首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chemical communication is an important component of mammalian social behaviors. Gray short-tailed opossums (Monodelphis domestica) communicate by scent marking. The male opossum possesses a prominent suprasternal scent gland, extracts of which strongly attract female opossums. This attractivity remains unaltered following repeated lyophilization. The suprasternal gland secretion functions in a sexually dimorphic manner, i.e., it elicits elevated levels of IP(3) in the vomeronasal (VN) sensory epithelium of female opossums, but suppressed the levels of IP(3) in the VN sensory epithelium of male opossums. The elevated levels of IP(3) induced by suprasternal gland secretion in female vomeronasal sensory epithelium is inhibited by the G(i/o) specific inhibitor, NF023, but not its inactive analogue, NF007. It is also suppressed by specific antibodies to the alpha subunits of G(i) and G(o) proteins, by the phospholipase C inhibitor, U73122, as well as by GDPbetaS. Surprisingly, GDPbetaS itself enhances basal levels of IP(3) in female VN sensory epithelium. This GDPbetaS-induced increase in levels of IP(3) is reduced by the PLC inhibitor, U73122, but not by the G(i/o) inhibitor, NF023. In addition, GDP also enhances basal levels of IP(3). GDPbetaS, a known inhibitor of G-protein activation, thus appears to have dual functions: as both stimulator and inhibitor of IP(3) production in the VN sensory epithelium of opossums. In contrast, this nucleotide analogue functions as an inhibitor in the VN sensory epithelium of mice. The mechanism of signal transduction underlying the suprasternal gland secretion-elicited signals in the VN sensory epithelium of opossums appears to involve signals that are generated through activation of G-protein-coupled receptors and transduced via activation of G(i/o)-proteins and the effector, phospholipase C, resulting in an increased production of the second messenger, IP(3). The extracellular signals are thus amplified.  相似文献   

3.
Mitogen-activated protein kinase (p42mapk) becomes transiently activated after treatment of serum-starved murine Swiss 3T3 cells or EL4 thymocytes with a diversity of mitogens. Similarly, a meiosis-activated protein kinase (p44mpk) becomes stimulated during maturation of sea star oocytes induced by 1-methyladenine. Both p42mapk and p44mpk have been identified as protein-serine/threonine kinases that are activated as a consequence of their phosphorylation. Because homologous protein kinases may play essential roles in both mitogenesis and oogenesis, we have compared in detail the biochemical properties of these two kinases. We find that these kinases are highly related based on their in vitro substrate specificities, sensitivity to inhibitors, and immunological cross-reactivity. However, they differ in apparent molecular weight and can be separated chromatographically, indicating that the two enzymes are distinct. Furthermore, in the course of this investigation, we have identified a 44-kDa protein kinase in mitogen-stimulated Swiss mouse 3T3 cells and EL4 thymocytes that co-purifies with p44mpk and thus appears to be a closer homolog of the sea star enzyme. Analysis of these protein kinases clarifies the relationships between a set of tyrosine-phosphorylated 41-45-kDa proteins present in mitogen-stimulated cells (Martinez, R., Nakamura., K. D., and Weber, M. J. (1982) Mol. Cell. Biol. 2, 653-655; Cooper, J. A., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37), two myelin basic protein kinases identified in epidermal growth factor-treated Swiss mouse 3T3 cells (Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E. G. (1990) J. Biol. Chem. 265, 11487-11494), and p42mapk. Our work points to the existence of a group of related serine/threonine protein kinases, regulated by tyrosine phosphorylation and functioning at different stages of the cell cycle.  相似文献   

4.
The most prominent tyrosyl-phosphorylated protein in maturing sea star oocytes was identified as the 44 kDa myelin basic protein (MBP) kinase p44mpk. Immunoblotting studies with anti-phosphotyrosine PY-20 antibody and phosphoamino acid analysis of in vivo [32P]phosphate-labelled p44mpk showed that the tyrosyl phosphorylation of the kinase correlated with a greater than 10-fold stimulation of its MBP phosphotransferase activity. The activation of p44mpk was reversed almost completely by purified preparations of the protein-tyrosyl phosphatases CD45 and 1B. Purified p44mpk has previously been shown to undergo autophosphorylation in vitro on seryl residues and this was associated with further enhancement of its MBP phosphorylating activity (Sanghera et al. (1991) J. Biol. Chem. 266, 6700-6707). p44mpk also underwent seryl phosphorylation during oocyte maturation, and the protein-seryl/threonyl phosphatase 2A reversed partially the maturation-associated stimulation of its MBP kinase activity. The properties of p44mpk resemble the murine 42 kDa mitogen-activated protein kinase (p42mapk). While p44mpk may feature the phosphorylatable tyrosyl residue that is critical for activation in p42mapk, it lacks the upstream threonyl phosphorylation site that is also required for p42mapk activity (Payne et al. (1991) EMBO J: 10, 885-892). These findings indicate partial differences in the regulatory mechanisms that govern the activities of these isozymes.  相似文献   

