首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective The aim of the present study was to investigate the role of heat shock protein 27 (HSP27) phosphorylation in the migration of vascular smooth muscle cells (VSMCs) induced by angiotensin II (AngII) and platelet derived growth factor-BB (PDGF-BB). Methods The activity of HSP27 was evaluated by Western blot with specific phospho-HSP27 antibody. F-actin polymerization was detected by FITC-Phalloidine staining using confocal microscopy. Modified Boyden chamber technique was employed for VSMCs migration assessment. Results The phosphorylation of HSP27 was induced by AngII and PDGF-BB in a time- and concentration-dependent manner in VSMCs, which was significantly blocked by the HSP inhibitor Quercetin in a concentration-dependent manner. Reorganization of actin stimulated by AngII and PDGF-BB was markedly inhibited by pretreatment with 100 μmol/l Quercetin. The migration of VSMCs induced by AngII and PDGF-BB was partially inhibited by Quercetin with peak inhibition concentration at 100 μmol/l. Conclusions HSP27 phosphorylation plays an important role in mediating the rearrangement of F-actin and migration of VSMCs induced by AngII and PDGF-BB. HSP27 may be a potential target for the interventional treatment of pathological process related to cell migration.  相似文献   

2.
The objective of this study is to investigate the signal transduction pathways that regulate heat shock protein 27 (HSP27) phosphorylation and migration of vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) induced by angiotensin II (AngII) and platelet derived growth factor-BB (PDGF-BB). The activity of HSP27 was evaluated by Western blot with specific phospho-HSP27 antibody. F-actin polymerization was detected by FITC-Phalloidine staining using confocal microscopy. Modified Boyden chamber technique was employed for VSMCs migration assessment. Within a given concentration, the phosphorylation of HSP27 induced by AngII and PDGF-BB was blocked by the specific P38MAPK inhibitor SB202190, the specific PI3K inhibitor LY294002 and the specific ERK1/2 inhibitor U0126 in a concentration-dependent manner, with a peak inhibition rate at 87.2%, 78.4% and 37.3%, respectively, induced by AngII (P < 0.01), with a peak inhibition rate at 85.0%, 55.3% and 41.0%, respectively, induced by PDGF-BB (P < 0.01).The migration of VSMCs induced by AngII and PDGF-BB was inhibited by 100 μmol/l SB202190, 30 μmol/l LY294002, and 30 μmol/l U0126, with a inhibition rate at 60.1%, 71.7% and 47.3%, respectively, provoked by AngII (P < 0.01), with a inhibition rate at 55.3%, 55.6% and 38.1%, respectively, provoked by PDGF-BB (P < 0.01). P38MAPK and PI3 K/Akt are important pathways that contribute to the phosphorylation of HSP27 and migration of VSMCs in response to AngII and PDGF-BB. ERK1/2 might be involved in HSP27 phosphorylation and migration of VSMCs provoked by AngII and PDGF-BB.  相似文献   

3.
Sinomenine, a pure alkaloid extract from Sinomenium acutum, has anti-inflammatory and immunoregulatory functions. This study investigated the efficiency and the signalling pathways involved in the effect of sinomenine on vascular smooth muscle cell (VSMC) dedifferentiation in response to platelet-derived growth factor (PDGF)-BB stimulation and vascular injury. VSMCs were isolated from rat aorta and preincubated with sinomenine before being stimulated with PDGF-BB. WST and BrdU incorporation assays were used to evaluate VSMC proliferation. Flow cytometric analysis was performed for testing the cell cycle progression. The cell migration of VSMCs were analysed using a Transwell system. The expression of VSMC specific genes and signalling proteins were tested by Western blot. For the animal study, C57/BL6 mice were fed either normal rodent chow diets or sinomenine chow diets that supplemented with 0.09 % sinomenine (w/w) in the normal chows for 14 days before carotid artery wire injury. PDGF-BB activated the dedifferentiation of VSMCs characterised by decreased expression of SMA, Smoothelin and SM22α. However, sinomenine treatment preserved the dedifferentiation in response to PDGF-BB. The activations of mitogen-activated protein kinase extracellular signal-regulated kinases, Akt, GSK3β and STAT3 induced by PDGF-BB were also inhibited in sinomenine-treated VSMCs. In vivo evidence with wire-injured mice exhibited a reduction in neointimal area and an increase in smooth muscle-specific gene expression in the sinomenine-treated group. In this study, we found that sinomenine-suppressed VSMC phenotype switching induced by PDGF-BB in vitro and neointimal formation in vivo. Therefore, sinomenine is a potential candidate to be used in the treatment of vascular proliferative disease.  相似文献   

