共查询到20条相似文献,搜索用时 15 毫秒
1.
A somatic cell hybrid mapping panel for regional assignment of human chromosome 13 DNA sequences 总被引:5,自引:0,他引:5
We have constructed somatic cell hybrids containing different overlapping deletions involving human chromosome 13. Cytogenetic characterisation of the breakpoints allowed division of the chromosome into six distinct regions. Molecular characterisation of these hybrids allowed regional assignment of anonymous DNA sequences, cDNAs, and isoenzyme variants and these hybrids should prove valuable in the analysis and isolation of genes and disease loci on chromosome 13. 相似文献
2.
Toward a complete linkage map of the human X chromosome: regional assignment of 16 cloned single-copy DNA sequences employing a panel of somatic cell hybrids. 总被引:18,自引:15,他引:18 下载免费PDF全文
P Wieacker K E Davies H J Cooke P L Pearson R Williamson S Bhattacharya J Zimmer H H Ropers 《American journal of human genetics》1984,36(2):265-276
Closely linked restriction fragment length polymorphisms (RFLPs) are potentially useful as diagnostic markers of genetic defects, and, in principle, RFLPs can be employed to construct a complete linkage map of the human genome. On the X chromosome, linkage studies are particularly rewarding because in man more than 120 X-linked genes are known. Thus, it is probable that each X-specific RFLP will be of use as a genetic marker of one or several X-linked disorders. To facilitate the search for closely linked RFLPs, we have regionally assigned 16 cloned DNA sequences to various portions of the human X chromosome, employing a large panel of somatic cell hybrids. These probes have been used to correlate genetic and physical distances on Xp, and it can be extrapolated from these data that the number and distribution of available Xq sequences will also suffice to span the long arm of the X chromosome. 相似文献
3.
An informative panel of somatic cell hybrids for physical mapping on human chromosome 19q. 下载免费PDF全文
L L Bachinski R Krahe B F White B Wieringa D Shaw R Korneluk L H Thompson K Johnson M J Siciliano 《American journal of human genetics》1993,52(2):375-387
A panel of 22 somatic cell hybrids divides the q arm of human chromosome 19 into 22 ordered subregions. The panel was characterized with respect to 41 genetic markers. In most cases, a single fragment of chromosome 19 was present in each hybrid. In two cell lines the presence of multiple fragments of the chromosome was demonstrated by segregation of these fragments in subclones. On the basis of the results of marker analysis in this panel, the most likely order of the markers tested is MANB-D19S7-PEPD-D19S9-GPI-C/EBP-TGFB1++ +-(CYP2A,BCKDHA,CGM2,NCA)-PSG1-(D19S8, XRCC1)-(ATP1A3,D19S19)-(D19S37,APOC2)-C KM-ERCC2-ERCC1-(D19S116,D19S117)- (D19S118,D19S119, D19S63,p36.1,D19S112,D19S62,D19S51,D19S54, D19S55)-pW39-D19S6-(D19S50,TNNT1)-D19S2 2-(HRC,CGB,FTL,PRKCG)-qter. This gene order is generally consistent with published physical and genetic mapping orders, although some discrepancies exist. By means of a mapping function that relates the frequency of cosegregation of markers to the distance between them, estimates were made of the sizes, in megabases, of the 19q subregions. The relative physical distances between reference markers were compared with published genetic distances for 19q. Excellent correlation was observed, suggesting that the physical distances calculated by this method are predictive of genetic distances in this region of the genome and, therefore, are just as useful in estimating relative positions of markers. 相似文献
4.
Olivier Delattre Carlos J. Azambuja Alain Aurias Jessica Zucman Martine Peter Fangrong Zhang Marie Claude Hors-Cayla Guy Rouleau Gilles Thomas 《Genomics》1991,9(4):721-727
The adenylosuccinate lyase (ADSL) which is essential for generating adenylate, maps to the long arm of chromosome 22. By using a Chinese hamster ovary cell line deficient in ADSL activity, we have constructed a set of 17 somatic cell hybrids containing defined regions of human chromosome 22. This panel was extended with six additional hybrids, obtained in other laboratories using various methods of selection. Southern analysis of the hybrids with 38 chromosome 22 probes defined 14 different subregions which could be linearly organized on the long arm of chromosome 22. The order of the probes thus deduced is fully compatible with their previous localization and with the genetic map. The ADSL gene was further sublocalized between the MB and D22S22. This panel, which enables the rapid assignment of chromosome 22 single copy probes to small subregions, will be an important tool in the construction of a detailed physical map of this part of the genome. 相似文献
5.
