首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species with restricted distributions make up the vast majority of biodiversity. Recent evidence suggests that Drosophila species with restricted tropical distributions lack genetic variation in the key trait of desiccation resistance. It has therefore been predicted that tropically restricted species will be limited in their evolutionary response to future climatic changes and will face higher risks of extinction. However, these assessments have been made using extreme levels of desiccation stress (less than 10% relative humidity (RH)) that extend well beyond the changes projected for the wet tropics under climate change scenarios over the next 30 years. Here, we show that significant evolutionary responses to less extreme (35% RH) but more ecologically realistic levels of climatic change and desiccation stress are in fact possible in two species of rainforest restricted Drosophila. Evolution may indeed be an important means by which sensitive rainforest-restricted species are able to mitigate the effects of climate change.  相似文献   

2.
The physiological ability to survive climatic extremes, such as low temperature, is a major determinant of species distribution. Research suggests that tropically restricted insect populations may possess low to zero variation in stress tolerance, thereby limiting any potential to adapt to colder climates. This paradigm derives largely from contrasts among Drosophila populations and species along the tropical–temperate cline of eastern Australia. Butterfly groups, such as the variously distributed representatives of the genus Eurema, offer opportunities to test the taxonomic breadth of this paradigm. We contribute here by investigating plasticity, repeatability and heritability (h2) for cold tolerance in Eurema smilax. This continentally widespread species (extending from the Torres Strait to the south coast of Victoria) offers an important comparative basis for evaluating stress tolerance in geographically restricted congenerics. We reared two generations of E. smilax under laboratory conditions and measured recovery from a chill‐coma assay, which is one of the commonly used methods for characterizing adult cold stress tolerance. Trials on F2s conducted over three consecutive days revealed individual repeatability (r = 0.405). However, recovery time decreased systematically across trials, which is characteristic of a phenotypically plastic ‘hardening’ response to prior cold exposure. Generalized linear modelling, wherein genetic variance was estimated via an ‘animal model’ approach, indicated no difference between sexes and no effect of body size, but a significant additive genetic term, corresponding to a heritability estimate of h2 = 0.414 ± 0.100. These data suggest significant adaptive potential for cold tolerance in E. smilax but show that individuals may also respond directly to extremes of cold via phenotypic plasticity. This indicates the potential to adapt to varied thermal extremes, which would be expected for a broadly distributed species that is resilient to climate change.  相似文献   

3.
Several evolutionary hypotheses help explain why only some species adapt readily to new conditions and expand distributions beyond borders, but there is limited evidence testing these hypotheses. In this study, we consider patterns of neutral (microsatellite) and quantitative genetic variation in traits in three species of Drosophila from the montium species group in eastern Australia. We found little support for restricted or asymmetrical gene flow in any species. In rainforest-restricted Drosophila birchii, there was evidence of selection for increased desiccation and starvation resistance towards the southern border, and a reduction in genetic diversity in desiccation resistance at this border. No such patterns existed for Drosophila bunnanda, which has an even more restricted distribution. In the habitat generalist Drosophila serrata, there was evidence for geographic selection for wing size and development time, although clinal patterns for increased cold and starvation resistance towards the southern border could not be differentiated from neutral expectations. These findings suggest that borders in these species are not limited by low overall genetic variation but instead in two of the species reflect patterns of selection and genetic variability in key traits limiting borders.  相似文献   

4.
The evolutionary history of widespread and specialized species is likely to cause a different genetic architecture of key ecological traits in the two species groups. This may affect how these two groups respond to inbreeding. Here we investigate inbreeding effects in traits related to performance in 5 widespread and 5 tropical restricted species of Drosophila with the aim of testing whether the two species groups suffered differently from inbreeding depression. The traits investigated were egg-to-adult viability, developmental time and resistance to heat, cold and desiccation. Our results showed that levels of inbreeding depression were species and trait specific and did not differ between the species groups for stress resistance traits. However, for the life history traits developmental time and egg-to adult viability, more inbreeding depression was observed in the tropical species. The results reported suggest that for life history traits tropical species of Drosophila will suffer more from inbreeding depression than widespread species in case of increases in the rate of inbreeding e.g. due to declines in population sizes.  相似文献   

