首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetic cardiomyopathy (DCM) has become a major cause of diabetes-related morbidity and mortality. Increasing evidences have proved that hydrogen sulfide (H2S) fulfills a positive role in regulating diabetic myocardial injury. The present study was designed to determine whether GYY4137, a novel H2S-releasing molecule, protected H9c2 cells against high glucose (HG)-induced cytotoxicity by activation of the AMPK/mTOR signal pathway. H9c2 cells were incubated in normal glucose (5.5 mM), 22, 33, and 44 mM glucose for 24 h to mimic the hyperglycemia in DCM in vitro. Then we added 50, 100, and 200 μM GYY4137, and measured the cell viability, lactate dehydrogenase (LDH) enzyme activity, and mitochondrial membrane potential (MMP). 0.5 mM 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) and 1 mM adenine 9-β-d-arabinofuranoside (Ara-A, an AMPK inhibitor) were used to identity whether the AMPK/mTOR signal pathway was involved in GYY4137-mediated cardioprotection. We demonstrated that HG decreased cell viability and increased LDH enzyme activity in a concentration-dependent manner. 33 mM HG treatment for 24 h was chosen as our model group for further study. Both 100 and 200 μM GYY4137 treatments significantly attenuated HG-induced cell viability decrement, LDH enzyme activity increase, and MMP collapse. AICAR had similar effects to GYY4137 treatment while Ara-A attenuated GYY4137-mediated cardioprotection. Importantly, both GYY4137 and AICAR increased AMPK phosphorylation and decreased mTOR phosphorylation compared with the HG model group while Ara-A attenuated GYY4137-mediated AMPK phosphorylation increase and mTOR phosphorylation decrement. In conclusion, we propose that GYY4137 likely protects against HG-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells.  相似文献   

2.
We have demonstrated the neuroprotection of hydrogen sulfide (H2S) against chemical hypoxia-induced injury by inhibiting p38MAPK pathway. The present study attempts to evaluate the effect of H2S on chemical hypoxia-induced inflammation responses and its mechanisms in PC12 cells. We found that treatment of PC12 cells with cobalt chloride (CoCl2, a hypoxia mimetic agent) enhanced IL-6 secretion, nitric oxide (NO) generation and expression levels of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS). L-canavanine, a selective iNOS inhibitor, partly blocked CoCl2-induced cytotoxicity, apoptosis and mitochondrial insult. In addition, 7-Nitroindazole (7-NI), an inhibitor of nNOS, also partly attenuated the CoCl2-induced cytotoxicity. The inhibition of p38MAPK by SB203580 (a selective p38MAPK inhibitor) or genetic silencing of p38MAPK by RNAi (Si-p38) depressed not only CoCl2-induced iNOS expression, NO production, but also IL-6 secretion. In addition, N-acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger, conferred a similar protective effect of SB203580 or Si-p38 against CoCl2-induced inflammatory responses. Importantly, pretreatment of PC12 cells with exogenous application of sodium hydrosulfide (a H2S donor, 400 μmol/l) for 30 min before exposure to CoCl2 markedly attenuated chemical hypoxia-stimulated iNOS and nNOS expression, NO generation and IL-6 secretion as well as p38MAPK phosphorylation in PC12 cells. Taken together, we demonstrated that p38MAPK-iNOS pathway contributes to chemical hypoxia-induced inflammation and that H2S produces an anti-inflammatory effect in chemical hypoxia-stimulated PC12 cells, which may be partly due to inhibition of ROS-activated p38MAPK-iNOS pathway.  相似文献   

