首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt stress response in tomato beyond the salinity tolerance threshold   总被引:1,自引:0,他引:1  
Crop salt tolerance is generally assessed as the relative yield response to increasing root zone salinity, expressed as soil (ECe) or irrigation water (ECw) electrical conductivity. Alternatively, the dynamic process of salt accumulation into the shoot relative to the shoot biomass has also been considered as a tolerance index. These relationships are graphically represented by two intersecting linear regions, which identify (1) a specific threshold tolerance, at which yield begins to decrease, and (2) a declining region, which defines the yield reduction rate. Although the salinity threshold is intuitively a critical parameter for establishing plant salt tolerance, we focused our interest on physiological modifications that may occur in the plant at salinity higher than the so-called tolerance threshold. For this purpose, we exposed hydroponically grown tomato plants to eight different salinity levels (EC = 2.5 (non-salinized control); 4.2; 6.0; 7.8; 9.6; 11.4; 13.2; 15.0 dS m−1). Based on biomass production, water relations, leaf ions accumulation, leaf and root abscisic acid and stomatal conductance measurements, we were able to identify a specific EC value (approximately 9.6 dS m−1) at which a sharp increase of the shoot and root ABA levels coincided with (1) a decreased sensitivity of stomatal response to ABA; (2) a different partitioning of Na+ ions between young and mature leaves; (3) a remarkable increase of the root-to-shoot ratio. The specificity and functional significance of this response in salt stress adaptation is discussed.  相似文献   

2.
Ascidian larvae of Ciona intestinalis change their photic behavior during the course of development. Newly hatched larvae show no response to a light stimulus at any intensity. At 4 hr after hatching, larvae were induced to start to swimming upon the cessation of illumination, and to stop swimming upon the onset of illumination. At a weaker light intensity (5.0 x 10(-3) J/m (2).s), the larvae showed similar responses to either a single stimulus or repeated stimuli of onset and cessation of light until 10 hr after hatching. At a stronger light intensity (3.2 x 10(-1) J/m(2).s), when the stimulus was repeated, they showed sensitization and habituation of the swimming response. At 3 hr after hatching the larvae failed to show any response to an initial stimulus at any intensity of light, but after several repeated stimuli (sensitization) they showed a swimming response at light intensities above 4.0 x 10(-2) J/m (2).s. At 5 hr and with intensity above 1.0 x 10 (-2) J/m(2).s, the larvae showed photoresponses to the first stimulus, but after several repetitions the larvae failed to stop swimming upon the onset of light (habituation). A repeated series of stimuli at stronger intensities of light caused greater habituation; this habituation was retained for about 1 min. Since the larval central nervous system in Ciona is comprised of only about 100 neurons, learning behavior in ascidian larvae should provide insights for a minimal mechanism of memory in vertebrates.  相似文献   

3.
The fertilization potential of the ascidian oocyte has been studied using two intracellular electrodes. Two classes of oocyte were observed; low resting potential (RP) oocytes of ?20 to ?35 mV and high RP oocytes of ?80 to ?90 mV. The two types have comparable membrane resistance, falling in the range of 100–300 MΩ, and both may be fertilized and develop normally, although the fertilization potential (FP) is different in the two cases. High RP oocytes give rise to step-like regenerative potentials which attain positive values, whereas low RP oocytes give rise to slower depolarizations that reach zero level. In both cases the FP was sometimes preceded by a small-step depolarization as normally observed in the sea urchin. Irrespective of the original RP, the membrane resistance always decreased to 1–10% of its initial value during the first few minutes of the FP plateau. In contrast when the membrane was depolarized to a comparable potential by current injection the membrane resistance did not decrease. Polyspermic fertilization was induced by removing the extracellular coats, aging the oocytes and using high densities of sperm. The FP in monospermic and polyspermic oocytes were comparable and we could not correlate additional sperm interactions with additional electrical events. Our results suggest that the plasma membrane in ascidian oocytes lacks intrinsic mechanisms, electrical or otherwise, to prevent polyspermic fertilization.  相似文献   

4.
Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. Seedlings were exposed to 0.01, 200 or 400 mm NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging.  相似文献   

