首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth hormone (GH) initiates many of its growth-promoting actions by binding to GH receptors (GHR) and stimulating the synthesis and secretion of insulin-like growth factor-1 (IGF-1) from the liver and other sites. In this study, we used hepatocytes isolated from rainbow trout as a model system in which to determine the molecular signaling events of GH in fish. GH directly stimulated the phosphorylation of ERK, protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K), JAK2, and STAT5 in hepatocytes incubated in vitro. Activation of ERK, Akt, JAK2, and STAT5 was rapid, occurring within 5-10 min, and was concentration dependent. GH-induced ERK activation was completely blocked by the ERK pathway inhibitor, U0126, and the JAK2 inhibitor, 1,2,3,4,5,6-hexabromocyclohexane (Hex), and was partially blocked by the PI3K inhibitor LY294002. GH-stimulated Akt activation was completely blocked by LY294002 and Hex, but was not affected by U0126; whereas, STAT5 activation by GH was blocked only by Hex, and was not affected by either U0126 or LY294002. GH stimulated hepatic expression of IGF-1 mRNA as well as the secretion of IGF-1, effects that were partially or completely blocked by U0126, LY294002, and Hex. These results indicate that GHR linkage to the ERK, PI3K/Akt, or STAT pathways in trout liver cells requires activation of JAK2, and that GH-stimulated IGF-1 synthesis and secretion is mediated through the ERK, PI3K/Akt, and JAK-STAT pathways.  相似文献   

2.
Previously, we reported that somatostatins (SS) inhibit organismal growth by reducing hepatic growth hormone (GH) sensitivity and by inhibiting insulin-like growth factor I (IGF-I) production. In this study, we used hepatocytes isolated from rainbow trout to elucidate the mechanism(s) associated with the extrapituitary growth-inhibiting actions of SS. SS-14, a predominant SS isoform, stimulated tyrosine phosphorylation of several endogenous proteins, including extracellular signal-regulated kinase (ERK), a member the mitogen-activated protein kinase (MAPK) family, and protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K). SS-14 specifically stimulated the phosphorylation of both ERK 1/2 and Akt in a concentration-dependent fashion. This activation occurred within 5-15 min, then subsided after 1 h. The ERK inhibitor U0126 retarded SS-14-stimulated phosphorylation of ERK 1/2, whereas the PI3K inhibitor LY294002 blocked SS-14-stimulated phosphorylation of Akt. SS-14-inhibited expression of GH receptor (GHR) mRNA was blocked by U0126 but not by LY294002. By contrast, U1026 had no effect on SS-14 inhibition of GH-stimulated IGF-I mRNA expression, whereas LY294002 partially blocked the inhibition of GH-stimulated IGF-I mRNA expression by SS-14. These results indicate that SS-14-inhibited GHR expression is mediated by the ERK signaling pathway and that the PI3K/Akt pathway mediates, at least in part, SS-14 inhibition of GH-stimulated IGF-I expression.  相似文献   

3.
The objective of this study is to investigate the signal transduction pathways that regulate heat shock protein 27 (HSP27) phosphorylation and migration of vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) induced by angiotensin II (AngII) and platelet derived growth factor-BB (PDGF-BB). The activity of HSP27 was evaluated by Western blot with specific phospho-HSP27 antibody. F-actin polymerization was detected by FITC-Phalloidine staining using confocal microscopy. Modified Boyden chamber technique was employed for VSMCs migration assessment. Within a given concentration, the phosphorylation of HSP27 induced by AngII and PDGF-BB was blocked by the specific P38MAPK inhibitor SB202190, the specific PI3K inhibitor LY294002 and the specific ERK1/2 inhibitor U0126 in a concentration-dependent manner, with a peak inhibition rate at 87.2%, 78.4% and 37.3%, respectively, induced by AngII (P < 0.01), with a peak inhibition rate at 85.0%, 55.3% and 41.0%, respectively, induced by PDGF-BB (P < 0.01).The migration of VSMCs induced by AngII and PDGF-BB was inhibited by 100 μmol/l SB202190, 30 μmol/l LY294002, and 30 μmol/l U0126, with a inhibition rate at 60.1%, 71.7% and 47.3%, respectively, provoked by AngII (P < 0.01), with a inhibition rate at 55.3%, 55.6% and 38.1%, respectively, provoked by PDGF-BB (P < 0.01). P38MAPK and PI3 K/Akt are important pathways that contribute to the phosphorylation of HSP27 and migration of VSMCs in response to AngII and PDGF-BB. ERK1/2 might be involved in HSP27 phosphorylation and migration of VSMCs provoked by AngII and PDGF-BB.  相似文献   

