首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
A cytological study of barley microspores during pretreatment of the uninucleate stage to the early culture stage was conducted utilizing six genotypes. Among the three main pretreatments investigated, microspores completed the first mitotic division during 28 d cold pretreatment of spikes, with or without leaf sheath attached, and during 0.3 M mannitol pretreatment of anthers at 25 degrees C. However, during a 4 d pretreatment in 0.3 M mannitol at 4 degrees C this first mitotic division was blocked or delayed and subsequently most often occurred during the first day on culture medium. The first mitotic division of most microspores pretreated in 0.3 M mannitol was mostly symmetrical (55-60%), whereas it was asymmetric (94%) during the 28 d cold pretreatment of spikes. Following the first mitotic division during the mannitol pretreatment at 25 degrees C, closely associated daughter nuclei often appeared to fuse via membrane coalescence, leading to a high frequency of large uninucleate microspores. Based upon nuclear size, the frequencies of fused uninucleate microspores in genotypes GBC 778, GBC 777 and Igri were estimated to be 87%, 54% and 75%, respectively, after a 4 d mannitol pretreatment at 25 degrees C. Chromosome numbers in dividing nuclei and relative densitometry measurements of nuclear DNA in microspores from cv. Igri confirmed the apparent fused nature of large nuclei in uninucleate microspores. The high frequency of fused nuclei indicates that nuclear fusion occurred between both symmetric and asymmetric nuclei. Microspores of cv. Igri cultured on filter paper following three different pretreatments provided an average of about 12 000 embryo-like structures (ELS) per plate. In samples, 85-97% of these ELS regenerated green shoots. The frequency of doubled haploids (74-83%) following all pretreatments was similar to the frequencies of fused nuclei. The pretreatment of spikes in 0.3 M mannitol at 4 degrees C for 4 d is preferred as it appears to provide genotype independent induction and suspension of nuclear division, as well as regenerating green plants in a shorter time than cold alone.  相似文献   

2.
Pretreatment of anthers in mannitol prior to isolation of microspores by glass rod homogenization was effective for in vitro induction of embryogenesis in barley cv. Igri. A procedure for separation of viable microspores using centrifugation on 20% maltose was developed. The concentration of microspores was important and greatly increased the number of developing structures. Initial culture of microspores on FHG medium containing 62 g l-1 maltose, 4.4 M (1 mg l-1) BA and 200 g l-1 Ficoll-400 resulted in high frequencies of plant regeneration. Albino plant frequency was correlated to length of time in culture. Stock plant condition appeared to be a major factor influencing induction frequency. From 868 to 1738 green plants per 100 anthers were produced. The number of calli and embryos obtained and the number of green plantlets regenerated were improved by increasing the Ficoll concentration from 100 g l-1 to 400 g l-1 during the culture period compared to continuous culture on FHG Ficoll 200 g l-1.Abbreviations BA benzyladenine  相似文献   

3.
Pretreatment with increasing concentrations of mannitol, from 0.3 to 0.7 M, was used to induce stress in cultured anthers of barley (Hordeum vulgare L.). Three cultivars with varying degrees of androgenetic ability were studied. A positive linear relationship was found between concentration of mannitol in the pretreatment medium and the number of regenerated green doubled haploid plants in all the cultivars. The pretreatment also resulted in an increasing proportion of embryos to dividing microspores, and in green to albino plantlets. The optimum length of the pretreatment seemed to be genotype dependent. When Ficoll was used as an alternative stress agent a differential genotype response was observed.Abbreviations BAP N6 benzyl-aminopurine - IAA indol acetic acid  相似文献   

4.
Summary The effect of the auxin phenylacetic acid (PAA) on wheat anther and on barley anther/microspore culture was investigated. With PAA the induction response was not usually significantly different from controls but a significantly higher number of green plants were produced in wheat anther and barley microspore culture. For wheat anther culture 100 mg/L PAA was beneficial. For barley microspore culture the optimum levels were from 1 to 100 mg/L, depending on genotype. In barley anther culture there were no improvements using PAA. In wheat anther culture, 145 green plants/100 anthers were obtained with cultivar VeeryS, while the average response from twelve F1 hybrids in the breeding program was 332 green plants/100 anthers. At least 1000 green plants were obtained using isolated microspores from 100 anthers in barley cv. Igri. With cv. Bruce, regeneration occurred only when 100 mg/L PAA was used. The influence of PAA appears at the embryogenic phase of the culture system. The possible mechanisms by which PAA may improve regeneration are discussed.  相似文献   