3.
Hyperglycemia (HG) reduces AMPK activation leading to impaired autophagy and matrix accumulation. Hydrogen sulfide (H2S) treatment improves HG-induced renovascular remodeling however, its mechanism remains unclear. Activation of LKB1 by the formation of heterotrimeric complex with STRAD and MO25 is known to activate AMPK. We hypothesized that in HG; H2S induces autophagy and modulates matrix synthesis through AMPK-dependent LKB1/STRAD/MO25 complex formation. To address this hypothesis, mouse glomerular endothelial cells were treated with normal and high glucose in the absence or presence of sodium hydrogen sulfide (NaHS), an H2S donor. HG decreased the expression of H2S regulating enzymes CBS and CSE, and autophagy markers Atg5, Atg7, Atg3 and LC3B/A ratio. HG increased galectin-3 and periostin, markers of matrix accumulation. Treatment with NaHS to HG cells increased LKB1/STRAD/MO25 formation and AMPK phosphorylation. Silencing the encoded genes confirmed complex formation under normoglycemia. H2S-mediated AMPK activation in HG was associated with upregulation of autophagy and diminished matrix accumulation. We conclude that H2S mitigates adverse remodeling in HG by induction of autophagy and regulation of matrix metabolism through LKB1/STRAD/MO25 dependent pathway.  相似文献   

4.
The present study was carried out to observe the protective effects of αB-crystallin protein on hydrogen peroxide (H2O2)-induced injury in rat myocardial cells (H9c2) and to investigate the mechanisms of these protective effects at the cellular level, which could provide the experimental basis for future applications of αB-crystallin in the treatment of cardiovascular disease. Western blotting was used to measure the expression of αB-crystallin in cultured H9c2 cells in vitro. A αB-crystallin recombinant expression vector, pcDNA3.1-Cryab, was constructed to transfect H9c2 cells for the establishment of cells that stably expressed αB-crystallin. A tetrazolium-based colorimetric assay (MTT test) was used to measure changes in the viability of the H9c2 cells at 1, 2, 3 and 4 h after induced by 150 μM H2O2 to establish a model of H2O2 injury to cells. H2O2 was applied to H9c2 cells that were stably transfected with αB-crystallin, and the effect of αB-crystallin overexpression on the viability of myocardial cells subjected to H2O2-induced injury was measured by the MTT assay. The effect of αB-crystallin overexpression on the H2O2-induced injury of H9c2 cells was also analyzed by flow cytometry. The mitochondrial components and cytoplasmic components of H9c2 cells were separated, and western blotting was used to measure the effect of αB-crystallin overexpression on the release of cytochrome c from the mitochondria. Western blotting was also used to measure the effect of αB-crystallin overexpression on the expression of the anti-apoptosis protein Bcl-2 and components of the phosphatidylinositol 3-OH kinase (PI3K)/AKT pathway. The αB-crystallin recombinant expression vector pcDNA3.1-Cryab successfully transfected H9c2 cells, and H9c2 cells that were stably transfected with αB-crystallin were established after G418 selection. The measurements carried out by western blotting showed that αB-crystallin proteins are expressed in normal H9c2 cells, but the proteins’ expression was much higher in pcDNA3.1-Cryab transfected cells (P < 0.01). The MTT assays showed that 4 h of H2O2 treatment induced significant injury in H9c2 cells (P < 0.01), but αB-crystallin overexpression can effectively antagonize the H2O2-induced injury to H9c2 cells (P < 0.05). The results of flow cytometry analysis showed that αB-crystallin overexpression can significantly reduce apoptosis in H2O2-injured H9c2 cells (P < 0.05). The results of western blotting showed that αB-crystallin overexpression in myocardial cells can reduce the H2O2-induced release of cytochrome c from the mitochondria (P < 0.05), antagonize the H2O2-induced downregulation of Bcl-2 (P < 0.05) and magnify the decrease in phosphorylated AKT levels induced by H2O2 injury (P < 0.05). The overexpression of αB-crystallin has a protective effect on H2O2-injured H9c2 cells, and αB-crystallin can play a protective role by reducing apoptosis, reducing the release of cytochrome c from the mitochondria and antagonizing the downregulation of Bcl-2 expression. The protective effects of αB-crystallin may be related to the PI3K/AKT pathway.  相似文献   

