首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vascular injury after balloon angioplasty results in the rapid activation of platelets leading to the release of growth factors and vasoactive substances. In addition, up-regulation of tissue factor (TF) and an increased production of reactive oxygen species (ROS) have been detected at sites of vascular injury. We investigated whether platelet-derived products (PDP) released from activated human platelets increase ROS production, resulting in the induction of TF expression in vascular smooth muscle cells (SMC). PDP induced a time- and concentration-dependent increase in ROS generation in cultured SMC that was mediated mainly by PDGF-AB and TGF-beta1 and impaired by the flavin inhibitor diphenylene iodonium. Increased ROS formation was associated with enhanced mRNA levels of the small NAD(P)H oxidase subunit p22phox or its smooth muscle isoform. Transient transfection with a p22phox antisense vector decreased PDP-induced ROS generation. PDP up-regulated TF mRNA expression, which was redox sensitive and reduced by transfection of the p22phox antisense vector. In addition, PDP-stimulated reporter gene activity of two TF promoter constructs was decreased by coexpression of the p22phox antisense vector. These results indicate that activated platelets up-regulate TF expression and that this response involves ROS generation and a p22phox-containing NAD(P)H oxidase in SMC.  相似文献   

3.
The expression of morphological differences between the castes of social bees is triggered by dietary regimes that differentially activate nutrient-sensing pathways and the endocrine system, resulting in differential gene expression during larval development. In the honey bee, Apis mellifera, mitochondrial activity in the larval fat body has been postulated as a link that integrates nutrient-sensing via hypoxia signaling. To understand regulatory mechanisms in this link, we measured reactive oxygen species (ROS) levels, oxidative damage to proteins, the cellular redox environment, and the expression of genes encoding antioxidant factors in the fat body of queen and worker larvae. Despite higher mean H2O2 levels in queens, there were no differences in ROS-mediated protein carboxylation levels between the two castes. This can be explained by their higher expression of antioxidant genes (MnSOD, CuZnSOD, catalase, and Gst1) and the lower ratio between reduced and oxidized glutathione (GSH/GSSG). In worker larvae, the GSG/GSSH ratio is elevated and antioxidant gene expression is delayed. Hence, the higher ROS production resulting from the higher respiratory metabolism in queen larvae is effectively counterbalanced by the up-regulation of antioxidant genes, avoiding oxidative damage. In contrast, the delay in antioxidant gene expression in worker larvae may explain their endogenous hypoxia response.  相似文献   

4.
5.
Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3''-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction.  相似文献   

6.
Operons are found across multiple kingdoms and phyla, from prokaryotes to chordates. In the nematode Caenorhabditis elegans, the genome contains >1000 operons that compose ~15% of the protein-coding genes. However, determination of the force(s) promoting the origin and maintenance of operons in C. elegans has proved elusive. Compared to bacterial operons, genes within a C. elegans operon often show poor coexpression and only sometimes encode proteins with related functions. Using analysis of microarray and large-scale in situ hybridization data, we demonstrate that almost all operon-encoded genes are expressed in germline tissue. However, genes expressed during spermatogenesis are excluded from operons. Operons group together along chromosomes in local clusters that also contain monocistronic germline-expressed genes. Additionally, germline expression of genes in operons is largely independent of the molecular function of the encoded proteins. These analyses demonstrate that mechanisms governing germline gene expression influence operon origination and/or maintenance. Thus, gene expression in a specific tissue can have profound effects on the evolution of genome organization.  相似文献   

7.
Glioblastoma multiforme (GBM) is an aggressive form of glial brain tumors, associated with angiogenesis, thrombosis, and upregulation of tissue factor (TF), the key cellular trigger of coagulation and signaling. Since TF is upregulated by oncogenic mutations occurring in different subsets of human brain tumors we investigated whether TF contributes to tumourigenesis driven by oncogenic activation of EGFR (EGFRvIII) and RAS pathways in the brain. Here we show that TF expression correlates with poor prognosis in glioma, but not in GBM. In situ, the TF protein expression is heterogeneously expressed in adult and pediatric gliomas. GBM cells harboring EGFRvIII (U373vIII) grow aggressively as xenografts in SCID mice and their progression is delayed by administration of monoclonal antibodies blocking coagulant (CNTO 859) and signaling (10H10) effects of TF in vivo. Mice in which TF gene is disrupted in the neuroectodermal lineage exhibit delayed progression of spontaneous brain tumors driven by oncogenic N-ras and SV40 large T antigen (SV40LT) expressed under the control of sleeping beauty transposase. Reduced host TF levels in low-TF/SCID hypomorphic mice mitigated growth of glioma subcutaneously but not in the brain. Thus, we suggest that tumor-associated TF may serve as therapeutic target in the context of oncogene-driven disease progression in a subset of glioma.  相似文献   

8.
9.
10.
11.
Calpains constitute a superfamily of Ca2+-dependent cysteine proteases, indispensable for various cellular processes. Among the 15 mammalian calpains, calpain 8/nCL-2 and calpain 9/nCL-4 are predominantly expressed in the gastrointestinal tract and are restricted to the gastric surface mucus (pit) cells in the stomach. Possible functions reported for calpain 8 are in vesicle trafficking between ER and Golgi, and calpain 9 are implicated in suppressing tumorigenesis. These highlight that calpains 8 and 9 are regulated differently from each other and from conventional calpains and, thus, have potentially important, specific functions in the gastrointestinal tract. However, there is no direct evidence implicating calpain 8 or 9 in human disease, and their properties and physiological functions are currently unknown. To address their physiological roles, we analyzed mice with mutations in the genes for these calpains, Capn8 and Capn9. Capn8−/− and Capn9−/− mice were fertile, and their gastric mucosae appeared normal. However, both mice were susceptible to gastric mucosal injury induced by ethanol administration. Moreover, the Capn8−/− stomach showed significant decreases in both calpains 9 and 8, and the same was true for Capn9−/−. Consistent with this finding, in the wild-type stomach, calpains 8 and 9 formed a complex we termed “G-calpain,” in which both were essential for activity. This is the first example of a “hybrid” calpain complex. To address the physiological relevance of the calpain 8 proteolytic activity, we generated calpain 8:C105S “knock-in” (Capn8CS/CS) mice, which expressed a proteolytically inactive, but structurally intact, calpain 8. Although, unlike the Capn8−/− stomach, that of the Capn8CS/CS mice expressed a stable and active calpain 9, the mice were susceptible to ethanol-induced gastric injury. These results provide the first evidence that both of the gastrointestinal-tract-specific calpains are essential for gastric mucosal defense, and they point to G-calpain as a potential target for gastropathies caused by external stresses.  相似文献   