4.
Cerebral ischemia increases neural progenitor cell proliferation and neurogenesis. However, the precise molecular mechanism is poorly understood. The present study was undertaken to determine roles of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt and their signaling pathways in neural progenitor cells exposed to hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion. Neural progenitor cells were isolated from postnatal mouse brain. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of MEK, but not by LY294002, a specific inhibitor of PI3K, whereas the Akt activation was blocked by LY294002, but not by U0126. Reoxygenation following 4-h hypoxia stimulated cell proliferation, which was dependent on ERK and Akt activation. Inhibitors of growth factor receptor (AG1478) and Src (PP2) and the antioxidant N-acetylcysteine did not affect activation of ERK and Akt, while the Ras and Raf inhibitors inhibited activation of ERK, but not Akt. PKC inhibitors inhibited both ERK and Akt activation. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt survival signaling pathways through a PKC-dependent mechanism. These pathways may be responsible for the repair process during ischemia/reperfusion.  相似文献   

5.
6.
目的:探究Ras蛋白在地塞米松体外诱导大鼠胚胎垂体生长激素细胞分化过程中的作用。方法:本课题利用大鼠胚胎垂体细胞的无血清原代细胞培养技术,在地塞米松诱导生长激素细胞分化的过程中,加入蛋白Ras的抑制剂Manumycin,利用免疫荧光、western-blot、放射免疫分析和MTT等技术对Ras蛋白在糖皮质激素体外诱导生长激素细胞分化中的作用进行研究。结果:地塞米松能够显著提高生长激素阳性细胞百分比和生长激素的含量(P0.01)。加入不同浓度的Manumycin后,地塞米松诱导的生长激素阳性细胞百分比显著降低(P0.01),生长激素的含量亦出现降低(P0.05)。结论:Ras蛋白在地塞米松诱导垂体生长激素细胞分化过程中发挥重要作用。  相似文献   

7.
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion.  相似文献   

8.
CC chemokine receptor 1 (CCR1) has been implicated in inflammation. The present study examined the signaling mechanisms that mediate GM-CSF/IL-10-induced synergistic CCR1 protein expression in monocytic U937 cells. GM-CSF alone markedly increased both the mRNA and protein expression of CCR1. IL-10 augmented GM-CSF-induced CCR1 protein expression with no effect on mRNA expression. PD098059 and U0126 (two MEK inhibitors), and LY294002 (a PI3K inhibitor) inhibited GM-CSF/IL-10-induced CCR1 gene and protein expression. PD098059, U0126, and LY294002 also attenuated chemotaxis of GM-CSF/IL-10-primed U937 cells in response to MIP-1alpha. Immunoblotting studies show that GM-CSF alone induced ERK2 phosphorylation; whereas, IL-10 alone induced p70(S6k) phosphorylation in U937 cells. Neither cytokine when used alone induced PKB/Akt phosphorylation. Combined GM-CSF/IL-10 treatment of U937 cells induced phosphorylation of ERK2, p70(S6k), and PKB/Akt. PD098059 and U0126 completely abrogated ERK2 phosphorylation; whereas, LY294002 completely blocked PKB/Akt and p70(S6k) phosphorylation. Our findings indicate that IL-10 may potentiate GM-CSF-induced CCR1 protein expression in U937 cells via activation of PKB/Akt and p70(S6k).  相似文献   

9.
10.
Vaculová A  Hofmanová J  Soucek K  Kozubík A 《FEBS letters》2006,580(28-29):6565-6569
Epithelial cells can be manipulated to undergo apoptosis depending on the balance between pro-survival and apoptotic signals. We showed that TRAIL-induced apoptosis may be differentially regulated by inhibitors of MEK ERK (U0126) or PI3K/Akt (LY294002) pathway in TRAIL-sensitive (HT-29) and TRAIL-resistant (SW620) human epithelial colon cancer cells. U0126 or LY294002 significantly enhanced TRAIL-induced apoptosis in HT-29 cells, but not in SW620 cells. We report a different regulation of the level of an anti-apoptotic Mcl-1 protein under MEK/ERK or PI3K/Akt pathway inhibition and suggest the mechanisms involved. A special attention was paid to the role of the ERK1/2, Akt, and glycogen synthase kinase 3beta.  相似文献   