5.
Use of H3-thymidine autoradiography and unilateral vomeronasal (VN) axotomy has permitted us to demonstrate directly the existence of VN stem cells in the adult garter snake and to trace continuous bipolar neuron development and migration in the normal VN and deafferentated VN epithelium in the same animal. The vomeronasal epithelium and olfactory epithelium of adult garter snakes are both capable of incorporating H3-thymidine. In the sensory epithelium of the vomeronasal organ, H3-thymidine-labeled cells were initially restricted to the base of the undifferentiated cell layer in animals surviving 1 day following H3-thymidine injection. With increasing survival time, labeled cells progressively migrated vertically within the receptor cell column toward the apex of the bipolar neuron layer. In both the normal and denervated VN epithelium, labeled cells were observed through the 56 days of postoperative survival. In the normal epithelium, labeled cells were always located within the matrix of the intact receptor cell columns. However, labeled cells of the denervated epithelium were always located at the apical front of the newly formed cell mass following depletion of the original neuronal cell population. In addition, at postoperative days 28 and 56, labeled cells of the denervated VN epithelium achieved neuronal differentiation and maturation by migrating much farther away from the base of the receptor cell column than the labeled cells on the normal, unoperated contralateral side. This study directly demonstrates that basal cells initially incorporating H3-thymidine are indeed stem cells of the VN epithelium in adult garter snakes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Chemical communication is an important component of mammalian social behaviors. Gray short-tailed opossums (Monodelphis domestica) communicate by scent marking. The male opossum possesses a prominent suprasternal scent gland, extracts of which strongly attract female opossums. This attractivity remains unaltered following repeated lyophilization. The suprasternal gland secretion functions in a sexually dimorphic manner, i.e., it elicits elevated levels of IP3 in the vomeronasal (VN) sensory epithelium of female opossums, but suppressed the levels of IP3 in the VN sensory epithelium of male opossums. The elevated levels of IP3 induced by suprasternal gland secretion in female vomeronasal sensory epithelium is inhibited by the Gi/o specific inhibitor, NF023, but not its inactive analogue, NF007. It is also suppressed by specific antibodies to the alpha subunits of Gi and Go proteins, by the phospholipase C inhibitor, U73122, as well as by GDPβS. Surprisingly, GDPβS itself enhances basal levels of IP3 in female VN sensory epithelium. This GDPβS-induced increase in levels of IP3 is reduced by the PLC inhibitor, U73122, but not by the Gi/o inhibitor, NF023. In addition, GDP also enhances basal levels of IP3. GDPβS, a known inhibitor of G-protein activation, thus appears to have dual functions: as both stimulator and inhibitor of IP3 production in the VN sensory epithelium of opossums. In contrast, this nucleotide analogue functions as an inhibitor in the VN sensory epithelium of mice. The mechanism of signal transduction underlying the suprasternal gland secretion-elicited signals in the VN sensory epithelium of opossums appears to involve signals that are generated through activation of G-protein-coupled receptors and transduced via activation of Gi/o-proteins and the effector, phospholipase C, resulting in an increased production of the second messenger, IP3. The extracellular signals are thus amplified.  相似文献   

7.
Goats have a well-developed vomeronasal (VN) system and exhibit pheromone-induced reproductive facilitation, but there are no reports on the projection pattern of VN neurons in this species. Rodent, guinea pig and opossum accessory olfactory bulbs (AOBs) have been shown to have a segregated pattern of projection of the VN neurons, which express the two alpha-subtypes of the G-protein, namely Gi2 and Go, to the rostral and caudal regions of the AOB, respectively. In this study we investigated the projection pattern of VN nerve terminals by immunocytochemical staining of the goat vomeronasal organ (VNO) and the AOB with antibodies to Gi2 and Go. Gi2-immunoreactivity was found on the luminal surface of the sensory epithelium of the VNO, and in the VN nerve and glomerular layer throughout the AOB. On the other hand, Go-immunoreactivity was not identified in either the VNO or the VN nerve layer of the AOB. These results indicate that the projection pattern of VN neurons from the VNO to the AOB in the goat is considerably different from that in rodents which show a distinct segregated pattern.  相似文献   