5.
Under the same mannitol pretreatment and culture conditions, regeneration efficiency in the barley cultivar (cv.) Igri was about 10 times higher than in the cv. Digger, a difference only partially reflected by a difference in viable microspores after anther pretreatment. Therefore, a comparative study between cvs. Igri and Digger was carried out under various pretreatment conditions. For both cultivars, under water, CPW buffer and mannitol pretreatment conditions, there was a positive correlation between microspore viability and regeneration efficiency in that mannitol > CPW buffer >> water. Mannitol pretreatment of cv. Igri produced a much higher endogenous abscisic acid (ABA) level than as to Digger. Addition of ABA stimulated both percentages of viability and regeneration efficiency except in the case of mannitol pretreatment. Under CPW buffer pretreatment conditions, addition of ABA significantly stimulated regeneration efficiency and was ABA concentration dependent. However, cv. Digger was less responsive to ABA than cv. Igri. In both cultivars, under less optimal pretreatment conditions (e.g., water and CPW buffer), the effect of ABA was to stimulate increased percentages of viability and/or to reduce the number of binucleate microspores. Moreover, in cv. Igri, direct culture of anthers for 4 days without pretreatment caused an increased number of binucleate microspores compared with microspores with pretreatment for 4 days. These binucleate microspores showed DNA degradation in the nuclei. However, with mannitol pretreatment binucleate microspores and DNA fragmentation in the nuclei of microspores was rarely observed. On the basis of our observations, we suggest that the difference in regeneration efficiency in cv. Igri and cv. Digger is related to the differences in endogenous ABA production levels under mannitol pretreatment and responsiveness to ABA. One of the effects of ABA is likely due to an inhibition of cell death. Received May 21, 1999; accepted October 5, 1999  相似文献   

6.
Significant improvements were achieved in the production of haploid and doubled haploid plants from isolated microspore culture of wheat c.v. Chris on a defined media. Procedures found to be of benefit included: A 7-day pretreatment of anthers in 0.4M mannitol plus the macronutrients from FHG medium; the inclusion of 4.5 mg/liter abscisic acid in the pretreatment solution; the isolation of microspores from pretreated anthers by vortexing; and the use of phenylacetic acid (PAA) as the auxin source in MS medium. The best response was achieved with 4.0 mg/liter PAA in MS medium containing 90 g/liter maltose as the sugar source. Under these conditions, 68% of viable microspores underwent division, and an average of 93 embryos and 92 green plants were regenerated per 100 anthers used. The root-tip chromosome number and the fertility of 114 regenerating green plants revealed that 75% were completely fertile spontaneously doubled haploids.  相似文献   

7.
Summary The effects of 0,5 and 10 Gy doses of gamma irradiation on the enhancement of embryogenesis and plant regeneration efficiency of three barley (Hordeum vulgare L.) genotypes, Igri, Arabi Abiad and AECS 76, were evaluated. Embryo yields at 5 and 10 Gy doses were significantly higher than those of the control (OGy). This effect was genotype-dependent. The most responsive genotype was Igri, with 592.8 embryos 32 anthers exposed to 10 Gy. However, despite a high embryo induction rate, the green plant regeneration rate was low. Arbi Abiad had a higher ability to generate green plants produced from, with 28. 13 plantlets obtained from 32 anthers at 10 Gy; irradiation had no significant effect on regeneration of Igri and AECS 76 genotypes. In general, the 10 Gy dose produced a much higher embryo yield than the 5 Gy dose. The root-tip chromosome number and the fertility of 298 regenerating green plants of cv. Igri revealed that 64% of the tested plants were spontaneously doubled haploids (DHs) and fertile.  相似文献   