4.
Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.  相似文献   

5.
Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G(2)/M fraction consistent with a mitotic defect; 4',6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G(2)/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall.  相似文献   

6.
血管平滑肌细胞增殖与Cdk抑制蛋白p27的表达   总被引:4,自引:1,他引:4  
Yuan Y  Xu DL  Liu YL  Jia MY 《生理学报》1999,51(3):285-290
p27蛋白是细胞周期素依赖性激酶(Cdk)抑制蛋白家族中的一种,主要对外部促进或抑制细胞增殖的信号起反应。本研究应用流式细胞仪(FCM)双标记的方法观察血管紧张素Ⅱ(AngⅡ)、血管加压素(AVP)和血小板源生长因子(PDGF)对血管平滑肌细胞(VSMCs)细胞周期百分比和p27蛋白表达量的影响。静止状态培养的VSMCs加入AngⅡ,AVP,PDGFBB后,在不同时间收集细胞,用碘化丙啶(PI)标记细胞DNA,以确定细胞所处的周期。用p27蛋白的单抗和标记了FITC的二抗标记细胞,通过流式细胞仪测定被激发出的荧光量来确定细胞p27蛋白表达的相对量。结果显示,AngⅡ刺激VSMCs增生,其蛋白含量增加了436%(P<001),但不抑制p27蛋白的表达;AVP可轻度抑制p27的表达,有轻度促进VSMCs增殖和增生的作用(P<005);PDGF明显抑制p27的表达,引起细胞增殖。本研究结果提示,p27蛋白抑制VSMCs通过G1期进入S期,是抑制VSMCs增殖的重要调节因子。  相似文献   

7.
8.
The purpose of this study was to determine the efficacy and the possible mechanism of action of the synthesized drug isoeugenodilol (a new third-generation β-adrenoceptor blocker) on the growth factor-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a rat carotid arterial balloon injury model. Isoeugenodilol significantly inhibited 10% FBS, 20 ng/ml PDGF-BB, and 20 ng/ml vascular endothelial growth factor (VEGF)-induced proliferation. In accordance with these findings, isoeugenodilol revealed blocking of the FBS-inducible progression through the G0/G1 to the S phase of the cell cycle in synchronized cells. Neointimal formation, measured 14 days after injury, was reduced by the oral administration of isoeugenodilol (10 mg/kg/day). In an in vitro assay, isoeugenodilol inhibited the migration of VSMCs stimulated by PDGF-BB. These findings indicate that isoeugenodilol shows an inhibitory potency on neointimal formation due to inhibition of both migration and proliferation of VSMCs. In addition, isoeugenodilol in concentration-dependent manner decreased the levels of phosphorylated ERK1/2 in both VSMCs and balloon-injured carotid arteries. The levels of phosphorylated MEK1/2 and Pyk2 as well as intracellular Ca2+ and reactive oxygen species (ROS) were in concentration-dependent manner reduced by isoeugenodilol. Taken together, these results indicate that isoeugenodilol may suppress mitogen-stimulated proliferation and migration partially through inhibiting cellular ROS and calcium, and hence, through activation of the Pyk2-ERK1/2 signal pathway. This suggests that isoeugenodilol has potential for the prevention of atherosclerosis and restenosis.  相似文献   

9.
Free fatty acids (FFA)-induced proliferation and apoptosis was studied in human umbilical vein endothelial cells (HUVECs). A recombinant adenovirus containing a RNAi cassette targeting the GSK-3β gene was produced and its silencing effect on GSK-3β gene was detected by Western blot analysis and immunohistochemistry assay in HUVECs. The effect of the RNAi on the protein level of β-catenin was explored by transfecting the RNAi adenovirus to inhibit the expression of GSK-3β protein. The subsequent effect on the Wnt/GSK-3β/β-catenin signal pathway and on proliferation and apoptosis of HUVECs cultured with FFAs, was analyzed by BrdU assay, Annexin V-FITC/PI Apoptosis Detection Kit, and 4′,6-diamidino-2- phenylindole(DAPI) to explore the possible connection between the signaling pathway and FFA-induced proliferation and apoptosis. The Western blot results showed that the expression of GSK-3β protein in HUVECs could be inhibited efficiently by the RNAi adenovirus, and that the protein level of β-catenin was increased by RNAi adenovirus transfection. The results of the BrdU assay suggested that knockdown of GSK-3β with the RNAi adenovirus may stimulate the proliferation of HUVECs. Apoptosis was observed in HUVECs exposed to FFAs (0.75 mmol/L) for 72 h, and this effect could be partly reversed when interfering with the RNAi adenovirus. It may be concluded that the RNAi adenovirus specific to GSK-3β may partly protect HUVECs from apoptosis induced by FFAs, probably through the up-regulation of the Wnt/β-catenin signal pathway.  相似文献   