8.
Mitochondrial Complex I (NADH:ubiquinone oxidoreductase) consists of at least 46 subunits. Phosphorylation of the 42-kDa subunit NDUFA10 was recently reported using a novel phosphoprotein stain [Schulenberg et al. (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 278, 27251]. Two smaller Complex I phosphoproteins, ESSS and MWFE, and their sites of modification, have since been determined [Chen et al. (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. 279, 26036]. Here we identify the site of phosphorylation in NDUFA10 from bovine heart mitochondria by tandem mass spectrometry. A single phosphopeptide spanning residues 47-60 was identified and confirmed by synthesis to be (47)LITVDGNICSGKpSK(60), establishing serine-59 as the site of phosphorylation.  相似文献   

9.
Smooth muscle caldesmon was phosphorylated in vitro by sea star p44mpk up to 2.0 mol of phosphate/mol of protein at both Ser and Thr residues. The phosphorylation sites were contained mainly in the COOH-terminal 10-kDa cyanogen bromide fragment which houses the binding sites for calmodulin, tropomyosin, and F-actin. Tryptic peptide maps of 32P-labeled caldesmon by p44mpk and p34cdc2 showed that while both enzymes recognized similar sites of phosphorylation, they have different preferred sites. Phosphorylation of caldesmon attenuated slightly its interaction with actin and had no effect on its binding to calmodulin and tropomyosin. Smooth muscle cell extracts from chicken gizzard and rat aorta contained 42- and 44-kDa proteins, respectively, which were cross-reactive with an antibody to sea star p44mpk. Immunoprecipitates from gizzard and aorta cell extracts, generated with the p44mpk antibody, possessed kinase activities toward myelin basic protein as well as caldesmon. These results suggest that MAP kinase may have functions in the differentiated smooth muscle cells distinct from those involved in the cell cycle.  相似文献   

10.
11.
Insulin-like growth factor-binding protein-3 (IGFBP-3) is inhibitory to the growth of many breast cancer cells in vitro; however, a high level of expression of IGFBP-3 in breast tumors correlates with poor prognosis, suggesting that IGFBP-3 may be associated with growth stimulation in some breast cancers. We have shown previously in MCF-10A breast epithelial cells that chronic activation of Ras-p44/42 mitogen-activated protein (MAP) kinase confers resistance to the growth-inhibitory effects of IGFBP-3 (Martin, J. L., and Baxter, R. C. (1999) J. Biol. Chem. 274, 16407-16411). Here we show that, in the same cell line, IGFBP-3 potentiates DNA synthesis and cell proliferation stimulated by epidermal growth factor (EGF), a potent activator of Ras. A mutant of IGFBP-3, which fails to translocate to the nucleus and has reduced ability to cell-associate, similarly enhanced EGF action in these cells. By contrast, the structurally related IGFBP-5, which shares many functional features with IGFBP-3, was slightly inhibitory to DNA synthesis in the presence of EGF. IGFBP-3 primes MCF-10A cells to respond to EGF because pre-incubation caused a similar degree of EGF potentiation as co-incubation. In IGFBP-3-primed cells, EGF-stimulated EGF receptor phosphorylation at Tyr-1068 was increased relative to unprimed cells, as was phosphorylation and activity of p44/42 and p38 MAP kinases, but not Akt/PKB. Partial blockade of the p44/42 and p38 MAP kinase pathways abolished the potentiation by IGFBP-3 of EGF-stimulated DNA synthesis. Collectively, these findings indicate that IGFBP-3 enhances EGF signaling and proliferative effects in breast epithelial cells via increased EGF receptor phosphorylation and activation of p44/42 and p38 MAP kinase signaling pathways.  相似文献   