5.
Many mycophagous Drosophila species have adapted to tolerate high concentrations of mycotoxins, an ability not reported in any other eukaryotes. Although an association between mycophagy and mycotoxin tolerance has been established in many Drosophila species, the genetic mechanisms of the tolerance are unknown. This study presents the inter‐ and intraspecific variation in the mycotoxin tolerance trait. We studied the mycotoxin tolerance in four Drosophila species from four separate clades within the immigranstripunctata radiation from two distinct locations. The effect of mycotoxin treatment on 20 isofemale lines per species was studied using seven gross phenotypes: survival to pupation, survival to eclosion, development time to pupation and eclosion, thorax length, fecundity, and longevity. We observed interspecific variation among four species, with D. falleni being the most tolerant, followed by D. recens, D. neotestacea, and D. tripunctata, in that order. The results also revealed geographical variation and intraspecific genetic variation in mycotoxin tolerance. This report provides the foundation for further delineating the genetic mechanisms of the mycotoxin tolerance trait.  相似文献   

6.
The distribution of insects can often be related to variation in their response to thermal extremes, which in turn may reflect differences in plastic responses or innate variation in resistance. Species with widespread distributions are expected to have evolved higher levels of plasticity than those from restricted tropical areas. This study compares adult thermal limits across five widespread species and five restricted tropical species of Drosophila from eastern Australia and investigates how these limits are affected by developmental acclimation and hardening after controlling for environmental variation and phylogeny. Irrespective of acclimation, cold resistance was higher in the widespread species. Developmental cold acclimation simulating temperate conditions extended cold limits by 2°-4°C, whereas developmental heat acclimation under simulated tropical conditions increased upper thermal limits by <1°C. The response to adult heat-hardening was weak, whereas widespread species tended to have a larger cold-hardening response that increased cold tolerance by 2°-5°C. These patterns persisted after phylogenetic correction and when flies were reared under high and low constant temperatures. The results do not support the hypothesis that widely distributed species have larger phenotypic plasticity for thermal tolerance limits, and Drosophila species distributions are therefore more closely linked to differences in innate thermal tolerance limits.  相似文献   

7.
Climatic factors influence the distribution of ectotherms, raising the possibility that distributions of many species will shift rapidly under climate change and/or that species will become locally extinct. Recent studies have compared performance curves of species from different climate zones and suggested that tropical species may be more susceptible to climate change than those from temperate environments. However, in other comparisons involving responses to thermal extremes it has been suggested that mid‐latitude populations are more susceptible. Using a group of 10 closely related Drosophila species with known tropical or widespread distribution, we undertake a detailed investigation of their growth performance curves and their tolerance to thermal extremes. Thermal sensitivity of life history traits (fecundity, developmental success, and developmental time) and adult heat resistance were similar in tropical and widespread species groups, while widespread species had higher adult cold tolerance under all acclimation regimes. Laboratory measurements of either population growth capacity or acute tolerance to heat and cold extremes were compared to daily air temperature under current (2002–2007) and future (2100) conditions to investigate if these traits could explain current distributions and, therefore, also forecast future effects of climate change. Life history traits examining the thermal sensitivity of population growth proved to be a poor predictor of current species distributions. In contrast, we validate that adult tolerance to thermal extremes provides a good correlate of current distributions. Thus, in their current distribution range, most of the examined species experience heat exposure close to, but rarely above, the functional heat resistance limit. Similarly, adult functional cold resistance proved a good predictor of species distribution in cooler climates. When using the species’ functional tolerance limits under a global warming scenario, we find that both tropical and widespread Drosophila species will face a similar proportional reduction in distribution range under future warming.  相似文献   

8.
Physiological variation among and within species is thought to play a key role in determining distribution patterns across environmental gradients. We tested inter‐ and intraspecific variation in cold and heat tolerances for three grasshopper species (genus Kosciuscola) with overlapping elevation distributions, across their respective ranges in the Australian mountains. Of the three cold tolerance traits measured, the critical thermal minimum was the only trait to vary among species, with greater cold tolerance associated with a distribution extending to a higher elevation. Cold tolerance limits were regularly exceeded in exposed microhabitats, suggesting a role for cold adaptation in structuring species distribution patterns. In contrast to cold tolerance, heat tolerance variation was primarily partitioned within species. For two species, populations from treeless alpine habitat were more heat tolerant than their lower‐elevation counterparts, supporting recent models that suggest greater exposure to temperature extremes at higher elevations. These contrasting patterns of physiological variation among and within species emphasise the importance of considering variation within species when attempting to understand how species distributions are affected by thermal extremes.  相似文献   