Development of a somatic cell hybrid mapping panel and molecular probes for human chromosome 3 总被引:6,自引:0,他引:6
H Drabkin M Wright M Jonsen T Varkony C Jones M Sage S Gold H Morse M Mendez P Erickson 《Genomics》1990,8(3):435-446
A somatic cell hybrid mapping panel and molecular probes have been developed for human chromosome 3. This panel defines 11 regions for the short and long arms of the chromosome. Four hundred thirty-two probes have been mapped using these hybrids. One hundred thirty-one of these probes were derived from EcoRI and HindIII flow-sorted libraries. The remaining 301 probes were isolated from NotI boundary and random (partial MboI) libraries constructed from a hybrid that provided a relative enrichment in 3p DNA sequences. For some regions of the chromosome, significant differences in the distribution of probes were noted. This was observed for both the unique sequence flow-sorted and NotI probes. These differences are in agreement with previous suggestions that Giemsa light bands are GC-rich, and therefore gene-rich (especially housekeeping genes), and that the Giemsa dark bands may contain DNA that is more highly condensed. The isolation of probes from different types of libraries, or by different screening strategies, appears to reduce deficiencies that might arise from the use of probes derived with a more limited approach. These hybrids and probes should facilitate the construction of physical and genetic linkage maps to identify various disease loci involving chromosome 3. 相似文献
6.
Cathy Abbott 《Mammalian genome》1992,2(2):106-109
Mouse/hamster somatic cell hybrids form a valuable resource for mouse gene mapping. Characterization of these hybrids by isozyme analysis can be technically demanding and time-consuming. Species-specific polymerase chain reaction (PCR), where a mouse gene but not its homolog in the hamster is amplified, can provide an alternative means of characterization. Mouse-specific primers have been designed for at least one gene on each of the mouse autosomes and the X Chromosome (Chr). Primers are chosen to correspond to untranslated regions of the mouse gene concerned, in order to decrease the chance of crosshybridization with the homologous hamster gene. These primer sequences are presented, together with the conditions for their use. 相似文献
7.
P. Couillin M. Azoulay I. Henry N. Ravisé M. C. Grisard C. Jeanpierre F. Barichard P. Metezeau J. J. Candelier W. Lewis V. Van Heyningen C. Junien 《Human genetics》1989,82(2):171-178
Summary The short arm of chromosome 11 carries genes involved in malformation syndromes, including the aniridia/genitourinary abnormalities/mental retardation (WAGR) syndrome and the Beckwith-Wiedemann syndrome, both of which are associated with an increased risk of childhood malignancy. Evidence comes from constitutional chromosomal aberrations and from losses of heterozygosity, limited to tumor cells, involving regions 11p13 and 11p15. In order to map the genes involved more precisely, we have fused a mouse cell line with cell lines from patients with constitutional deletions or translocations. Characterization of somatic cell hybrids with 11p-specific DNA markers has allowed us to subdivide the short arm into 11 subregions, 7 of which belong to band 11p13. We have thus defined the smallest region of overlap for the Wilms' tumor locus bracketed by the closest proximal and distal breakpoints in two of these hybrids. The region associated with the Beckwith-Wiedemann syndrome spans the region flanked by two 11p15.5 markers, HRAS1 and HBB. These hybrids also represent useful tools for mapping new markers to this region of the human genome. 相似文献
8.
A hybrid cell mapping panel for regional localization of probes to human chromosome 8 总被引:6,自引:0,他引:6
We have characterized a panel of somatic cell hybrids that carry fragments of human chromosome 8 and used this panel for the regional localization of anonymous clones derived from a chromosome 8 library. The hybrid panel includes 11 cell lines, which were characterized by Southern blot hybridization with chromosome 8-specific probes of known map location and by fluorescent in situ hybridization with a probe derived from a chromosome 8 library. The chromosome fragments in the hybrid cell lines divide the chromosome into 10 intervals. Using this mapping panel, we have mapped 56 newly derived anonymous clones to regions of chromosome 8. We have also obtained physical map locations for 7 loci from the genetic map of chromosome 8, thus aligning the genetic and physical maps of the chromosome. 相似文献
9.