12.
We have previously reported the isolation of a 35-kDa protein from A-431 cells that, in the presence of Ca2+, can serve as a substrate for the epidermal growth factor (EGF) receptor/tyrosine kinase (Fava, R.A., and Cohen, S. (1984) J. Biol. Chem. 259, 2636-2645). We now report the detection of an antigenically related 35-kDa protein in a number, but not all, of rat, pig, and human tissues. These antigenically related proteins also can serve as substrates for the EGF receptor/kinase in the presence of Ca2+. All of these proteins share the property of reversible, Ca2+-dependent binding to the particulate fraction (presumably membranes) of cell homogenates. We have isolated the 35-kDa substrate from porcine lung and have demonstrated that it is a Ca2+-binding protein. The amino-terminal sequence and the site of tyrosine phosphorylation therein have been determined. The positions of the acidic amino acid residues amino-terminal to the tyrosine phosphorylation site bear a distinct resemblance to the sequence in the homologous region of a number of other substrates for tyrosine kinases. Based on available data, the 35-kDa protein clearly differs from the protein I complex derived from intestinal mucosa and thought to be related to the proteins isolated herein (Gerke, V., and Weber, K. (1985) J. Biol. Chem. 260, 1688-1695). Finally, we report a striking sequence homology between the porcine 35-kDa described herein and human lipocortin, a phospholipase A2 inhibitor.  相似文献   

13.
Arachidonic acid has been implicated to play a role in physiological and pathophysiological processes and is selectively released by the 85-kDa cytosolic phospholipase A(2) (cPLA(2)). The activity of cPLA(2) is regulated by calcium, translocating the enzyme to its substrate, and by phosphorylation by a mitogen-activated protein kinase (MAPK) family member and a MAPK-activated protein kinase. In this study, the signal transduction pathways in growth factor-induced phosphorylation of p42/44(MAPK) and cPLA(2) activation were investigated in Her14 fibroblasts. p42/44(MAPK) in response to epidermal growth factor was not only phosphorylated via the Raf-MEK pathway but mainly through protein kinase C (PKC) or a related or unrelated kinase in which the phosphorylated p42/44(MAPK) corresponded with cPLA(2) activity. Serum-induced phosphorylation of p42/44(MAPK) also corresponded with cPLA(2) activity but is predominantly mediated via Raf-MEK and partly through PKC or a related or unrelated kinase. In contrast, activation of PKC by phorbol ester did not result in increased cPLA(2) activity, while p42/44(MAPK) is phosphorylated, mainly via Raf-MEK and through MEK. Moreover, p42/44(MAPK) phosphorylation is present in quiescent and proliferating cells, and p42/44(MAPK) is entirely phosphorylated via Raf-MEK, but it only corresponds to cPLA(2) activity in the former cells. Collectively, these data show that p42/44(MAPK) in proliferating, quiescent, and stimulated cells is phosphorylated by various signal transduction pathways, suggesting the activation of different populations of p42/44(MAPK) and cPLA(2).  相似文献   

14.
15.
16.
Abstract: Recent studies have demonstrated that administration of an electroconvulsive shock produces a rapid and transient increase in tyrosyl phosphorylation of a ∼40-kDa protein in rat brain. Initial characterization of this protein's chromatographic properties indicated that it might be a member of a recently identified family of kinases, referred to as mitogen-activated protein (MAP) kinases, that are activated by tyrosyl phosphorylation. In the present study, we have used MAP kinase antisera to assess the identity of this protein. We have found that the ∼40-kDa phosphotyrosine-containing protein comigrates with p42 MAP kinase (p42mapk) and not with two other 44-kDa MAP kinase family members detected by these antisera. Western blots of proteins immunoprecipitated with MAP kinase antibodies confirm that p42mapk displays increased tyrosyl phosphorylation after an electroconvulsive stimulus. Chromatographic separation of hippocampal extracts indicates that MAP kinase activity elutes in parallel with p42mapk. Accordingly, these studies identify p42mapk as a tyrosyl kinase substrate that is activated by this stimulus and suggest that this form of MAP kinase may be selectively regulated by neuronal stimulation.  相似文献   