11.
Proteinase-activated receptor-2 (PAR2) plays pro-inflammatory roles in many organs including the gastrointestinal (GI) tract. To clarify the downstream pro-inflammatory signaling of PAR2 in the GI tract, we examined interleukin-8 (IL-8) release and the underlying cellular signaling following PAR2 stimulation in human colorectal cancer-derived HCT-15 cells and human gastric adenocarcinoma-derived MKN-45 cells. A PAR2-activating peptide, but not a PAR2-inactive scrambled peptide or a PAR1- activating peptide, caused IL-8 release in these GI epithelial cells. The PAR2-triggered IL-8 release was suppressed by inhibitors of MEK (U0126) or PI3-kinase (LY294002), and PAR2 stimulation indeed activated the downstream kinases, ERK and Akt. U0126 blocked the phosphorylation of ERK, but not Akt, and LY294002 blocked the phosphorylation of Akt, but not ERK. Together, PAR2 triggers IL-8 release via two independent signaling pathways, MEK/ERK and PI3-kinase/Akt, suggesting a role of PAR2 as a pro-inflammatory receptor in the GI tract.  相似文献   

12.
Liver diseases are closely associated with elevated levels of interleukin-8 (IL-8), suggesting the ability to inhibit IL-8 production could enhance the treatment of liver diseases. Paeoniflorin is a major active constituent of dried Paeoniae Radix Alba root (Baishao in Chinese) which is widely used in China to treat liver diseases. We examined the effects and underlying mechanisms of paeoniflorin on IL-8 production in primary human hepatic sinusoidal endothelial cells (HHSECs). Concanavalin A (ConA) at 20 μg/mL produced a 5.2-fold increase in IL-8 mRNA by 8 h, and a 14.2-fold rise in IL-8 levels by 16 h. Inhibition of MEK (ERK kinase) and extracellular signal-regulated kinase (ERK) by PD98059 and U0126, or inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 blocked both ConA-induced IL-8 mRNA expression and IL-8 secretion. Paeoniflorin reduced ConA-induced IL-8 mRNA expression and IL-8 release by 57.9% and 52.8%, respectively, and also decreased ConA-stimulated phosphorylation of ERK1/2 and Akt, suggesting paeoniflorin inhibits IL-8 expression and release by inhibiting the ERK1/2 and Akt pathways. Combining paeoniflorin with U0126 or LY294002 at low doses showed supra-additive inhibition of not only phospho-ERK1/2 and phospho-Akt by 46.4% and 35.0%, but also IL-8 release by 42.4% and 36.1% and IL-8 mRNA expression by 43.5% and 31.8%, respectively. In conclusion, paeoniflorin most likely contributes to the therapy for liver disease by exerting anti-inflammatory effects on HHSECs through blocking IL-8 secretion via downregulation of ERK1/2 and Akt phosphorylation.  相似文献   

13.
Interleukin 15 (IL-15) is a potent stimulator of proliferation and an inhibitor of apoptosis in lymphocytes. We attempted to elucidate the mechanism of IL-15 function in HaCaT keratinocytes. We found that 5-bromo-2(')-deoxyuridine incorporation increased in a dose-dependent manner with IL-15. This was blocked by MEK inhibitor U0126 or PI 3-K inhibitor LY294002. ERK1/2 and Akt phosphorylation by IL-15 were detected in a dose- and time-dependent manner. U0126 and LY294002 abolished ERK1/2 and Akt phosphorylation, respectively. DNA fragmentation and Annexin V binding accompanied by UVB-induced apoptosis were reduced by 30-50% with IL-15. Taken together, IL-15 induced cellular proliferation and had an anti-apoptotic effect on keratinocytes, in which ERK1/2 and Akt phosphorylation played crucial roles. The signal transduction pathways of IL-15 in keratinocytes were partially elucidated; they share a substantial part with growth signals induced by EGF. These results suggest a therapeutic approach to inflammatory skin diseases by controlling these signals.  相似文献   