A somatic cell hybrid panel and DNA probes for physical mapping of human chromosome 7p. 总被引:2,自引:0,他引:2
A Vortkamp U Thias M Gessler W Rosenkranz P M Kroisel N Tommerup G Krüger J G?tz L Pelz K H Grzeschik 《Genomics》1991,11(3):737-743
To identify by reverse genetics genes on the short arm of human chromosome 7 expected to be involved in the regulation of human craniofacial and limb development, we have set up a human mouse somatic cell hybrid panel that divides 7p into 9 fragments. The breakpoints are defined by deletions or translocations involving one chromosome 7 in the cells of the human cell fusion partners. Particularly densely covered with these cytogenetic anchor points is the proximal area of 7p within and around 7p13. The number of cytogenetic mapping points within proximal 7p could be increased by four, using two diploid human cell lines with small interstitial deletions in this region for dosage studies. We used Southern blots of this panel to assign to 7q or subregions of 7p more than 300 arbitrary DNA probes or genes that provide reference points for physical mapping of 7p. Three reciprocal translocations with one of the breakpoints in 7p13 mark the location of a gene involved in Greig cephalopolysyndactyly syndrome. To define an area in which we could identify candidates for this developmental gene, we established a macrorestriction map using probes flanking the putative gene region. The Greig translocations were found to be located within a 630-kb NotI restriction fragment. 相似文献
10.
D I Smith W Liu D Ginzinger P Green S Smith N D Wang F Recchia K Carolyn H Drabkin W Golembieski 《Genomics》1991,11(1):179-187
A total of 5700 human chromosome 3-specific cosmid clones was isolated from a series of cosmid libraries constructed from somatic cell hybrids whose only human component was an entire chromosome 3 or a chromosome 3 containing an interstitial deletion removing 50% of long arm sequences. Several unique sequence chromosome 3-specific hybridization probes were isolated from each of 616 of these cosmids. These probes were then used to localize the cosmids by hybridization to a somatic cell hybrid deletion mapping panel capable of resolving chromosome 3 into nine distinct subregions. All 616 of the cosmids were localized to either the long or short arm of chromosome 3 and 63% of the short arm cosmids were more precisely localized. We have identified a total of 87 cosmids that contain fragments that are evolutionarily conserved. Fragments from these cosmids should prove useful in the identification of new chromosome 3-specific genes as well as in comparative mapping studies. The localized cosmids should provide excellent saturation of human chromosome 3 and facilitate the construction of physical and genetic linkage maps to identify various disease loci including Von Hippel Lindau disease and renal and small cell lung carcinoma. 相似文献
11.
A mouse-human hybrid cell panel for mapping human chromosome 16 总被引:21,自引:0,他引:21
D F Callen 《Annales de génétique》1986,29(4):235-239
A mouse-human hybrid cell panel for human chromosome 16 was constructed from human cell lines with breakpoints on chromosome 16 at p13.11, q13, q22 and q24. Fusions with the human fibroblast line GM3884, t(X;16)(q26;q24) allowed the isolation of clones with either the derivative X or the derivative 16 as the only human chromosome. This was a consequence of both the genes APRT and HPRT being involved in the translocation. The breakpoints of the line GM3884 were confirmed by aphidicolin induction of the common fragile site at 16q23. The results of the fusions with this line suggest a localisation of the APRT gene at 16q24 and confirm the localisation of HPRT to Xq26 to Xq27.3. These hybrid cell lines enable the localisation of genes and DNA fragments to six clearly defined regions. Further localisation within three of these regions is possible by use of the three fragile sites on chromosome 16. In situ hybridisation with the probe pBLUR confirmed that of three lines tested all contained a single human chromosome. 相似文献
12.
Generation of a panel of somatic cell hybrids containing fragments of human chromosome 12P by X-ray irradiation and cell fusion. 总被引:3,自引:0,他引:3
R J Sinke R F Suijkerbuijk J Herbergs H Janssen J J Cassiman A Geurts van Kessel 《Genomics》1992,12(2):206-213
We have employed an irradiation and fusion procedure to generate somatic cell hybrids containing various fragments of the short arm of human chromosome 12 using a 12p-only hybrid (M28) as starting material. For the initial identification of hybrids retaining human DNA, nonradioactive in situ hybridization was performed. Seventeen cell lines appeared to contain detectable amounts of human material. Detailed characterization of these hybrids by Southern blot analysis and chromosomal in situ suppression hybridization (chromosome painting), using hybrid DNAs as probes after Alu element-mediated PCR, resulted in a hybrid panel encompassing the entire chromosome 12p arm. This panel will provide a valuable resource for the rapid isolation of region-specific DNA markers. In addition, this panel may be useful for the characterization of chromosome 12 aberrations in, e.g., human germ cell tumors. 相似文献
13.