10.
Although the migration of hepatic myofibroblasts (HMFs) contributes to the development of fibrosis, the signals regulating migration of these cells are poorly understood. In this study, we tested the hypothesis that HMF migration is stimulated by platelet-derived growth factor-BB (PDGF-BB) through p38 mitogen-activated protein (MAP) kinase and extracellular signal-regulated kinase (ERK) signaling pathways. This hypothesis was addressed by directly visualizing the migration of cultured human HMFs into a wound. PDGF-BB stimulated membrane ruffling, migration, and proliferation. PDGF-BB also induced activation of p38 MAP kinase, its downstream effector, heat shock protein (HSP) 27, ERK 1 and ERK 2, and p125 focal adhesion kinase (FAK). Selective antagonism of p38 MAP kinase blocked PDGF-BB-stimulated HSP 27 phosphorylation, membrane ruffling, and migration, but did not alter PDGF-BB-induced proliferation. Selective antagonism of ERK kinase inhibited PDGF-BB-induced ERK phosphorylation and proliferation, but did not affect PDGF-BB-stimulated migration. Concentrations of PDGF-BB that stimulated migration and proliferation did not influence myosin-dependent contractility. Neither selective inhibition of p38 MAP kinase nor ERKs altered PDGF-BB-induced activation of FAK. In conclusion, these results provide novel evidence indicating that (1) HMF migration is stimulated by PDGF-BB through the regulation of membrane ruffling by a p38 MAP kinase signaling pathway, (2) whereas p38 MAP kinase mediates PDGF-BB-stimulated migration, but not proliferation, ERKs mediate PDGF-induced proliferation, but not migration, and (3) increases in myosin-dependent contractility are not required for PDGF-BB-stimulated migration.  相似文献   

11.
Gao Z  Cao L  Luo Q  Wang X  Yu L  Wang T  Liu H 《DNA and cell biology》2011,30(3):149-155
Platelet-derived growth factor BB (PDGF-BB) regulates vascular smooth muscle cells (VSMCs) by activating signaling cascades that promote vasoconstriction and growth, but the underlying mechanisms remain incompletely characterized. In this study, we aimed at investigating the role of spleen tyrosine kinase (Syk) in the proliferation and phenotypes in rat pulmonary arterial VSMCs. Our results demonstrate that PDGF-BB or Syk-adenovirus led to a substantial increase of proliferation of VSMCs and cytoskeleton rearrangement in rat VSMCs. Consistently, these cells underwent phenotype changes. Notably, Syk inhibitor piceatannol significantly inhibited those biological effects induced by PDGF-BB. Thus, we conclude that Syk plays an important role in vascular remodeling through the modulation of proliferation and phenotypes of VSMCs.  相似文献   

12.
13.

Background

Thoracic aortic dissection (TAD) is one of the most severe aortic diseases. The study aimed to explore the potential role of heat shock protein 27 (HSP27) in the pathogenesis of TAD using an in vitro model of oxidative stress in vascular smooth muscle cells (VSMCs).

Methods

HSP27 was analyzed in aortic surgical specimens from 12 patients with TAD and 8 healthy controls. A lentiviral vector was used to overexpress HSP27 in rat aortic VSMCs. Cell proliferation and apoptosis were measured under oxidative stress induced by H2O2.

Results

HSP27 expression was significantly higher in aortic tissue from patients with TAD and VSMCs in the aortic media were the main cell type producing HSP27. Elevated oxidative stress was also detected in the TAD samples. Overexpression of HSP27 significantly attenuated H2O2-induced inhibition of cell proliferation. Furthermore, HSP27 was found to decrease H2O2-induced cell apoptosis and oxidative stress.