8.
The effect of donor plants annual cycle and anther/spike position on the production of microspore-derived plants and albinism were studied. We used the winter cv. Igri and the spring cv. Cork, known to respond similarly in anther culture but to produce 78% and 2% of green plants, respectively. In both cvs. the number of microspore-derived plants was significantly higher when the anthers were collected from January to July than from August to December. However, during this period the proportion of albino plants was not altered. Conversely, the anther response decreased from 76.6 to 31.5% in Igri and from 58.8 to 32.0% in Cork when the donor spike originates from the main shoot or the fourth tiller. Significantly, anthers collected from spike of the second tiller enabled us to drastically increase the proportion of regenerated green plantlets, by 16% in Igri and 1800% in Cork.  相似文献   

9.
Shim YS  Kasha KJ 《Plant cell reports》2003,21(11):1065-1071
The objective of this study was to correlate the time that DNA synthesis first occurs in haploid microspores of barley with cell cycle and plant morphological stages and to subsequently assess the influence of pretreatments on DNA synthesis at different stages of microspore development. Spikes with microspores in early, mid, and late uninucleate stages of the two-rowed barley cultivars Manley and Igri were subjected to two commonly used pretreatments. First, during cold pretreatment for 28 days there was a slow increase in relative DNA values as well as asymmetric nuclear divisions in some microspores. Second, during a 4-day cold plus 0.3 M mannitol pretreatment, there was very little change in the microspore stage or DNA values indicating that for the duration of this pretreatment the progression of the cell cycle was essentially suspended at all stages, both in Igri and Manley. The results are discussed relative to the potential for genetic transformation of microspores.  相似文献   

10.
The culture response of isolated microspores of seven recalcitrant cultivars of barley has been largely improved by identifying an appropriate pretreatment and utilizing ovary co-cultivation. After comparison of three pretreatment media, medium B was shown to be most efficient for inducing microspore embryogenesis, while 0.3 M mannitol frequently used for the responsive cv. Igri was found to be ineffective for recalcitrant genotypes. A further significant improvement of embryogenesis was achieved by using ovary co-culture, which resulted in an overall 2.1-fold increase in embryo formation and 2.4-fold increase in green plant regeneration from all cultivars compared with the control. Optimal co-culture conditions were identified as 5 ovaries/ml medium kept over 20 days in induction culture. Microspore plating densities in cultures with and without co-culture were found to be optimal at 4᎒4/ml and 8-12᎒4/ml, respectively. The most effective and reproducible method for culturing microspores of recalcitrant genotypes appeared to be the combination of medium B pretreatment with ovary co-culture. By using this procedure, the genotypic difference in microspore embryogenesis could be reduced. It was found that medium B mainly enhanced percent live embryogenic microspores, and ovary co-culture subsequently improved cell division and embryogenic development. The method described here is important for the application of the microspore culture technique to barley breeding and biotechnology.  相似文献   

11.
Oleszczuk S  Sowa S  Zimny J 《Protoplasma》2006,228(1-3):95-100
Summary. Various stresses such as starvation and cold or heat shocks have been identified as triggers in the induction of the microspore embryogenesis. This study attempts to quantify the effects of different pretreatment conditions for successful microspore culture of malting barley (cv. Scarlett). While the sporophytic microspore development could be induced from treated and nontreated microspores, abiotic stress was essential for embryo formation and plant regeneration. The type of stress treatment applied affected the numbers and the ratios of albino and green plants regenerated, as well as their fertility. The highest number of green plants was obtained after the treatment of anthers in 0.3 M mannitol at 32 °C for 24 h before microspore culture. Correspondence and reprints: Department of Plant Biotechnology and Cytogenetics, Institute of Plant Breeding and Acclimatization, Radzików, 05-870 Blonie, Poland.  相似文献   

12.
郭向荣  景建康  胡含 《遗传学报》1997,24(6):507-512
以微搅拌法建立了小孢子直接游离的预处理和培养程序。在大田生长的4个对培养反应不同的大麦基因型上,以新鲜幼穗游离小孢子进行直接培养,均成功地诱导了胚状体并获得再生绿色植株。小孢子的发育进程说明,直接游离的小泡子在预处理过程中的发育要慢于在花药中预处理的小孢子,而且其培养效率也较低。直接游离小孢子的培养密度以0.8~1.0×105/ml较理想,至少应不低于6×104/ml.8%-10%的糖浓度可明显提高小孢子分裂频率和胚状体诱导频率。实验结果也表明两种培养基FHG和MN6无明显差异,均适宜于直接游离的小孢子培养,并对游离小孢子直接培养在理论和应用上的意义进行了讨论  相似文献   