Regional localization of DNA sequences on chromosome 21 using somatic cell hybrids. 总被引:14,自引:9,他引:14 下载免费PDF全文
M L Van Keuren P C Watkins H A Drabkin E W Jabs J F Gusella D Patterson 《American journal of human genetics》1986,38(6):793-804
We have used a panel of Chinese hamster X human somatic cell hybrids, each containing various portions of chromosome 21 as the only detectable human chromosome component, for regional mapping of cloned, chromosome 21-derived DNA sequences. Thirty unique and very low-repeat sequences were mapped to the short arm and three sections of the long arm. Three unique sequences map to the proximal part of the terminal band 21q22.3, and five to the distal part of this band. Some of these may represent parts of gene sequences that may be relevant to the pathogenesis of Down syndrome, as 21q22 is the area required to be present in triplicate for the full clinical picture. 相似文献
14.
15.
A mouse/human hybrid cell panel of human chromosome 16 has been extended to a total of 31 hybrids. These hybrids were derived from constitutional translocations and deletions ascertained during clinical cytogenetic studies. This panel of hybrids, together with four fragile sites, have the potential to divide chromosome 16 into 38 regions. Rapid detailed physical mapping of gene probes or anonymous DNA probes is possible using this hybrid panel. This hybrid cell panel also allows the physical mapping of other chromosomes with three breakpoints on chromosomes 1, 4, 11 and 13 and two on chromosomes 3, 10 and 18. 相似文献
16.
The effect of a normal mouse X chromosome on the chromosome segregation of mouse-Chinese hamster somatic cell hybrids was determined by (i) producing hybrids between the mouse sarcoma line CMS4 and a microcell hybrid (mfe4) of the hamster line E36, containing a mouse X chromosome from a normal cell; (ii) isolating hybrids between CMS4 and a 6-thioguanine selected (X minus) mfe4 subpopulation; (iii) comparing the direction of segregation in the two sets of hybrids. It was found that the normal X chromosome, like the X chromosomes from two MCA-transformed sarcoma lines reported previously [9], has the ability to switch the chromosome segregation of mouse-Chinese hamster somatic cell hybrids. We conclude that the reversal in chromosome segregation is mediated by factors located on the X chromosome. We designate these genetic elements as segregation reversal genes or sr genes. 相似文献
17.
Simultaneous identification and banding of human chromosome material in somatic cell hybrids 总被引:4,自引:0,他引:4
We have developed a method that identifies human chromosomes in human x hamster somatic cell hybrids and simultaneously bands these same metaphases. Other methods generally require separate slides for banding and detection of human chromosome material, making the precise characterization of human material difficult. Our procedure involves denaturing metaphase chromosomes, followed by in situ hybridization of biotinylated whole human DNA. Fluoresceinated avidin is then bound to the biotinylated DNA, staining the human chromosomes yellow-green when excited with UV light. Chromosome banding is achieved by staining the slides with DAPI and actinomycin D. The fluorescein and DAPI excite maximally at 488 and 355 nm and emit at 520 and 450 nm, respectively. This permits identification of the human material at one excitation wavelength and visualization of the banding patterns at another wavelength. With this procedure, we have successfully identified both intact and broken human chromosomes, as well as human material involved in human x hamster translocations. The results indicate that this procedure is more accurate and considerably more rapid than previous methods and can be routinely employed for the cytogenetic analysis of human x rodent hybrids. 相似文献
18.
Fibroblasts from a carrier of an X/1 translocation, 46,XY,t(X;1)(q28;q31), were fused with Chinese hamster cells. The resulting hybrids were analyzed for human No. 1 and X-chromosome markers. The data indicate that the loci for PGM1, PGD, PPH, and GuK1 are situated either in the long arm proximal to a break point in band 1q31 or in the short arm. The loci for Pep-C, FH, and GuK1 are located distal to the break point. HPRT and G6PD are probably situated distal to a break point in band q28 of the X chromosome; alpha-Gal A is situated proximal to the break point, either on the long or short arm of the chromosome. 相似文献
19.
20.
Summary Catechol-O-methyltransferase (COMT) plays an important role in the inactivation of catecholamines. It has been demonstrated that erythrocyte COMT activity is genetically determined and controlled by a major autosomal locus with two alleles. The recent development of a method which allows the detection of COMT isozymes directly in autoradiozymograms has provided the means to investigate the chromosome location of the gene by using somatic cell hybrids. We have found that a single form of the COMT enzyme is expressed in several mouse-human fibroblast cell lines. The data obtained from the segregation analysis of the COMT enzyme in these hybrids and their subclones have provided evidence for the location of a major gene for COMT activity on human chromosome 22. 相似文献