9.
Most insects are chill susceptible and will enter a coma if exposed to sufficiently low temperature. This chill coma has been associated with a failure of the neuromuscular system. Insect heart rate (HR) is determined by intrinsic regulation (muscle pacemaker) with extrinsic (nervous and humoral) input. By examining the continually active heart of five Drosophila species with markedly different cold tolerance, we investigated whether cardiac performance is related to the whole animal critical thermal minimum (CTmin). Further, to separate the effects of cold on extrinsic and intrinsic regulators of HR, we measured HR under similar conditions in decapitated flies as well as amputated abdomens of Drosophila montana. Cardiac performance was assessed from break points in HR–temperature relationship (Arrhenius break point, ABP) and from the HR cessation temperature. Among the five species, we found strong relationships for both the HR-ABP and HR cessation temperatures to whole animal CTmin, such that temperate Drosophila species maintained cardiac function at considerably lower temperatures than their tropical congeners. Hearts of amputated abdomens, with reduced extrinsic input, had a higher thermal sensitivity and a significantly lower break point temperature, suggesting that central neuronal input is important for stimulating HR at low temperatures.  相似文献   

10.
Kimura MT 《Oecologia》2004,140(3):442-449
The relation between thermal tolerance and latitudinal distribution was studied with 30 drosophilid species collected from the cool-temperate region (Sapporo), the warm-temperate region (Tokyo and Kyoto) and the subtropical region (Iriomote island) in Japan. In addition, intraspecific variation was examined for five species collected from two localities. The subtropical strains of Scaptodrosophila coracina, Drosophila bizonata and D. daruma were less tolerant to cold than their temperate strains. However, the difference of cold tolerance between these two geographic strains was much smaller than the difference between the species restricted to the subtropical region and those occurring in the temperate region. In D. auraria and D. suzukii, no difference was observed in thermal tolerance between their cool- and warm-temperate strains. Thus, geographic variation in thermal tolerance within species was low or negligible. Interspecific comparisons by phylogenetic independent contrasts revealed that species which had the northern boundaries of their distributions at higher latitudes were generally more tolerant to cold than those which had their boundaries at lower latitudes. However, the data for some species did not agree with this trend. The use of man-protected warm places for overwintering, competition or predation would also affect their distributions. It also appeared that species which had their southern boundaries at higher latitudes were generally more cold-tolerant. The acquisition of cold tolerance may lower a flys capacity to compete, survive or reproduce in warmer climates. On the other hand, no relation was observed between heat tolerance and latitudinal distribution. Heat tolerance was higher in species inhabiting openlands or the forest canopy than in those inhabiting the forest understorey.  相似文献   

11.
Understanding how genetic variation is organized over geography has long been of interest to evolutionary biologists given that traits can vary within and among populations, across regions, and at continental or global scales. The pattern of regional variation can have an important impact on trait evolution at the local or population level. Using a common garden, we asked whether a geographically variable mosaic of tolerance to the widely applied herbicide RoundUp® existed in two closely related co-occurring species of morning glory, Ipomoea purpurea and I. hederacea. We assayed RoundUp tolerance in over 1,700 plants representing 290 families from 29 populations in the southeastern United States. Our findings suggest that the two species of morning glory partition their respective levels of genetic variation for tolerance to glyphosate differently. Variation for tolerance in I. purpurea appears to exist among maternal lines and regions, whereas in I. hederacea, variation in tolerance existed only among populations. In addition, we find a significant hotspot of tolerance or positive spatial aggregation of this trait on a local scale in I. purpurea populations from the Coastal Plain. This suggests that either similar regimes of selection or gene flow between populations can produce a geographic mosaic of tolerance. These results highlight the fact that the genetic variation underlying an adaptive trait can exist at many different scales, whether it be within- or among-populations, among geographical ‘hotspots,’ or among distinct ecological regions. Given these results, the partitioning of genetic variation should be considered before making predictions about an adaptive trait’s evolutionary trajectory.  相似文献   

12.
The relationship between distribution boundaries and temperature responses of some North AtlanticCladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group (C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group (C. prolifera: isolate from Corsica;C. coelothrix: isolates from Brittany and Curaçao; andC. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20–30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C.C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests thatC. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests thatC. prolifera, C. coelothrix andC. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10–15°C interval.C. prolifera andC. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences in cold tolerance accounting for differences in their distribution patterns. On the American coast, species were probably restricted by lethal winter temperatures in the nearshore and, in some cases, by the absence of suitable hard substrates in the more equable offshore waters. Isolates from two points along the European coast (Brittany, Corsica) ofC. laetevirens showed no marked differences in their temperature tolerance but the Caribbean and European isolates ofC. coelothrix differed markedly in their tolerance to low temperatures, the lethal limit of the Caribbean isolate lying more than 5°C higher (at ca 5°C).  相似文献   