13.
Doubled haploid (DH) production is an efficient tool in barley breeding, but efficiency of DH methods is not consistent. Hence, the aim of this study was to study the effect of n-butanol application on DH barley plant production efficiency. Five elite cultivars of barley and thirteen breeding crosses with different microspore embryogenesis capacities were selected for n-butanol application in anther and isolated microspore cultures. Application of 0.1 % n-butanol after a mannitol stress treatment in anther culture significantly increased the number of embryos (up to almost twice) and green plants (from 1.7 to 3 times) in three low-responding cultivars: Albacete, Astoria and Majestic. No significant differences on microspore embryogenesis efficiency were observed in medium and high responding cultivars. The application of n-butanol treatment to isolated microspores from cold treated spikes in thirteen spring breeding crosses with a low or very low androgenetic response did not have a significant effect on the overall number of green plants. Nevertheless, an increase in the number of green plants was observed when 0.2 % n-butanol was applied in four out of seven low-responding crosses. Therefore, application of n-butanol could be routinely applied to anther cultures using mannitol treatment, in low-responding material. However, further studies are needed to determine optimal conditions in protocols using cold treatment and isolated microspore cultures.  相似文献   

14.

Key message

An improved isolated microspore culture protocol alleviating the recalcitrance typically observed in six-row spring barley was developed by optimizing four key physical factors to increase embryogenesis and reduce albinism.

Abstract

Doubled haploid (DH) plants are completely homozygous individuals that can be generated in just a few months via androgenesis in vitro. DHs are useful tools in genetic research and in plant breeding. Isolated microspore culture (IMC) is the most efficient way to produce DHs, but a strong genotype dependency imposes limitations to its wide application. Six-row, spring barley genotypes are considered as particularly recalcitrant due to a low frequency of embryogenesis and a high rate of albinism. Seeking to develop an efficient IMC protocol for this type of barley, we explored four important factors: (1) the harvest stage of immature spikes, (2) the type of pretreatment applied, (3) the osmotic potential in the induction medium, and (4) the plating density of microspores. This work was first performed using four barley genotypes: two typical six-row spring cultivars (ACCA and Léger), a two-row spring (Gobernadora) and a two-row winter (Igri) cultivar. First, by optimizing the harvest stage for each genotype we obtained a twofold to fourfold increase in the yield of embryogenic microspores. Second, two pretreatments (0.3 M mannitol for 2 days, or a combination of cold and heat over 15 days) both performed significantly better than the commonly used cold pretreatment (28 days at 4 °C). Third, an induction medium-containing mannitol (32 g/l) doubled green plant regeneration. Fourth, a plating density of 106 microspores/ml yielded the highest number of green regenerated plants. Our most important findings were then confirmed using sets of F1s from a six-row, spring-type breeding program.  相似文献   

15.
The change in the developmental pathway of microspores from gametophytic to sporophytic is induced by stress during pretreatment of spikes and anthers. In our experiments, anther culture of three barley cultivars was tested with regard to the effect of chilling at 4 degrees C for 28 days, starvation in 0.3 M mannitol solution for 4 days, and a combination of both methods. Chilling was shown to increase embryo/callus formation, while mannitol treatment favoured plant development, including development of green plants; simultaneous application of the two stress factors for 4 days proved to be ineffective. The tested cultivars exhibited a similar ability (calculated per 100 transferred embryos/calli) to develop plants without pretreatment; however, their responses to stress varied greatly. The collected data indicate that mannitol pretreatment, as compared to chilling, is more efficient in responsive cultivars.  相似文献   

16.
Summary With barley a large variation in frequency of plant formation from microspores of spikes from the same plant has been observed. The highest frequency of plant formation was obtained when culturing anthers in the dark on a high Ficoll medium containing 2,4-D and kinetin to induce proembryo (or callus) formation. Subsequently the proembryos or calli were cultured in dim light on a high Ficoll-high sugar medium containing IBA and kinetin. Finally the embryos were transferred to a starch agar medium. A maximum of 13 green plants were obtained from microspores of a single anther.The ratios of green to albino microspore derived plants varied from 91 to 19 depending on culture conditions. Under anaerobic conditions, lactic acid and other organic acids may have damaged the organelles in the cells resulting in the formation of albino plants. Thus, direct embryogenesis by using a well-buffered, high Ficoll-high sugar medium and proper aeration are essential for obtaining high frequency of green plants from microspores.Abbreviations 2,4-D 2,4 dichlorophenoxyacetic acid - IBA 3 indolylbutyric acid  相似文献   

