Comparison of microarray data on JH-induced genes in the fruit fly, Drosophila melanogaster, L57 cells and in the honey bee, Apis mellifera, identified 16 genes that are induced in both species. Analysis of promoter regions of these 16 D. melanogaster genes identified DmJHRE1 (D. melanogaster JH response element 1). In L57 cells, the reporter gene regulated by DmJHRE1 was induced by JH III. Two proteins (FKBP39 and Chd64) that bind to DmJHRE1 were identified. FKBP39 and Chd64 double-stranded RNA inhibited JH III induction of a reporter gene regulated by DmJHRE1. FKBP39 and Chd64 proteins expressed in yeast bound to DmJHRE1. Two-hybrid and pull-down assays showed that these two proteins interact with each other as well as with ecdysone receptor, ultraspiracle, and methoprene-tolerant protein. Developmental expression profiles and JH induction of mRNA for FKBP39 and Chd64 proteins and their interaction with proteins known to be involved in both JH (methoprene-tolerant protein) and ecdysteroid action (ecdysone receptor and ultraspiracle) suggest that these proteins probably play important roles in cross-talk between JH and ecdysteroids.  相似文献   

11.
12.
Molecular size of the nuclear thyroid hormone receptor   总被引:1,自引:0,他引:1  
Among the previously reported putative nuclear thyroid hormone receptor forms having molecular masses of 56-59 kDa and 45-49 kDa, respectively, only the former can be the endogenous receptor. The latter must be a degradation product because it is virtually absent in rat liver nuclear extracts prepared in the presence of 20% glycerol and 5 mM Mg2+, which inhibit degradation. In the absence of glycerol, the receptor form of lower mass was present in large amounts in nuclear extracts. Sucrose could not replace glycerol as a protective agent, even in the presence of Mg2+. Thus, the endogenous nuclear thyroid hormone receptor appears to be labile under the experimental conditions used in preparing nuclear extracts. The molecular mass of the nuclear receptor was determined to be 57 kDa on the basis of SDS-polyacrylamide gel electrophoresis after photoaffinity labeling of nuclear proteins with (3,5-125I)-labeled thyroxine.  相似文献   

13.
Methodology is reported for extracting thyroid hormone receptors from rat liver nuclei and for purifying these such that certain receptor properties can be examined. The extraction technique resulted in 1700 pmol of receptor/2 kg of liver and bypasses centrifugation in dense sucrose. The receptor was then purified by sequential heparin-Sepharose, DEAE-Sepharose, and phospho-Ultrogel chromatography and size exclusion and hydrophobic interaction high performance liquid chromatography. These steps yielded 23-35 micrograms of receptor at 0.7-1.5% purity from two 2-kg liver preparations. The cross-linkers disuccinimidyl suberate and N-succinimidyl-6-(4-azido-2-nitrophenylamino)hexanoate were employed to covalently attach 125I-labeled 3,5,3'-triiodo-L-thyronine (T3) to the purified receptor. Autoradiography after denaturing polyacrylamide gel electrophoresis revealed major 49,000 Mr and minor 58,000 Mr specific T3-binding proteins. The purified receptors exhibited high affinity (Kd = 100 pM) single site T3-binding activity. Because of the high affinity and specificity of [125I]T3 for the receptor, it was possible to uniquely identify the receptor containing DNA-protein complexes in a gel retardation assay and thus directly demonstrate for the first time that the receptor can specifically recognize sequences in the 5'-flanking DNA of the rat growth hormone gene. [125I]T3-labeled receptor migrated at the same position as the major gel-retarded 32P-labeled DNA band. Specific DNA competed for the binding much more strongly than nonspecific DNA. Thus, the purification procedure results in relatively large quantities of receptor at a purity sufficient for detecting and studying a number of its properties including specific DNA binding activity.  相似文献   