14.
We recently reported that hypoxia induces chromatin condensation and cell nuclear fragmentation, morphological markers of apoptosis, to tube-forming HUVECs in an in vitro blood vessel model by activating p38 MAPK. In this report, we further examined what role p38 plays and how it is activated during hypoxia-induced apoptosis. First, in order to confirm that p38 can indeed induce apoptosis, the cells were treated with anisomycin, a p38 activator, during normoxia. The activator treatment induced apoptosis and activation of p38 and caspase-3 in a very short time, which indicated that p38 activation alone was sufficient to trigger apoptosis in tube-forming HUVECs. We then observed hypoxia-induced changes in intracellular signals, ERK1/2 and Akt. ERK1/2 inactivation was shown to occur prior to p38 activation and caspase-3 cleavage during hypoxia. On the other hand, anisomycin had no inhibitory effect on ERK1/2 activation during normoxia. It was also shown that the amount of Akt protein slightly decreased by either hypoxia or anisomycin treatment. We then investigated how these two survival signals, ERK1/2 and Akt, are involved in p38 activation by using MEK inhibitor U0126 and PI3K inhibitor LY294002. When tube-forming HUVECs were treated with U0126 or LY294002 during normoxia, the two inhibitors were able to induce apoptosis and activation of p38 and caspase-3 in a relatively short time. U0126 was able to inhibit ERK1/2 activation, but had almost no effect on Akt activation. In contrast, LY294002 was able to inhibit Akt activation, but had very little effect on ERK1/2 activation. These results indicate that ERK1/2 inactivation, rather than Akt decrease, is responsible for hypoxia-induced p38 activation. Taken together, our results strongly suggest that hypoxia-induced apoptosis is regulated through signal transduction in which inactivation of ERK1/2 leads to activation of p38, which then triggers caspase cascade as an execution mechanism of apoptosis.  相似文献   

15.
Mdm2 inactivates the tumor suppressor p53 and Akt has been shown to be a major activator of Mdm2 in many cell types. We have investigated the regulation of Mdm2 in hepatocytes. We found that growth factor-induced Ser-166 phosphorylation of Mdm2 was inhibited by the MEK inhibitors U0126 and PD98059 in HepG2 cells and in a rat liver cell line, TRL 1215. Also, bile acids and oxidative stress induced phosphorylation of Mdm2 at Ser-166 by an apparently MEK-ERK-dependent mechanism. In contrast, Ser-166 phosphorylation of Mdm2 in lung cells was mediated by Akt. Further studies revealed that phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin induced phosphorylated ERK Tyr-204 and pMdm2 Ser-166 phosphorylations in hepatocytes in culture and in rat hepatocytes in vivo. In HepG2 cells, this effect was inhibited by U0126 and PD98059. LY294002 also reduced the level of pRaf Ser-259. Furthermore, we have shown that myr-Akt-induced overexpression of pAkt suppressed the levels of pMdm2 Ser-166 in hepatocytes. These data indicate a reversed relationship between Akt and Mdm2 in hepatocytes and suggest that Akt is a negative regulator of Raf-MEK-ERK-Mdm2 in this cell type. Ser-166 phosphorylation of Mdm2 has been shown to increase its ubiquitin ligase activity and increase p53 degradation, and our data indicated an attenuated p53 response to DNA damage in hepatocytes exhibiting high levels of pMdm2 Ser-166. Taken together, our data indicate that Mdm2 phosphorylation is regulated via MEK-ERK in hepatocytes. This Mdm2 signaling might be important for the regeneration of hepatocytes after centrilobular cell death.  相似文献   

16.
Little is known about whether there is a relationshipbetweenPI3K/AKT, ERK1/2 and an inverted CCAAT box binding protein (ICBP90) in biological behaviours of tumour cells. The aim of this study was to determine thisusing Jurkat T cells. Compared to PD98059 (an ERK1/2 signaling inhibitor), DAPT (a Notch signaling inhibitor) or adriamycin (a classical anti-tumour drug), the inhibition of Jurkat T cell growth by LY294002 (a PI3K/Akt signaling inhibitor) was more obvious. LY294002 combined with adriamycin appeared to have a synergistic effect. LY294002 strongly blocked Jurkat T cells at each phase of cell cycle with a decrease of DNA content, superior to adriamycin. Consistent with these changes, the expression of phosphorylated ERK1/2 was markedly decreased in the LY294002-treated Jurkat T cells, leading to the reduction of ICBP90 production, followed by moderate attenuation of TGF-β secretion. The results suggest that deactivation of PI3K/Akt signalling can surpress Jurkat T cell growth through inhibiting cell proliferation and blocking the cell cycle. ICBP90 may mediate the PI3K/AKT-ERK1/2 signalling to regulate leukemia cell growth.  相似文献   

