首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control over the nuclear localization of nuclear factor kappaB/Rel proteins is accomplished in large part through association with members of the inhibitor of kappaB (IkappaB) protein family. For example, the well studied IkappaBalpha protein actively shuttles between the nucleus and the cytoplasm and both inhibits nuclear import and mediates nuclear export of NF-kappaB/Rel proteins. In contrast, the IkappaBbeta protein can inhibit nuclear import of NF-kappaB/Rel proteins but does not remove NF-kappaB/Rel proteins from the nucleus. To further understand how the IkappaB proteins control the nuclear-cytoplasmic distribution of NF-kappaB/Rel proteins, we have characterized the nuclear import and nuclear export functions of IkappaBepsilon. Our results indicate that the IkappaBepsilon protein, like the IkappaBalpha protein, actively shuttles between the nucleus and the cytoplasm. Similar to IkappaBalpha, nuclear import of IkappaBepsilon is mediated by its ankyrin repeat domain and is not blocked by the dominant-negative RanQ69L protein. However, the nuclear import function of the IkappaBepsilon ankyrin repeat domain is markedly less efficient than that of IkappaBalpha, with the result that nuclear shuttling of IkappaBepsilon between the nucleus and the cytoplasm is significantly slower than IkappaBalpha. Nuclear export of IkappaBepsilon is mediated by a short leucine-rich nuclear export sequence (NES)-like sequence ((343)VLLPFDDLKI(352)), located between amino acids 343 and 352. This NES-like sequence is required for RanGTP-dependent binding of IkappaBepsilon to CRM1. Nuclear accumulation of IkappaB(epsilon) is increased by either leptomycin B treatment or alanine substitutions within the IkappaBepsilon-derived NES. A functional NES is required for both efficient cytoplasmic retention and post-induction control of c-Rel by IkappaBepsilon, consistent with the notion that IkappaBepsilon-mediated nuclear export contributes to control over the nucleocytoplasmic distribution of NF-kappaB/Rel proteins.  相似文献   

2.
The inhibitor of NF-kappaB (IkappaB) family of proteins is believed to regulate NF-kappaB activity by cytoplasmic sequestration. We show that in cells depleted of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, a small fraction of p65 binds DNA and leads to constitutive activation of NF-kappaB target genes, even without stimulation, whereas most of the p65 remains cytoplasmic. These results indicate that although IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins could be dispensable for cytoplasmic retention of NF-kappaB, they are essential for preventing NF-kappaB-dependent gene expression in the basal state. We also show that in the absence of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, cytoplasmic retention of NF-kappaB by other cellular proteins renders the pathway unresponsive to activation.  相似文献   

3.
NF-kappaB dimers, inhibitor IkappaB proteins, and NF-kappaB.IkappaB complexes exhibit distinct patterns in partitioning between nuclear and cytoplasmic cellular compartments. IkappaB-dependent modulation of NF-kappaB subcellular localization represents one of the more poorly understood processes in the NF-kappaB signaling pathway. In this study, we have combined in vitro biochemical and cell-based methods to elucidate differences in NF-kappaB regulation exhibited by the inhibitors IkappaBbeta and IkappaBalpha. We show that although both IkappaBalpha and IkappaBbeta bind to NF-kappaB with similar global architecture and stability, significant differences exist that contribute to their unique functional roles. IkappaBbeta derives its high affinity toward NF-kappaB dimers by binding to both NF-kappaB subunit nuclear localization signals. In contrast, IkappaBalpha contacts only one NF-kappaB NLS and employs its carboxyl-terminal proline, glutamic acid, serine, and threonine-rich region for high affinity NF-kappaB binding. We show that the presence of one free NLS in the NF-kappaB.IkappaBalpha complex renders it a dynamic nucleocytoplasmic complex, whereas NF-kappaB.IkappaBbeta complexes are localized to the cytoplasm of resting cells.  相似文献   

4.
One of the most prominent NF-kappaB target genes in mammalian cells is the gene encoding one of its inhibitor proteins, IkappaBalpha. The increased synthesis of IkappaBalpha leads to postinduction repression of nuclear NF-kappaB activity. However, it is unknown why IkappaBalpha, among multiple IkappaB family members, is involved in this process and what significance this feedback regulation has beyond terminating NF-kappaB activity. Herein, we report an important IkappaBalpha-specific function dictated by its amino-terminal nuclear export sequence (N-NES). The IkappaBalpha N-NES is necessary for the postinduction export of nuclear NF-kappaB, which is a critical event in reestablishing a permissive condition for NF-kappaB to be rapidly reactivated. We show that although IkappaBalpha and another IkappaB member, IkappaBbeta, can enter the nucleus and repress NF-kappaB DNA-binding activity during the postinduction phase, only IkappaBalpha allows the efficient export of nuclear NF-kappaB. Moreover, swapping the N-terminal region of IkappaBbeta for the corresponding IkappaBalpha sequence is sufficient for the IkappaB chimera protein to export NF-kappaB similarly to IkappaBalpha during the postinduction state. Our findings provide a mechanistic explanation of why IkappaBalpha but not other IkappaB members is crucial for postrepression activation of NF-kappaB. We propose that this IkappaBalpha-specific function is important for certain physiological and pathological conditions where NF-kappaB needs to be rapidly reactivated.  相似文献   