14.
Unesterified long-chain fatty acids strongly inhibited thyroid hormone (T3) binding to nuclear receptors extracted from rat liver, kidney, spleen, brain, testis and heart. Oleic acid was the most potent inhibitor, attaining 50% inhibition at 2.8 microM. Oleic acid similarly inhibited the partially purified receptor and enhanced dissociation of the preformed T3-receptor complex. The fatty acid acted in a soluble form and in a competitive manner for the T3-binding sites, thereby reducing the affinity of the receptor for T3. The affinity of the receptor for oleic acid (Ki) was 1.0 microM. In HTC rat hepatoma cells in culture, fatty acids added to the medium reached the nucleus and inhibited nuclear T3 binding; oleic acid being the most potent. T3 binding of the cells was reversibly restored in fresh medium free of added fatty acids. Oleic acid did not affect all the T3-binding sites in the HTC cells: one form (80%) was inhibited and the other was not and these two forms were commonly present in all rat tissues examined. Thus, fatty acids inhibited the solubilized nuclear receptor as well as a class of nuclear T3-binding sites in cells in culture.  相似文献   

15.
16.
17.
18.
The thyroid hormone receptor (TR) recruits the nuclear corepressors, nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and thyroid hormone receptors (SMRT), to target DNA elements in the absence of ligand. While the TR preferentially recruits NCoR, the mechanism remains unclear. The corepressors interact with the TR via interacting domains (IDs) present in their C terminus which contain a conserved motif termed a CoRNR box. Despite their similarity, the corepressor IDs allow for nuclear receptor specificity. Here we demonstrate that NCoR stabilizes the TR homodimer when bound to DNA by preventing its dissociation from thyroid hormone response elements. This suggests that NCoR acts to hold the repression complex in place on target elements. The TR homodimer recruits NCoR through two of its three IDs, one of which is not present in SMRT. This unique ID, N3, contains a CoRNR box but lacks the extended helical motif present in each of the other IDs. Instead, N3 contains an isoleucine just proximal to this motif. This isoleucine is also conserved in N2 but not in the corresponding S2 domain in SMRT. On thyroid hormone response elements and in mammalian cells this residue is critical in both N3 and N2 for high-affinity TR binding. In addition, this residue also controls specificity for the interactions of TR with NCoR. Together these data suggest that the specific recruitment of NCoR by the TR through a unique motif allows for stabilization of the repression complex on target elements.  相似文献   

19.
20.
A panel of anti-thyroid hormone receptor (TR) antisera were generated to allow direct assay of the concentrations of the alpha 1 and beta 1 receptor isoforms in nuclear extracts from adult rat liver, kidney, brain and heart, and fetal brain. An antiserum, immunoglobulin G (IgG)-beta 1, raised against amino acid sequence 62-92 of the rat TR-beta 1 specifically precipitated only TR-beta 1 in vitro translation products. A second antiserum, IgG-alpha 1/beta, generated against a sequence that is identical in the ligand binding region of rat TR-alpha 1 and TR-beta isoforms immunoprecipitated both TR-alpha 1 and -beta 1 translation products. These IgG preparations were used to specifically immunoprecipitate thyroid hormone receptor binding activity from nuclear extracts. IgG-beta 1 cleared almost 80%, and the IgG-alpha 1/beta immunoprecipitated nearly all binding from hepatic nuclear extracts. This distribution of TR protein, 80% beta 1 and 20% alpha 1, is the same as previously reported for their respective mRNAs in liver. In heart, kidney, and brain IgG-beta 1 cleared 45, 43, and 28% of total binding, respectively, and IgG-alpha 1/beta cleared all T3 binding activity from these tissues. In agreement with an earlier study, marked variations in specific protein/mRNA ratios were noted among these tissues. Consistent with our earlier report of the presence of only very low levels of TR-beta 1 mRNA in fetal brain, IgG-beta 1 cleared just 5% of binding in this tissue. Studies using an antiserum (IgG-ch) generated against homologous segments of the hinge region in both TR-alpha 1 and -beta 1 yielded results which contrasted sharply with those of IgG-alpha 1/beta. Whereas IgG-ch could also immunoprecipitate virtually all binding from hepatic extracts it cleared only 40-50% of binding from the other tissues, including fetal brain in which TR-alpha 1 accounts for greater than 90% of binding protein. The data suggest the presence of posttranslational modification of the TR-alpha 1 protein in the hinge region, consistent with the presence in this segment of potential phosphorylation sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号