5.
6.
7.
Recently, several flavonoids have been shown to have cardioprotective, cancer preventive, or anti-inflammatory properties. However, the specific mechanisms underlying their protective effects remain unclear. We aimed to investigate the different effects of three representative flavonoids—hesperidin, naringin, and resveratrol—on intracellular adhesion molecule-1 (ICAM-1) induction in human umbilical vein endothelial cells (HUVECs) by using high-glucose (HG) concentrations and the possible underlying molecular mechanisms. In HG-induced HUVEC cultures, the effects of three different flavonoids on ICAM-1 production and p38 phosphorylation were examined in the presence or absence of inhibitors targeting the mitogen-activated protein kinase (MAPK) signal transduction pathway. HG stimulation of HUVECs increased the levels of the adhesion molecules ICAM-1 and endothelial selectin (E-selectin). Pretreatment with all the three flavonoids drastically inhibited ICAM-1 expression in a time-dependent manner, but did not alter VCAM-1 and E-selectin expressions. Moreover, we investigated the effects of flavonoids on the MAPK signal transduction pathway, because MAPK families are associated with vascular inflammation under stress. These flavonoids did not block HG-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but completely inhibited the HG-induced phosphorylation of p38 MAPK. SB202190, an inhibitor of p38 MAPK, also inhibited the HG-induced enrichment of ICAM-1. This study demonstrated that hesperidin, naringin, and resveratrol reduced the HG-induced ICAM-1 expression via the p38 MAPK signaling pathway, contributing to the inhibition of monocyte adhesion to endothelial cells.  相似文献   

8.
Selenium as a component of glutathione peroxidase may be beneficial in insulin resistance, hence potentially may modify the risk of diabetes and cardiovascular disease. The aim of our study was to evaluate whether selenium can also alter high glucose (HG), advanced glycation end products (AGE), high insulin (HI) and H2O2-induced expression of cyclooxygenase (COX)-2 and P-selectin. Human umbilical vein endothelial cells (HUVECs) were pretreated with selenium and stimulated by HG, AGE, HI and H2O2. Selenium significantly inhibited HG, AGE, HI and H2O2-induced expression of COX-2 and P-selectin. Moreover, selenium also inhibited HG, AGE, HI and H2O2-induced activation of p38 mitogen-activated protein kinase (p38 MAPK), which indicated that the preventive effects of selenium on COX-2 and P-selectin may be associated with p38. Our results indicated that selenium supplementation can reduce HG, AGE, HI and H2O2-induced expression of COX-2 and P-selectin by inhibition of the p38 pathway.  相似文献   

9.
Myogenic differentiation is an essential process for the myogenesis in response to various extracellular stimuli. p38 MAPK is a core signalling molecule in myogenic differentiation. The activation of p38 MAPK is required for myogenic differentiation; however, the mechanism for this activation remains undefined. ASK1 is a member of the MAP3K family that activates both JNK and p38 MAPK pathways in response to an array of stresses such as oxidative stress, endoplasmic reticulum stress and calcium influx. Here, we reported that TNFα was significantly released from H9c2 cardiac myoblast in differentiation medium. Furthermore, the oxidant H2O2 acted as a messenger in the TNFα signalling pathway to disrupt the complex of ASK1-Trx, which was followed by the activation of ASK1 in cardiac myogenic differentiation. Subsequently, the activated ASK1 stimulated MKK3/6-p38MAPK signalling cascade to induce specific myogenic differentiation. In addition, exogenous TNFα added to the medium at physiological levels enhanced the ASK1-p38 MAPK signalling pathway through the increased generation of H2O2. Interestingly, inhibition of p38 MAPK abrogated the production of H2O2, suggesting that there might be a positive feedback loop in the myogenic-redox signalling pathway. These results indicate that ASK1 is a new intracellular regulator of activation of the p38 MAPK in cardiac myogenic differentiation.  相似文献   

10.
Excessive reactive oxygen species (ROS) play a key role in the pathogenesis of diabetic nephropathy. The thioredoxin (TRX) system, a major thiol antioxidant system, regulates the reduction of intracellular ROS. Here we show that high glucose (HG) inhibits TRX ROS-scavenging function through p38 mitogen-activated protein kinase (MAPK)-mediated induction of thioredoxin interacting protein (TXNIP) in mouse mesangial cells (MMCs). Knockdown of TXNIP in MMCs reversed HG-induced reduction of TRX activity and inhibited HG-induced activation of p38 MAPK and increased synthesis of TGF-β1 and fibronectin. These data suggest that HG-induced overexpression of TXNIP in MMCs, which may be via the p38 MAPK pathway.  相似文献   