5.
Phenotypic traits differ between plants in different environments and within individuals as they grow and develop. Comparing plants in different environments at a common age can obscure the developmental basis for differences in phenotype means in different environments. Here, we compared trait means and patterns of trait ontogeny for perennial (Viola septemloba) plants growing in environments that differed in quality either naturally or due to experimental manipulation. Consistent with predictions for adaptive stress resistance, plants grown in lower-quality environments allocated proportionately more biomass to roots and rhizomes, and produced smaller, thicker and longer-lived leaves. The developmental trajectory of almost all traits differed between environments, and these differences contributed to observed differences in trait means. Plants were able to alter their initial developmental trajectory in response to an increase in resources after 8 wk of growth. This result contrasts with previous findings, and may reflect a difference in the way that annual and perennial species respond to stress. Our results demonstrate the complexity of interactions between the environment and the development of the phenotype that underlie putatively adaptive plastic responses to environment quality.  相似文献   

6.
 With the use of the monoclonal antibody UA301, which specifically recognizes the nervous system in ascidian larvae, the neuronal connections of the peripheral and central nervous systems in the ascidian Ciona intestinalis were observed. Three types of peripheral nervous system neurons were found: two located in the larval trunk and the other in the larval tail. These neurons were epidermal and their axons extended to the central nervous system and connected with the visceral ganglion directly or indirectly. The most rostral system (rostral trunk epidermal neurons, RTEN) was distributed bilateral-symmetrically. In addition, presumptive papillar neurons in palps were found which might be related to the RTEN. Another neuron group (apical trunk epidermal neurons, ATEN) was located in the apical part of the trunk. The caudal peripheral nervous system (caudal epidermal neurons, CEN) was located at the dorsal and ventral midline of the caudal epidermis. In the larval central nervous system, two major axon bundles were observed: one was of a photoreceptor complex and the other was connected with RTEN. These axon bundles joined in the posterior sensory vesicle, ran posteriorly through the visceral ganglion and branched into two caudal nerves which ran along the lateral walls of the caudal nerve tube. In addition, some immunopositive cells existed in the most proximal part of the caudal nerve tube and may be motoneurons. Received: 8 September 1997 / Accepted: 14 December 1997  相似文献   

7.
8.
Salt stress perturbs a multitude of physiological processes such as photosynthesis and growth. To understand the biochemical changes associated with physiological and cellular adaptations to salinity, two lettuce varieties (Verte and Romaine) were grown in a hydroponics culture system supplemented with 0, 100 or 200 mM NaCl. Verte displayed better growth under 100 mM NaCl compared to Romaine, but both genotypes registered relatively similar reductions in growth under 200 mM NaCl treatment. Both varieties showed differences in net photosynthetic activity in the absence of salt and 8 days after salt treatment. These differences diminished subsequently under prolonged salt stress (14 days). Verte showed enhanced leaf proline and restricted total cations especially Na+, lesser malondialdehyde (MDA) formation and lignification in the roots under 100 mM NaCl salinity. Membrane damage estimated by electrolyte leakage increased with elevated salt concentrations in roots of both varieties, but Verte had significantly lower electrolyte leakage relative to Romaine under 100 mM NaCl. Moreover, Verte also accumulated greater levels of carotenoids under increasing NaCl concentrations compared to Romaine. Taken together, these findings suggest that the greater tolerance of Verte to 100 mM NaCl is related to the more restricted accumulation of total cations and toxic Na+ in the roots and enhanced levels of antioxidative metabolites in root and leaf tissue.  相似文献   

9.
Consumption of a high-fat (HF) diet results in insulin resistance and glucose intolerance. Weight loss is often recommended to reverse these metabolic alterations and the use of a high-protein (HP), low-carbohydrate diet is encouraged. In lean rats, consumption of a HP diet improves glycemic control. However, it is unknown whether this diet has a similar effectiveness in rodents with impaired glucose tolerance. Rats were fed a HF or a chow (CH) diet for 6 weeks and then switched to a HP diet or a CH or pair-fed (PF) to the amount of kcals consumed per day by the HP group. Following the diet switch, body weight gain was attenuated as compared to HF rats, and similar between HP, CH, and PF rats. Despite similar weight progression, HP and PF rats had a significant decrease in body fat after 2 weeks, as compared to HF rats. In contrast, CH rats did not show this effect. Glucose tolerance was attenuated more quickly in HP rats than in CH or PF rats. These results indicate that a HP diet may be more effective than a balanced diet for improving glycemic control in overweight individuals.  相似文献   