12.
13.
14.
Molecular-genetic mechanisms of regeneration of adult newt (Pleurodeles waltl) retina were studied. For the first time, a comparative analysis of the expression of regulatory genes Pax6, Otx2, and Six3 and FGF2 genes encoding signal molecules was performed in the normal retinal pigment epithelium (RPE) and retina and at successive stages of retina regeneration. Cell differentiation types were determined using genetic markers of cell differentiation in the RPE (RPE65) and the retina (βII-tubulin and Rho). Activation of the expression of neurospecific genes Pax6 and Six3 and the growth factor gene FGF2 and suppression of activation of the regulatory gene Otx2 and the RPE65 were observed at the stage of multipotent neuroblast formation in the regenerating retina. The expression of genes Pax6, Six3, and Fgf2 was retained at a later stage of retina regeneration at which the expression of retinal differentiation markers, the genes encoding β II-tubulin (βII-tubulin) and rhodopsin (Rho), was also detected. We assume that the above regulatory genes are multifunctional and control not only transdifferentiation of RPE cells (the key stage of retina regeneration) but also differentiation of regenerating retina cells. The results of this study, demonstrating coexpression of Pax6, Six3, Fgf2, βII-tubulin, and Rho genes, provide indirect evidence for the interaction of regulatory and specific genes during retina regeneration.  相似文献   

15.
Fenofibrate is a synthetic ligand for peroxisome proliferator-activated receptors subtype alpha (PPARα); it is used for the treatment of a wide range of metabolic diseases such as hypertriglyceridemia, dyslipidemia, diabetes and various neurodegenerative diseases. We have studied the effect of fenofibrate on β-oxidation of fatty acids and related free-radical processes. The most effective concentration of fenofibrate (0.3%) added to the chow caused a significant decrease of the body weight of mice due lipolysis. The data obtained by quantitative PCR demonstrated increased hepatic gene expression responsible for β-oxidation of fatty acids in peroxisomes and mitochondria. Enhancement of oxidative processes caused a 2-fold increase in the rate of reactive oxygen species (ROS) production, as evidenced by determination of the level of lipid peroxidation (LPO) products in the liver. Mitochondrial antioxidant systems are more sensitive to elevated ROS production, as they respond by increased expression of SOD2 and PRDX3 genes, than cytoplasmic and peroxisomal antioxidant systems, where expression of CAT1, SOD1, PRDX5 genes remained unaltered.  相似文献   

16.
《Insect Biochemistry》1986,16(1):233-240
Drosophila cell lines respond to physiological doses of 20-OH-ecdysone by entering mitotic arrest and differentiating morphologically. The cells also exhibit changes in gene expression. Several enzyme activities are induced, and the synthesis of cytoplasmic actin and of the four small heat-shock proteins (hsp) is initiated. Hybrid genes, containing the 5′ region of Drosophila heat-shock protein genes ligated to the herpes simplex virus thymidine kinase gene (tk), have been transfected into cells of the Drosophila cell line S3. Constructions containing sequences upstream from hsp 70, or from any of the small hsp genes, show heat-inducible tk expression. Ecdysterone-inducible tk expression is seen only in transfections with small hsp-tk hybrid genes. This transient expression system can be used as an assay for function to define regions of DNA, flanking the coding region of inducible genes, which are necessary for normal gene expression and gene regulation in cultured cells.  相似文献   

17.
18.
It has been suggested that respiratory stress is involved in the mechanism underlying the dormancy-breaking effect of hydrogen cyanamide (H2CN2) and sodium azide in grapevine buds; indeed, reductions in oxygen levels (hypoxia) and inhibitors of respiration promote bud-break in grapevines. In this study, we showed that, hypoxia increased starch hydrolysis soluble sugar consumption and up-regulated the expression of α-amylase genes (Vvα-AMYs) in grapevine buds, suggesting that these biochemical changes induced by hypoxia, may play a relevant role in the release of buds from endodormancy (ED). Three of the four Vvα-AMY genes that are expressed in grapevine buds were up-regulated by hypoxia and a correlation between changes in sugar content and level of Vvα-AMY gene expression during the hypoxia treatment was found, suggesting that soluble sugars mediate the effect of hypoxia on Vvα-AMY gene expression. Exogenous applications of soluble sugars and sugar analogs confirmed this finding and revealed that osmotic stress induces the expression of Vvα-AMY1 and Vvα-AMY3 and that soluble sugars induces Vvα-AMY2 and Vvα-AMY4 gene expression. Interestingly, the plant hormone gibberellic acid (GA3) induced the expression of Vvα-AMY3 and Vvα-AMY4 genes, while dormancy breaking stimuli, chilling and cyanamide exposure, mainly induced the expression of Vvα-AMY1 and Vvα-AMY2 genes, suggesting that these two α-amylase genes might be involved in the release of grapevine buds from the ED.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号