11.
We aimed to investigate the relationship between the synthesis of hydrogen sulfide (H2S) and the pancreatic acinar cell apoptosis in severe acute pancreatitis (SAP) rats, as well as analyse the potential apoptotic pathway involved in this process. Sixty rats had been equally divided into four groups: sham, SAP, SAP + sodium hydrosulfide (NaHS) and SAP + DL-propargylglycine (PAG). 24 h after SAP induction, all surviving animals of each group were sacrificed to collect blood and tissue samples for the following measurements: the level of serum H2S as well as the levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), H2S synthesizing activity, CSE mRNA and protein expression, maleic dialdehyde (MDA) and myeloperoxidase (MPO) activity, the expression of Bax, Bcl-2, caspase-3, -8 and -9, the release of cytochrome c and the activation of nuclear factor-kappa B (NF-κB), ERK1/2, JNK1/2 and p38 in pancreas. Furthermore, in situ detection of cell apoptosis was examined and the severity of pancreatic damage was analyzed by pathological grading and scoring. Results Significant differences in every index except IL-10 had been found between the SAP, NaHS and PAG groups (P < 0.05). Treatment with PAG obviously induced the pancreatic acinar cell apoptosis as well as improved all the pathological changes and inflammatory parameters. In contrast, administration of NaHS significantly attenuated apoptosis in the pancreas and aggravated the severity of pancreatic damage. Moreover, the expressions of caspase-3, -8, -9 and the release of cytochrome c were all increased in the apoptotic cells, and the activity of NF-κB as well as the phosphorylation of ERK1/2, JNK1/2 and p38 decreased accompanying with the reduction of the serum H2S level. H2S plays a pivotal role in the regulation of pancreatic acinar cell apoptosis in SAP rats. The present results showed that inhibition of H2S synthesis provided protection for SAP rats via inducing acinar cell apoptosis. This process acted through both extrinsic and intrinsic apoptotic pathways, and may be regulated by reducing the activity of NF-κB.  相似文献   

12.
Caffeine attenuated invasion of human leukemia U937 cells with characteristic of decreased protein expression and mRNA levels of matrix metalloproteinase‐2 (MMP‐2) and MMP‐9. Down‐regulation of MMP‐2 and MMP‐9 in U937 cells was abrogated by abolishment of caffeine‐elicited increase in intracellular Ca2+ concentration and ROS generation. Pretreatment with BAPTA‐AM (Ca2+ chelator) and N‐acetylcysteine (ROS scavenger) abolished caffeine‐induced ERK inactivation and p38 MPAK activation. Moreover, caffeine treatment led to MAPK phosphatase‐1 (MKP‐1) down‐regulation and protein phosphatase 2A catalytic subunit (PP2Ac) up‐regulation, which were involved in cross‐talk between p38 MAPK and ERK. Transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) restored MMP‐2 and MMP‐9 protein expression in caffeine‐treated cells. Caffeine treatment repressed ERK‐mediated c‐Fos phosphorylation but evoked p38 MAPK‐mediated c‐Jun phosphorylation. Knock‐down of c‐Fos and c‐Jun by siRNA reflected that c‐Fos counteracted the effect of c‐Jun on MMP‐2/MMP‐9 down‐regulation. Taken together, our data indicate that MMP‐2/MMP‐9 down‐regulation in caffeine‐treated U937 cells is elicited by Ca2+/ROS‐mediated suppression of ERK/c‐Fos pathway and activation of p38 MAPK/c‐Jun pathway. J. Cell. Physiol. 224: 775–785, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
Emerging evidence suggests that arginase contributes to endothelial dysfunction in diabetes. Intracellular signaling pathways, which interplay between arginase and eNOS enzyme activity leading to the development of endothelial dysfunction in hyperglycemia are not fully understood. Here, we analyzed the possible involvement of hyperglycemia (HG) induced arginase expression in eNOS protein regulation and activity and also the impact of arginase inhibition on eNOS activity. Furthermore, the roles of p38 MAPK and Erk1/2 phosphorylation in upregulation of arginase expression and eNOS dysregulation in endothelial cells (ECs) under hyperglycemia were evaluated. Protein analysis showed a concurrent increase in arginase I expression and decrease in eNOS expression and phosphorylation at Ser1177 under HG conditions. There was no simultaneous change in phosphorylation of eNOS at Thr495 in HG. Arginase inhibition prevented increased arginase activity, restored impaired NO bioavailability and reduced superoxide anion generation. Inhibition of MAP-kinases demonstrated that, unlike Erk1/2, p38 MAPK is an upstream activator in a signaling cascade leading to increased arginase I in HG conditions. P38 MAPK protein expression and phosphorylation were increased in response to HG. In the presence of a p38 MAPK inhibitor, HG-induced arginase expression was blunted. Although Erk1/2 was activated in HG, increased arginase expression was not blocked by co-treatment with an Erk1/2 inhibitor. Activation of both, p38 MAPK and Erk1/2 in HG, induced a downregulation in eNOS activity. Hence, applying MAPK inhibitors increased eNOS phosphorylation in HG.In conclusion, these findings demonstrate contributions of arginase I in the development of endothelial cell dysfunction under HG conditions via impaired eNOS regulation, which maybe mediated by p38 MAPK.  相似文献   