10.
The cloacal complex of Crocodylus porosus is composed of three chambers (proctodaeum, urodaeum, and coprodaeum) separated by tight, muscular sphincters. The proctodaeum is proximal to the cloacal vent and houses the genitalia. The urodaeum is the largest chamber, is capable of storing large quantities of urine, and is lined with an epithelium with the capacity for transepithelial water and ion exchange. The coprodaeum, the most orad cloacal chamber, is a small, only marginally expandable chamber that has an epithelium composed almost entirely of mucus-secreting cells. The coprodaeum and lower intestine are reported to be the site(s) for urine modification in birds and bladderless lizards. A radiographic trace of urine storage in C. porosus kept for 2 months under hyperosmotic conditions showed no signs of retrograde movement of urine into the coprodaeum or rectum. Instead, urine was stored in the urodaeum of C. porosus. Examination of the mucosal surface of the urodaeum by SEM showed a plastic response to environmental salinity, with a possible increase in surface area in animals kept in hyperosmotic water compared with animals from fresh water. We propose the urodaeum as the primary site for postrenal modification of urine in C. porosus.  相似文献   

11.
The degree to which individuals inbreed is a fundamental aspect of population biology shaped by both passive and active processes. Yet, the relative influences of random and non-random mating on the overall magnitude of inbreeding are not well characterized for many taxa. We quantified variation in inbreeding among qualitatively accessible and isolated populations of a sessile marine invertebrate (the colonial ascidian Lissoclinum verrilli) in which hermaphroditic colonies cast sperm into the water column for subsequent uptake and internal fertilization. We compared estimates of inbreeding to simulations predicting random mating within sites to evaluate if levels of inbreeding were (1) less than expected because of active attempts to limit inbreeding, (2) as predicted by genetic subdivision and passive inbreeding tolerance, or (3) greater than simulations due to active attempts to promote inbreeding via self-fertilization or a preference for related mates. We found evidence of restricted gene flow and significant differences in the genetic diversity of L. verrilli colonies among sites, indicating that on average colonies were weakly related in accessible locations, but their levels of relatedness matched that of first cousins or half-siblings on isolated substrates. Irrespective of population size, progeny arrays revealed variation in the magnitude of inbreeding across sites that tracked with the mean relatedness of conspecifics. Biparental reproduction was confirmed in most offspring (86%) and estimates of total inbreeding largely overlapped with simulations of random mating, suggesting that interpopulation variation in mother–offspring resemblance was primarily due to genetic subdivision and passive tolerance of related mates. Our results highlight the influence of demographic isolation on the genetic composition of populations, and support theory predicting that tolerance of biparental inbreeding, even when mates are closely related, may be favoured under a broad set of ecological and evolutionary conditions.  相似文献   

12.
13.
1. Aquatic insects were quantitatively surveyed at five sites along the tidally influenced section of a river-dominated estuary in North Wales. Site 1 was the furthest upstream and was established as a reference site as it was never inundated by salt water. Site 5 was the furthest downstream and was inundated by all incoming tides. Numerically, insects made up 32% of the estuarine invertebrate fauna. 2. Although the densities of most insect taxa decreased towards the estuary mouth, there were significant numbers present downstream for much of the year; for example, in April at site 4 (which was inundated by 81% of all high tides), a mean of 3514 chironomid larvae were recorded per m2 of estuary bed. Even at site 5, which was inundated twice daily, there were 747 larvae per m2. Among the larger aquatic insects, caddisfly and elmid beetle larvae, together with stonefly nymphs, were consistently taken at site 4 (e.g. maxima of forty-eight caddisfly larvae m–2 in December and seventy elmids m–2 in April), although their densities were lower than upstream. 3. There were seasonal shifts in the longitudinal distribution of several taxa, most notably the extension of chironomids down the estuary in April and July, and the concentration of simuliid larvae and mayfly nymphs at site 2 in July. The total freshwater benthos showed a downstream shift between September and December, which was maintained through April and into the summer. The latter was despite peak saltwater inundation (highest tides) in October, November and April. In June and July, when saltwater intrusion was lowest, the ranges of many aquatic insects had contracted to sites 1 and 2. 4. Laboratory experiments showed that virtually all individuals of nineteen species of insects collected from site 1 (freshwater) survived a 4-h immersion in 8.75‰ saltwater (25% strength seawater). Immersion in progressively more saline solutions reduced the survivorship of first the mayflies, followed by the caddisflies Glossosoma conformis and Hydropsyche instabilis. After 4 h in full strength seawater, all specimens of the stonefly Dinocras cephalotes, over half of the Perla bipunctata, and some individuals of nine species of caddisfly were alive. Four species of caddisfly (Sericostoma personatum, Odontocerum albicorne, Potamophylax cingulatus and Adicella reducta) survived a 24-h simulated tidal cycle of immersion. With the exception of P. cingulatus, a few individuals of these caddisfly species survived immersion in full-strength seawater for 24 h. For some individual species there was good agreement between their observed longitudinal distribution in the estuary and laboratory-measured salinity tolerance; however, there was no significant correlation, overall, for the fauna.  相似文献   