5.
6.
7.
8.
9.
10.
11.
FWD1 (the mouse homolog of Drosophila Slimb and Xenopus betaTrCP, a member of the F-box- and WD40 repeat-containing family of proteins, and a component of the SCF ubiquitin ligase complex) was recently shown to interact with IkappaBalpha and thereby to promote its ubiquitination and degradation. This protein has now been shown also to bind to IkappaBbeta and IkappaBepsilon as well as to induce their ubiquitination and proteolysis. FWD1 was shown to recognize the conserved DSGPsiXS motif (where Psi represents the hydrophobic residue) present in the NH(2)-terminal regions of these three IkappaB proteins only when the component serine residues are phosphorylated. However, in contrast to IkappaBalpha and IkappaBbeta, the recognition site in IkappaBepsilon for FWD1 is not restricted to the DSGPsiXS motif; FWD1 also interacts with other sites in the NH(2)-terminal region of IkappaBepsilon. Substitution of the critical serine residues in the NH(2)-terminal regions of IkappaBalpha, IkappaBbeta, and IkappaBepsilon with alanines also markedly reduced the extent of FWD1-mediated ubiquitination of these proteins and increased their stability. These data indicate that the three IkappaB proteins, despite their substantial structural and functional differences, all undergo ubiquitination mediated by the SCF(FWD1) complex. FWD1 may thus play an important role in NF-kappaB signal transduction through regulation of the stability of multiple IkappaB proteins.  相似文献   

12.
13.
Biochemical studies have shown that microsomes represent an important subcellular fraction for determining 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) effects. Proteomic analysis by two-dimensional gel-mass spectrometry of liver microsomes was undertaken to gain new insight into the actions of TCDD in male and female rats. Proteomic analysis showed TCDD induced several xenobiotic metabolism enzymes as well as a protein at 90kDa identified by mass spectrometry as IkappaB kinase beta/IKK2. This observation led to the discovery of other NF-kappaB binding proteins and kinases in microsomes and effects by TCDD. Western blotting for IKK and IkappaB family members in microsomes showed a distinct pattern from cytosol. IKK1 and IKK2 were both present in microsomes and were catalytically active although, unlike cytosol, IKKgamma/NEMO was not detectable. TCDD exposure produced an elevation in cytosolic and microsomal IKK activity of both genders. The NF-kappaB binding proteins IkappaBbeta and IkappaBgamma were prevalent in microsomes, while IkappaBalpha and IkappaB epsilon proteins were absent. TCDD treatment produced hyperphosphorylation of microsomal IkappaBbeta in both sexes with females being most sensitive. In cytosol, IkappaBalpha, IkappaBbeta, and IkappaB epsilon, but not IkappaBgamma, were clearly observed but were not changed by TCDD. Overall, proteomic analysis indicated the presence of NF-kappaB pathway members in microsomes, selectively altered by dioxin, which may influence immune and inflammatory responses within the liver.  相似文献   

14.
15.
16.
17.
18.
The NFkappaBs regulate an array of physiological and pathological processes, including propagation of mitochondrial respiratory stress signaling in mammalian cells. We showed previously that mitochondrial stress activates NFkappaB using a novel calcineurin-requiring pathway that is different from canonical or non-canonical pathways. This study shows that IkappaBbeta is essential for the propagation of mitochondrial stress signaling. Knock down of IkappaBbeta, but not IkappaBalpha, mRNA reduced the mitochondrial stress-mediated activation and nuclear translocation of cRel:p50, inhibiting expression of nuclear target genes RyR1 and cathepsin L. IkappaBbeta mRNA knock down also reduced resistance to staurosporine-induced apoptosis and decreased in vitro invasiveness. Induced receptor switching to insulin-like growth factor-1 receptor and increased glucose uptake are hallmarks of mitochondrial stress. IkappaBbeta mRNA knock down selectively abrogated the receptor switch and altered tubulin cytoskeletal organization. These results show that mitochondrial stress signaling uses an IkappaBbeta-initiated NFkappaB pathway that is distinct from the other known NFkappaB pathways. Furthermore, our results demonstrate the distinctive physiological roles of the two inhibitory proteins IkappaBbeta and IkappaBalpha.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号