15.
3β-Hydroxy-5,6-secocholestan-6-al (cholesterol secoaldehyde or ChSeco), an oxysterol known to be formed in ozone- and singlet oxygen-mediated oxidations of cholesterol, has been detected in the atherosclerotic plaque and in the brain of patients suffering from Alzheimer’s disease and Lewy body dementia. Previously, we have shown that, in H9c2 cardiomyoblasts, ChSeco induces oxidative stress followed by apoptosis involving both intrinsic and extrinsic signaling pathways. In the present study, we investigated the nature of reactive oxygen species (ROS) and its associated redox signaling in H9c2 cells upon treatment with ChSeco. Both catalase and deferoxamine, which lowered intracellular ROS, were found to alleviate the ChSeco-induced cytotoxicity. ChSeco-treated H9c2 cells showed a significant decrease in the intracellular catalase activity, suggesting the involvement of H2O2 in the associated cytotoxicity. Additionally, in ChSeco-exposed cells, there was a marked increase in lipid peroxidation and pre-treatment with SB 203580 (p38 MAPK inhibitor) and MEK1/2 inhibitor (ERK1/2 and JNK inhibitor) rendered protection against the cytotoxicity. An early increase in the expression of p-SAPK/JNK or delayed p38 MAPK did not alter ATF-2 but decreased c-Jun expression in these cells. Overall, these findings are consistent with MAPK signaling resulting from increased cellular H2O2 in ChSeco-induced cytotoxicity in cardiomyoblasts.  相似文献   