Conclusions

These results suggest that HSP27 expression promotes VSMC viability, suppresses cell apoptosis, and confers protection against oxidative stress in TAD.
  相似文献   

14.
Hyperinsulinemia is a risk factor in atherosclerosis formation that it stimulated vascular smooth muscle cells (VSMCs) proliferation and migration. To understand the underlying molecular mechanism involved in the processes of cellular response to insulin, VSMCs from Wistar-Kyoto rat (WKY) and spontaneous hypertensive rat (SHR) were isolated and cultured, and its proteome was comparatively analyzed with normal control by two-dimensional gel electrophoresis (2-DE). Results showed that the proliferation of VSMCs from SHR be more sensitive to insulin stimulation than that VSMCs from WKY. The detectable spots ranged from 537 to 608 on the gels in VSMCs of SHR, and 413 ± 31 spots in VSMCs of WKY. The different expressed protein spots in VSMCs of SHR were then isolated and measured by matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). A total of 18 spots showed a sharp clear spectrum, and 13 spots matched with the known proteins from database. These proteins were mainly involved in cytoskeleton, glycometabolism, and post-translational processes. Among these proteins, OPN and matrix gla protein were up-regulated expression proteins, while α-SM actin was down-regulated. Furthermore, these preliminarily identified proteins confirmed by RT-PCR and western blotting analysis were coincident with the changes in 2-DE check. In addition, the cytoskeleton changes and migration rate of VSMCs from SHR treated by insulin increased significantly. The results showed that insulin plays a crucial role in activating proliferation and migration of VSMCs, by regulating the phenotype switch of VSMCs.  相似文献   

15.
已知黄芩苷(baicalin)通过削弱肌动蛋白相关蛋白(actin-related protein, Arp)2/3复合物的活性抑制血管平滑肌细胞(vascular smooth muscle cell, VSMC)伪足形成和迁移,然而,其抑制该信号途径的机制尚不明确。本研究证明,黄芩苷通过抑制VSMC活性氧(reactive oxygen species,ROS)生成降低Arp2/3活性,发挥阻止细胞伪足形成和迁移的功能。分别利用TRITC 鬼笔环肽和ROS荧光探针标记VSMCs,结果显示,黄芩苷能显著抑制血小板源性生长因子(platelet derived growth factor, PDGF)-BB诱导的VSMC伪足形成和迁移,伴有ROS生成减少。用超氧物歧化酶(superoxide dismutase, SOD)清除胞内过氧化物后,PDGF-BB引发的VSMC伪足形成被逆转,且该过程与降低皮层肌动蛋白微丝(F-actin)成核蛋白Arp2/3活性有关。免疫沉淀分析结果进一步表明,黄芩苷降低p47phox磷酸化水平,与ROS生成减少相一致。体内的实验也表明,黄芩苷(70 mg/kg/d)能有效抑制球囊损伤诱导的大鼠颈总动脉ROS生成。以上结果表明,黄芩苷通过抑制NADPH氧化酶介导的ROS生成,降低细胞皮质区F-actin成核活性,阻止细胞伪足形成、迁移,进而发挥血管保护作用。  相似文献   

16.
Trophoblast cells from placental explants differentiate in culture to extravillous trophoblast cells (EVT cells). During trophoblast differentiation heat-shock-protein-27 (HSP27) mRNA and multidrug-resistance-protein-5 (MRP5, transporter of cyclic nucleotides) expression are increased. HSP27 is a regulator of actin filaments structure and dynamic, has a role in cell differentiation and may affect NF-kB activity. In this study we aimed to assess HSP27 level in trophoblast cells and its correlation with motility and differentiation related processes [MMPs activity, nitric oxide (NO), inducible nitric oxide synthase (iNOS), proliferation and MRP5 levels]. We evaluated HSP27 expression in a first trimester human trophoblast explants model designed to assess EVT cells differentiation/migration with/without 6-mercaptopurine (6MP, an EVT inhibitor of migration). We found that HSP27 level is expressed in the nucleous and cytoplasm of non-proliferting villous-trophoblast cells (negative for Ki67) and in the cell periphery and cytoplasm of motile EVT cells. Moreover, 6MP decreased HSP27 nucleous expression that was associated with inhibited MMP2 activity and NO production. Also decreased iNOS expression and increased MRP5 mRNA levels were observed. In conclusion, HSP27 expression is modulated in concordance with migration dependent parameters in trophoblast cells.  相似文献   