14.
Conclusion Applications of system analysis and model simulation can provide for criteria of preservation regulating the processes of entropy and negentropy in ecosystems. Changes in floristic composition and species tolerance may provide information for the necessary dynamics and the cause-effect relationships of vegetation with its environment. Information about the autecology and synecology of species can be utilized in computer programs to measure the impact of man upon the ecosystem. This information will contribute increasingly to wilderness management. Change seems to be of great importance and habitat manipulation through planned large-scale or small-scale disturbance will contribute to new concepts in phytosociology. Research will have to be directed to the total ecosystem and its own environment, and to the most desirable disequilibrium of such an ecosystem. In such research, system analysis and model simulation will play key roles in the future.  相似文献   

15.
Life history plasticity is the developmental production of different phenotypes by similar genotypes in response to different environments. Plasticity is common in early post-embryonic or adult development. Later in the developmental stage, the transition from developmentally plastic to canalized (i.e., inflexible) phases is often associated with the attainment of a threshold level of storage. Thresholds are often described simply as total body mass or cumulative consumption of food. The physiological characteristics of thresholds, such as the contributions of the growth of particular organs or the production rate of proteins, are largely unstudied. To address the physiology underlying a threshold-induced developmental transition, total vitellogenin production in response to diet quality in the lubber grasshopper was studied. For individuals that differed in age or dietary protein, somatic mass, ovarian mass, fat body mass, mass-specific vitellogenin production, vitellogenin titer, and storage protein titer were measured. Age and diet strongly affected these parameters, with ovarian mass and fat body mass contributing most to the differences. During mid vitellogenesis, females were highly plastic in response to changing food quality. Only during late vitellogenesis were females unresponsive to changes in food quality. Fat body mass was a more important component of plasticity than was mass-specific vitellogenin production. Because these two variables together make up total vitellogenin production, the greater contribution of fat body mass than mass-specific vitellogenin production suggests that growth factors may be more important than tissue stimulators in producing developmental changes in total vitellogenin production. To our knowledge, this is the first study to demonstrate that mass gain of an organ is more important to developmental plasticity than is the output of that same organ.  相似文献   

16.
McCallum and Bury (Biodiv Conserv 22:1355–1367, 2013) used internet search analysis to reveal the public’s falling interest in the environment. Ficetola (Biodiv Conserv 81.1:117–142, 2013) challenged these findings. He argued that “even though the proportion of queries went down, the absolute number went up”, interest may be growing, and the apparent changes in interest were artifacts of expanded use of the internet. We demonstrate why the proportion of the public, not the numbers of individuals drives policy, discuss the implications of proportional shares of interest for environmental policy, and address the concerns discussed by Ficetola (2013). Considering the growing evidence of fading public interest in the environment, and the devastating repercussions that this could have; it is clear that we must rapidly develop strategies to counter this alarming trend.  相似文献   