17.
Different pretreatments were given to anthers of barley before culturing, and their effects assessed on the frequency of embryos and green doubled haploid plants produced. Mannitol pretreatment was better than cold pretreatment for some low responding cultivars. Optimal concentration of mannitol for pretreatment depended on cultivar. Low responding genotypes needed a higher concentration of mannitol than responsive ones. The addition of Ficoll to liquid medium increased the number of embryos and green plants. The influence of the growth regulators 2,4-D and TIBA was assayed using ten cultivars of barley grown in Spain. The anti-auxin TIBA gave good embryo production with some of the low responding cultivars. Two row-type cultivars always produced higher number of embryos and green plantlets than six row-type. The application of these modifications to 10 F1 hybrids with potential agronomic value, allowed the production of almost 1000 doubled haploid plants from only 3500 anthers. Up to two doubled haploid plants per flower were produced from the cross Monlon × Sonja. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Summary Androgenic plants have been obtained via anther culture in four natural populations of Hordeum spontaneum. Microscopic observations revealed that androgenesis started with the formation of two vegetative-type nuclei derived from the mitotic division of the uninucleate microspores. In this species androgenesis was affected by the type and concentration of the sugars added to the culture medium: the highest response (17% of callusing anthers) was observed on media containing 80 g l–1 maltose. The highest production of androgenic plants (per 100 anthers, 5.9 green and 4.3 albino plants) was obtained from callus grown on these same media. About half of the green plants regenerated were haploid, while the others were diploid and set seed.Abbreviations IAA indolacetic acid - BAP 6-benzylaminopurine  相似文献   

19.
The culture of isolated microspores of barley (Hordeum vulgare L. cv. Kymppi, an elite malting barley cultivar) was studied. A careful choice of culture steps resulted in an average regeneration frequency of 300 green plants per starting material spike. Strong seasonal variation in regeneration capacity was observed. The choice of a cold pretreatment method affected the viability of microspores. A cold pretreatment of the collected starting material at +4°C for 4 weeks was needed for the efficient regeneration of green plants from isolated microspore cultures. Glutamine omission from and copper additions to microspore culture were studied. The omission of glutamine did not affect the number of regenerated green plants but did result in an increase in the number of regenerated albino plants. The addition of copper did not improve the regeneration capacity of isolated barley microspores. Transformation by particle bombardment of isolated microspores did not result in the production of transgenic plants.  相似文献   

20.
Pret'ová A  Obert B  Bartosová Z 《Protoplasma》2006,228(1-3):107-114
Summary. The article is reviewing some significant features and issues in the process of haploid formation in two important monocotyledonous crop plants – maize and barley – and in two dicotyledonous plants – flax and potato. Exotic maize lines with higher androgenic response turned up as a good source for this heritable trait and this valuable trait can be incorporated into elite maize lines via crossing. Lots of attempts were devoted to identifying some cytological and/or morphological markers for androgenic response in maize microspore cultures. The “starlike” organization of the cytoplasm inside the induced maize microspores together with the enlarged size of induced microspores can be considered as morphological markers for androgenic response. In barley, microspores with rich cytoplasm that was of granular appearance with the nucleus located near the cell wall and with no visible vacuole had the largest survival rate and many of these cells continued in development and produced embryos. In flax, a dramatic increase of induction rate in anther cultures (up to 25%) was achieved when flax anthers were pretreated for 3 days at 4 °C and afterwards kept for 1 day at 35 °C. Also gynogenesis in flax has been reported already and complete plants were obtained. In potato microspore cultures, formation of two dissimilar cells indicated a strong polarization in the system and as a result of this polarization a prominent suspensor developed that persisted until the torpedo stage of the androgenic embryo. This was the first time the formation of a well developed suspensor was described in connection with androgenesis. Correspondence and reprints: Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07 Nitra, Slovak Republic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号