17.
The c-kit/W gene encodes a transmembrane protein tyrosine kinase, which is the receptor for Steel factor (SLF). SLF shares many general characteristics of hemopoietic growth factors, stimulating the survival, proliferation, and differentiation of stem and progenitor cells. We have investigated the tyrosine phosphorylation events that ensue after SLF binding to the c-kit protein using primary cultures of murine mast cells as a model system and have compared the effects of SLF and IL-3. Proteins that became phosphorylated on tyrosine after treatment of cells with SLF included c-kit itself, and major protein substrates designated p130, p122, p118, p115, p112, p100, p77, p55, p44, and p42. The majority of these proteins were cytosolic and maximally phosphorylated within 2 min of growth factor treatment. Combinations of immunoprecipitation and immunoblotting with antibodies specific for proteins known to be associated with signaling pathways demonstrated that none of the major tyrosine-phosphorylated species correlated with phospholipase C-gamma 1, GTPase activating protein, or phosphatidylinositol 3' kinase. However, stimulation with SLF led to a modest increase in tyrosine phosphorylation of the 85-kDa subunit of the phosphatidylinositol 3' kinase and increased association with a 150-kDa phosphotyrosyl protein, likely to be c-kit. Two species that did correlate with known elements were the 44- and 42-kDa polypeptides, shown to be members of the mitogen-activated protein kinase family. A subset of these proteins (p130, p115/112, p100, p55, p44, p42) were also tyrosine-phosphorylated when cells were stimulated by IL-3. MonoQ ion-exchange chromatography and two dimensional gel analyses were used to demonstrate that at least the p55, p44, and p42 substrates were identical, as well as some more minor species of molecular weights 50, 38, and 36 kDa, thus indicating common pathways of signaling in hemopoietic cells. Whereas in the case of SLF the dose-response characteristics of the proliferative response and the induction of tyrosine phosphorylation were similar, in the case of IL-3, much lower concentrations were required for maximal proliferation than maximal tyrosine phosphorylation. These studies form the basis for further molecular characterization of common components of signal transduction pathways in hemopoietic cells.  相似文献   

18.
Abstract: Electroconvulsive shock (ECS) has been reported to induce the phosphorylation and activation of 42-kDa, but not 44-kDa, mitogen-activated protein kinase (MAPK) in rat hippocampus. We studied the activation and tyrosine phosphorylation of MAPKs in rat brain after ECS. We observed the increase of the activities of both 42- and 44-kDa MAPKs in rat hippocampus after ECS. The activities reached peak at 2 min and returned to basal levels by 15 min after ECS. We also observed the increased phsophorylation on the tyrosine residue of 42-kDa MAPK in rat hippocampus after ECS, but not on that of 44-kDa MAPK. However, when we examined the immunoprecipitated 44-kDa MAPK, we could demonstrate that the tyrosine phosphorylation of 44-kDa MAPK at 2 min after ECS was markedly increased, in accordance with the increase of kinase activity. These results indicate that ECS induces the transient activation and tyrosine phosphorylation of 44-kDa MAPK, as well as 42-kDa MAPK, in rat hippocampus, although the amount of tyrosine phosphorylation is far less and the kinase activity is lower in 44-kDa MAPK than in 42-kDa MAPK.  相似文献   

19.
We have explored intracellular pathways involved in the urokinase type plasminogen activator (urokinase or uPA)-stimulated migration of human airway smooth muscle cells (hAWSMC). Using a set of uPA mutants we found that protease activity, growth factor-like and kringle domains of uPA differentially contribute to activation of p42/p44erk1,2 and p38 MAP-kinases. Consistent with our earlier data [Mukhina et al., J. Biol. Chem. 275 (2000), 16450-16458], the kringle domain of uPA was sufficient and required to stimulate cell motility. Here we report that uPA mutants containing the kringle domain specifically activate the p38 MAP-kinase pathway and actomyosin by increasing phosphorylation of the critical Ser-19 on the myosin regulatory light chain and MAP-kinase sites of the actin-associated regulatory protein caldesmon. While pharmacological inhibition of p38 MAP-kinase activation did not affect myosin light chain phosphorylation, it blocked the increase in caldesmon phosphorylation and uPA-stimulated migration of hAWSMC on a collagen-coated surface. We conclude that activation of p38 MAP-kinase and downstream phosphorylation of non-muscle caldesmon is essential for urokinase-stimulated smooth muscle cell migration.  相似文献   

20.
The complex between ferredoxin-NADP+ oxidoreductase and its proposed membrane-binding protein (Vallejos, R. H., Ceccarelli, E., and Chan, R. (1984) J. Biol. Chem. 259, 8048-8051) was isolated from spinach thylakoids and compared with isolated cytochrome b/f complex containing associated ferredoxin NADP+ oxidoreductase (Clark, R. D., and Hind, G. (1983) J. Biol. Chem. 258, 10348-10354). There was no immunological cross-reactivity between the 17.5-kDa binding protein and an antiserum raised against the 17-kDa polypeptide of the cytochrome complex. Association of ferredoxin-NADP+ oxidoreductase with the binding protein or with the thylakoid membrane gave an allotopic shift in the pH profile of diaphorase activity, as compared to the free enzyme. This effect was not seen in enzyme associated with the cytochrome b/f complex. Identification of the 17.5-kDa binding protein as the 17-kDa component of the cytochrome b/f complex is ruled out by these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号