13.
Given that evolution can generate rapid and dramatic shifts in the ecological tolerance of a species, what prevents populations adapting to expand into new habitat at the edge of their distributions? Recent population genetic models have focused on the relative costs and benefits of migration between populations. On the one hand, migration may limit adaptive divergence by preventing local populations from matching their local selective optima. On the other hand, migration may also contribute to the genetic variance necessary to allow populations to track these changing optima. Empirical evidence for these contrasting effects of gene flow in natural situations are lacking, largely because it remains difficult to acquire. Here, we develop a way to explore theoretical models by estimating genetic divergence in traits that confer stress resistance along similar ecological gradients in rainforest Drosophila. This approach allows testing for the coupling of clinal divergence with local density, and the effects of genetic variance and the rate of change of the optimum on the response to selection. In support of a swamping effect of migration on phenotypic divergence, our data show no evidence for a cline in stress-related traits where the altitudinal gradient is steep, but significant clinal divergence where it is shallow. However, where clinal divergence is detected, sites showing trait means closer to the presumed local optimum have more genetic variation than sites with trait means distant from their local optimum. This pattern suggests that gene flow also aids a sustained response to selection.  相似文献   

14.
  1. Overwintering Drosophila often display adaptive phenotypic differences beneficial for survival at low temperatures. However, it is unclear which morphological traits are the best estimators of abiotic conditions, how those traits are correlated with functional outcomes in cold tolerance, and whether there are regional differences in trait expression.
  2. We used a combination of controlled laboratory assays, and collaborative field collections of invasive Drosophila suzukii in different areas of the United States, to study the factors affecting phenotype variability of this temperate fruit pest now found globally.
  3. Laboratory studies demonstrated that winter morph (WM) trait expression is continuous within the developmental temperature niche of this species (10–25°C) and that wing length and abdominal melanization are the best predictors of the larval abiotic environment.
  4. However, the duration and timing of cold exposure also produced significant variation in development time, morphology, and survival at cold temperatures. During a stress test assay conducted at ?5°C, although cold tolerance was greater among WM flies, long‐term exposure to cold temperatures as adults significantly improved summer morph (SM) survival, indicating that these traits are not controlled by a single mechanism.
  5. Among wild D. suzukii populations, we found that regional variation in abiotic conditions differentially affects the expression of morphological traits, although further research is needed to determine whether these differences are genetic or environmental in origin and whether thermal susceptibility thresholds differ among populations within its invaded range.
  相似文献   

15.
Loxoscelism is a health problem caused by the bite of spiders of the genus Loxosceles. In Chile all cases are attributable to Loxosceles laeta. It has been suggested that the spitting spider Scytodes globula may be a predator of L. laeta and control its population, which is only possible if they share the microhabitat. This study compared the thermal preferences and tolerances of the two species. Later, spiders acclimated to 15 °C and 25 °C were exposed to decreasing and increasing temperatures to determine the lower and upper critical temperatures. The preferred temperatures were lower during the morning, but there were no differences between the species. The thermal niche breadths were similar for the species, with a large overlap. Both species showed tolerance to extreme temperatures, but L. laeta showed greater tolerance to low temperatures. Both species showed acclimation of the lower critical temperatures to changes in acclimation temperatures. The similarity of preferred and tolerated temperatures was partly an expected fact, since the species share the same macrohabitat; these spider species are very common in domestic environments of central Chile. However, the results imply that their microhabitat choices are also very similar, indicating a high probability of meeting and predation, which could have important consequences in loxoscelism epidemiology.  相似文献   

16.
Species’ tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of wild animals are representative of cumulative responses to recent environments, while lengthy acclimation is necessary for controlled comparisons of physiological tolerances. Measures of inconsistent, intermediate acclimation states, as reported by many studies, represent neither the realised nor the potential tolerance in that population, are very likely underestimates of species’ physiological capacities and may consequently be of limited value.  相似文献   

17.
18.
19.
Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets.  相似文献   

20.
In Chile, all necrotic arachnidism is attributed to the Chilean recluse spider Loxosceles laeta (Nicolet) (Araneae: Sicariidae). It is predated by the spitting spider Scytodes globula (Nicolet) (Araneae: Scytodidae). The biology of each of these species is not well known and it is important to clarify their distributions. The aims of this study are to elucidate the variables involved in the niches of both species based on environmental and human footprint variables, and to construct geographic maps that will be useful in estimating potential distributions and in defining a map of estimated risk for loxoscelism in Chile. Loxosceles laeta was found to be associated with high temperatures and low rates of precipitation, whereas although S. globula was also associated with high temperatures, its distribution was associated with a higher level of precipitation. The main variable associated with the distribution of L. laeta was the human footprint (48.6%), which suggests that this is a highly invasive species. Similarly to other species, the distribution of L. laeta reaches its southern limit at the Los Lagos region in Chile, which coincides with high levels of precipitation and low temperatures. The potential distribution of L. laeta in Chile corresponds to the distribution of cases of loxoscelism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号