17.
The effect of short-term variations in saiinity on photosynthesisand respiration in an estuarine clone of the diatom Nitzschiaamericana was examined using a laboratory environmental simulationsystem. A computer-controlled culturing system simulated surfacelongitudinal salinity gradients in the Cape Fear River Estuary,NC by regulating the growth conditions of a continuous culturein real-time. Salinity changes were programmed based on a one-dimensionalhorizontal advection model of the Cape Fear River Estuary. Thesystem proved useful in evaluating phytoplanklon photosyntheticresponses to changes in its local environment on time scalessimilar to those operating in natural systems. As more sophisticatedmodels of the physical environment and particle transport areincorporated into the simulation program, realistic physiologicalmodels of phytoplankton production can be developed. Averagerates of net carbon fixation measured during the environmentalsimulation were compared to rates predicted by long-term adaptationstudies. These results indicate that rates of net carbon fixationdecline sharply following a rapid (hours) increase in salinity.Rates of net carbon fixation return, however, approximatelyto maximum predicted rates if the salinity environment is constantfor approximately 24 h, suggesting an adaptation period. Presumablythis time is necessary for N. americana to initiate physiologicalmechanisms responsible for osmoregulation and various compensatoryresponses to changes in salinity. These results further indicatethat significant errors may result when production models basedon long-term adaptive responses are used to describe phytoplanktonproductivity in variable environments.  相似文献   

18.
19.
We investigated the dimorphic perianth colour of Salsola vermiculata and its association with seed germination percentage, interactions with temperature, light, salinity and recovery from prior salinity exposure. Seeds with and without pink and yellow perianth were incubated at three thermal regimes, two photoperiods, and five salinity levels. Germination recovery after salinity exposure was observed on seeds that failed to germinate during the salinity study. The germination percentage and rate were signi?cantly related to the perianth colour, the presence of perianth wings, thermal regimes and photoperiod. The presence of a perianth wing significantly reduced germination percentage and germination rate in both the pink and the yellow morph, but the yellow morph exhibited a higher germination percentage. Perianth wing removal increased germination in saline conditions. With the perianth removed, germination recovery was higher for the pink morph than for the yellow one. We suggest that by providing two different strategies for balancing germination with dormancy during favourable conditions, the presence of two morphs makes S. vermiculata more successful in highly unpredictable desert environments.  相似文献   

20.
Ethanol tolerance, in which exposure leads to reduced sensitivity, is an important component of alcohol abuse and addiction. The molecular mechanisms underlying this process remain poorly understood. The BKCa channel plays a central role in the behavioral response to ethanol in Caenorhabditis elegans (Davies, A. G., Pierce-Shimomura, J. T., Kim, H., VanHoven, M. K., Thiele, T. R., Bonci, A., Bargmann, C. I., and McIntire, S. L. (2003) Cell 115, 655-666) and Drosophila (Cowmeadow, R. B., Krishnan, H. R., and Atkinson, N. S. (2005) Alcohol. Clin. Exp. Res. 29, 1777-1786) . In neurons, ethanol tolerance in BKCa channels has two components: a reduced number of membrane channels and decreased potentiation of the remaining channels (Pietrzykowski, A. Z., Martin, G. E., Puig, S. I., Knott, T. K., Lemos, J. R., and Treistman, S. N. (2004) J. Neurosci. 24, 8322-8332) . Here, heterologous expression coupled with planar bilayer techniques examines two additional aspects of tolerance in human BKCa channels. 1) Is acute tolerance observed in a single channel protein complex within a lipid environment reduced to only two lipids? 2) Does lipid bilayer composition affect the appearance of acute tolerance? We found that tolerance was observable in BKCa channels in membrane patches pulled from HEK cells and when they are placed into reconstituted 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine membranes. Furthermore, altering bilayer thickness by incorporating the channel into lipid mixtures of 1,2-dioleoyl-3-phosphatidylethanolamine with phosphatidylcholines of increasing chain length, or with sphingomyelin, strongly affected the sensitivity of the channel, as well as the time course of the acute response. Ethanol sensitivity changed from a strong potentiation in thin bilayers to inhibition in thick sphingomyelin/1,2-dioleoyl-3-phosphatidylethanolamine bilayers. Thus, tolerance can be an intrinsic property of the channel protein-lipid complex, and bilayer thickness plays an important role in shaping the pattern of response to ethanol. As a consequence of these findings the protein-lipid complex should be treated as a unit when studying ethanol action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号