17.
In this study, we investigated the role ofhistone deacetylase 4 (HDAC4) and MEG3/miR-125a-5p/interferonregulatoryfactor 1 (IRF1) on vascular smooth muscle cell (VSMCs)proliferation. Platelet derived growth factor (PDGF)-BB was used toinduce the proliferation and migration of VSMCs. The expressionsof MEG3, miR-125a-5p, HDAC4 and IRF1in VSMCs were detectedby qRT-PCR and western blot, respectively. ChIP assay was usedto determine the relationship between MEG3 and HDAC4. Doubleluciferase reporter assay was used to test the regulation betweenmiR-125-5p and IRF1. Results showed that PDGF-BB decreasedthe expression of MEG3 and IRF1, while increased the expressionof miR-125a-5p and HDAC4. In addition, HDAC4 knockdowninhibited the proliferation and migration of VSMCs via upregulatingMEG3 and downregulating miR-125a-5p. MiR-125a-5p inhibitorcould repress the proliferation and migration of VSMCs andalleviate intimal hyperplasia (IH) by directly upregulating IRF1expression. These results suggested that HDAC4 interferenceinhibited PDGF-BB-induced VSMCs proliferation via regulatingMEG3/miR-125a-5p/IRF1 axis, and then alleviated IH.  相似文献   

18.
The IGF-1 receptor (IGF-1R) and MT1-MMP are synthesized as larger precursor proproteins, which require endoproteolytic activation by the proprotein convertases (PCs) furin/PC5 to gain full biological activity. The aim of this study was to investigate the contribution of PCs to IGF-1R and/or MT1-MMP activation in vascular smooth muscle cells (VSMCs) as well as VSMC proliferation/migration, which are key elements in vascular remodeling. Furin and PC5 mRNAs and proteins were found in VSMCs. Inhibition of furin-like PCs with the specific pharmacological inhibitor dec-CMK inhibited IGF-1R endoproteolytic activation. Inhibition of IGF-1R maturation abrogated IGF-induced IGF-1R autophosphorylation, PI3-kinase and MAPK induction, as well as VSMC proliferation (p<0.05 vs. controls), whereas it had no effect of PDGF-stimulated signaling pathways or cell growth. Both, IGF-1 and PDGF-BB, induced MT1-MMP expression, but only IGF-1-mediated MT1-MMP induction was inhibited by dec-CMK. Induction of MMP-2 by IGF-1 was inhibited by the PI3-kinase inhibitor wortmannin, but not by the MEK-inhibitor PD98059. Dec-CMK inhibited VSMC chemotaxis comparable to the effects of the MMP-inhibitor GM6001 (both p<0.05 vs. controls), supporting that MMPs are involved. In conclusion, this study demonstrates that targeting furin-like PCs and thus inhibiting IGF-1R activation is a novel target to inhibit IGF-1-mediated signaling and cell functions, such as IGF-1-induced MT1-MMP/MMP-2 in VSMCs.  相似文献   

19.
Restenosis after angioplasty is thought to be caused by proliferation and migration of vascular smooth muscle cells (VSMCs), and it is a most serious problem in medical treatment. A low dose (50 ng/ml) of manumycin A, an inhibitor of p21(ras) (ras) farnesylation, significantly inhibited proliferation of rat VSMCs stimulated by the platelet-derived growth factor (PDGF). The mitoinhibitory effect of manumycin A was dose- and time-dependent but was independent of cell density. Western blot analysis showed that manumycin A reduced the amount of functional ras localized at the cytoplasmic membrane and inhibited the phosphorylation of p42/44 mitogen-activated protein kinase (MAPK). Manumycin A also inhibited VSMC migration and disorganized alpha actin fibers, as shown by immnofluorecence staining. These results indicate that the interruption of the ras/MAPK signal transduction pathway and the disorganization of alpha actin fibers are the main cause of manumycin A inhibition of VSMC proliferation and migration induced by PDGF.  相似文献   

20.
Neointimal hyperplasia is a prominent pathological phenomenon in the process of stent restenosis. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play major pathological processes involved in the development of restenosis. l-Theanine, one of the major amino acid components in green tea, has been reported to improve vascular function. Here we display the effects of l-theanine on neointima formation and the underlying mechanism. In the rat carotid-artery balloon-injury model, l-theanine greatly inhibited neointima formation and prevented VSMCs from a contractile phenotype switching to a synthetic phenotype. In vitro study showed that l-theanine significantly inhibited PDGF-BB-induced VSMC proliferation and migration, which was comparable with the effect of l-theanine on AngII-induced VSMC proliferation and migration. Western blot analysis demonstrated that l-theanine suppressed PDGF-BB and AngII-induced reduction of SMA and SM22α and increment of OPN, suggesting that l-theanine inhibited the transformation of VSMCs from contractile to the synthetic phenotype. Further experiments showed that l-theanine exhibits potential preventive effects on neointimal hyperplasia and related vascular remodeling via inhibition of phosphorylation of Elk-1 and activation of MAPK1. The present study provides the new experimental evidence that l-theanine has potential clinical application as an anti-restenosis agent for the prevention of restenosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号