17.
Hispidin, a phenolic compound from Phellinus linteus (a medicinal mushroom), has been shown to possess strong anti-oxidant, anti-cancer, anti-diabetic, and anti-dementia properties. However, the cardioprotective efficacy of hispidin has not yet been investigated. In the present study, we investigated the protective effect of hispidin against oxidative stress-induced apoptosis in H9c2 cardiomyoblast cells and neonatal rat ventricular myocytes. While the treatment of H9c2 cardiomyoblast cells with hydrogen peroxide caused a loss of cell viability and an increase in the number of apoptotic cells, hispidin significantly protected the cells against hydrogen peroxide-induced cell death without any cytotoxicity as determined by XTT assay, LDH release assay, Hoechst 33342 assay, and Western blotting of apoptosis proteins such as caspase-3, Bax, and Bcl-2. Our data also shows that hispidin significantly scavenged intracellular ROS, and markedly enhanced the expression of antioxidant enzymes such as heme oxygenase-1 and catalase, which was accompanied by the concomitant activation of Akt/GSK-3β and ERK1/2 phosphorylation in H9c2 cardiomyoblast cells. The effects of hispidin on Akt and ERK phosphorylation were abrogated by LY294002 (a PI3K/Akt inhibitor) and U0126 (an ERK1/2 inhibitor). The effect of hispidin on GSK-3b activities was also blocked by LY294002. Furthermore, inhibiting the Akt/GSK-3β and ERK1/2 pathway by these inhibitors significantly reversed the hispidin-induced Bax and Bcl-2 expression, apoptosis induction, and ROS production. These findings indicate that hispidin protects against apoptosis in H9c2 cardiomyoblast cells exposed to hydrogen peroxide through reducing intracellular ROS production, regulating apoptosis-related proteins, and the activation of the Akt/GSK-3β and ERK1/2 signaling pathways.  相似文献   

18.
Cell therapy with bone marrow-derived mesenchymal stem cells (MSCs) has been shown to have great promises in cardiac repair after myocardial infarction. However, poor viability of transplanted MSCs in the infracted heart has limited the therapeutic efficacy. Our previous studies have shown in vitro that rat MSCs undergo caspase-dependent apoptosis in response to hypoxia and serum deprivation (Hypoxia/SD). Recent findings have implicated statins, an established class of cholesterol-lowering drugs, enhance the survival of cells under various conditions. In this study, we investigated the effect of lovastatin on rat MSCs apoptosis induced by Hypoxia/SD, focusing in particular on regulation of mitochondrial apoptotic pathway and the survival signaling pathways. We demonstrated that lovastatin (0.01-1 microM) remarkably prevented MSCs from Hypoxia/SD-induced apoptosis through inhibition of the mitochondrial apoptotic pathway, leading to attenuation of caspase-3 activation. The loss of mitochondrial membrane potential and cytochrome-c release from mitochondria to cytosol were significantly inhibited by lovastatin. Furthermore, the antiapoptotic effect of lovastatin on mitochondrial apoptotic pathway was effectively abrogated by both PI3K inhibitor, LY294002 and ERK1/2 inhibitor, U0126. The phosphorylations of Akt/GSK3 beta and ERK1/2 stimulated by lovastatin were detected. The activation of ERK1/2 was inhibited by a PI3K inhibitor, LY294002, but U0126, a ERK1/2 inhibitor did not inhibit phosphorylation of Akt and GSK3 beta. These data demonstrate that lovastatin protects MSCs from Hypoxia/SD-induced apoptosis via PI3K/Akt and MEK/ERK1/2 pathways, suggesting that it may prove a useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.  相似文献   

19.
In this study, the effects of U0126 that inhibits the activity of mitogen-activated protein (MAP) kinase kinase (MEK), and LY294002, which is a phosphatidylinositol (PI) 3-kinase inhibitor, on meiotic progression beyond the metaphase I (MI) stage in porcine oocytes were examined. Cumulus-oocyte complexes (COCs) were cultured for 22 h with 50 microM LY294002 or 10 microM U0126 following cultivation for the initial 22 h. MAP kinase activity in oocytes cultured with LY294002 or U0126 was significantly lower than that in control oocytes cultured for up to 44 h. U0126 and LY294002 significantly decreased p34(cdc2) kinase activity and the proportion of oocytes reaching the MII stage compared to those in control oocytes. Oocytes denuded after COCs had been cultured for 22 h were cultured further for 22 h with U0126 or LY294002. In the denuded oocytes, U0126 suppressed MAP kinase activity, p34(cdc2) kinase activity, and meiotic progression to the MII stage; however, LY294002 did not significantly affect the activity of these kinases and meiotic progression. These results suggest that increasing MAP kinase activity in oocytes via the PI 3-kinase signaling pathway in cumulus cells is involved in the stimulation of maturation promoting factor, leading to meiotic progression beyond the MI to MII stage in porcine oocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号