16.
Phospholipase A2 (PLA2) from Naja naja atra venom induced apoptotic death of human leukemia K562 cells. Degradation of procaspases, production of tBid, loss of mitochondrial membrane potential, Bcl‐2 degradation, mitochondrial translocation of Bax, and cytochrome c release were observed in PLA2‐treated cells. Moreover, PLA2 treatment increased Fas and FasL protein expression. Upon exposure to PLA2, activation of p38 MAPK (mitogen‐activated protein kinase) and JNK (c‐Jun NH2‐terminal kinase) was found in K562 cells. SB202190 (p38 MAPK inhibitor) pretreatment enhanced cytotoxic effect of PLA2 and led to prolonged JNK activation, but failed to affect PLA2‐induced upregulation of Fas and FasL protein expression. Sustained JNK activation aggravated caspase8/mitochondria‐dependent death pathway, downregulated Bcl‐2 expression and increased mitochondrial translocation of Bax. SP600125 (JNK inhibitor) abolished the cytotoxic effect of PLA2 and PLA2‐induced autocrine Fas death pathway. Transfection ASK1 siRNA and overexpression of dominant negative p38α MAPK proved that ASK1 pathway was responsible for PLA2‐induced p38 MAPK and JNK activation and p38α MAPK activation suppressed dynamically persistent JNK activation. Downregulation of FADD abolished PLA2‐induced procaspase‐8 degradation and rescued viability of PLA2‐treated cells. Taken together, our results indicate that JNK‐mediated autocrine Fas/FasL apoptotic mechanism and modulation of Bcl‐2 family proteins are involved in PLA2‐induced death of K562 cells. J. Cell. Biochem. 109: 245–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Chen Z  Jiang H  Wan Y  Bi C  Yuan Y 《Cytotechnology》2012,64(1):65-73
P38 mitogen-activated protein kinases (p38 MAPK) and tumor necrosis factor-α (TNF-α) play important roles in oxidative stress-induced apoptosis in cardiac myocytes. However, the regulation and functional role of cross-talk between p38 MAPK and TNF-α pathways have not yet been fully characterized in cardiac myocytes. In this study, we found that inhibition of p38 MAPK with SB-203580 (SB) reduced H2O2-stimulated secretion of TNF-α, whereas pre-activation of p38 MAPK with sodium arsenite (SA) enhanced H2O2-stimulated secretion of TNF-α. In addition, pretreatment of cells with TNF-α increased basal and H2O2-stimulated p38 MAPK and apoptosis of cardiac myocytes, and p38 MAPK-associated apoptosis of cardiac myocytes induced by TNF-α was blocked by inhibition of p38 MAPK with SB. Finally, H2O2-induced apoptosis was attenuated by the inhibitors of p38 MAPK or reactive oxygen species (ROS), whereas it was enhanced by p38 MAPK agonist SA. These results suggest that H2O2-induced secretion of TNF-α increases apoptosis of cardiac myocytes through ROS-dependent activation of p38 MAPK. This may represent a novel mechanism that TNF-α partly interplays with p38 MAPK pathways during oxidative stress-modulated apoptosis in cardiac myocytes.  相似文献   

18.
Oxidative stress and apoptosis is involved in hypoxia-reoxygenation (H/R) induced myocardial injury. Increased expression of uncoupling protein 2 (UCP2), a cationic carrier protein, has protective effect against H/R injury. The present study aimed to find candidate drugs for H/R induced cardiac damage by identifying compounds regulating UCP2 expression. Here, among six natural compounds, ursolic acid (UA) had the most significant induction effect on UCP2 expression in H9c2 cells under H/R conditions. Subsequently, we found that UA significantly attenuated cell apoptosis and Caspase 3 activity, but increased nitric oxide (NO) release under H/R conditions. Additionally, UA pretreatment also decreased reactive oxygen species (ROS) production and malondialdehyde (MDA) content, but increased superoxide dismutase (SOD) activity. H/R caused a notable increase in the phosphorylation of p38, which was weakened by UA pretreatment. Moreover, p38 inhibitor (SB203580) showed the similar effects on H/R cells as UA pretreatment, while UCP2 knockdown had the reverse biological effects. More importantly, the effects of UA or p38 inhibitor exposure were partially rescued by UCP2 knockdown. Collectively, our data suggested the functions of UA on UCP2 expression and on the protection of H/R-stimulated H9c2 cells may be attributed to p38 signaling pathway.  相似文献   

19.
Propofol is a widely used intravenous anesthetic agent with antioxidant properties secondary to its phenol based chemical structure. Treatment with propofol has been found to attenuate oxidative stress and prevent ischemia/reperfusion injury in rat heart. Here, we report that propofol protects cardiac H9c2 cells from hydrogen peroxide (H2O2)-induced injury by triggering the activation of Akt and a parallel up-regulation of Bcl-2. We show that pretreatment with propofol significantly protects against H2O2-induced injury. We further demonstrate that propofol activates the PI3K-Akt signaling pathway. The protective effect of propofol on H2O2-induced injury is reversed by PI3K inhibitor wortmannin, which effectively suppresses propofol-induced activation of Akt, up-regulation of Bcl-2, and protection from apoptosis. Collectively, our results reveal a new mechanism by which propofol inhibits H2O2-induced injury in cardiac H9c2 cells, supporting a potential application of propofol as a preemptive cardioprotectant in clinical settings such as coronary bypass surgery.  相似文献   

20.
This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号