首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In congenital hyperinsulinism of infancy (CHI), the loss of K-ATP channels (composed of Kir6.2 and SUR1 subunits) in β cells induces permanent insulin secretion and severe hypoglycaemia. By contrast, Sur1 ?/? mice do not present such defects. We have investigated the impact of Sur1 gene inactivation on mouse islet cell morphology, structure and basic physiology. Pancreata were collected from young, adult and old wild-type (WT) and Sur1 ?/? mice. After immunostaining for hormone, the total endocrine tissue, cell proportion, cell size and intra-insular distribution, hormone content and Glut-2 expression were quantified by morphometry. Basic physiological parameters were also measured. In young Sur1 ?/? mice, the total endocrine tissue and proportion of β cells were higher (P<0.05) than in WT mice, whereas the proportion of δ cells was lower (P<0.01). In old Sur1 ?/? mice, α cells were frequently located in the central regions of islets (unlike WT islets) and their proportion was increased (P<0.05). Glut-2 protein and mRNA levels were lower in old Sur1 ?/? islets (P<0.02). Insulinaemia, fasting insulin and glucagon contents were equivalent in both groups of pancreata. Thus, the islets of Sur1 ?/? mice present morphological modifications that have not been described in CHI and that might reflect an adaptive mechanism controlling insulin secretion in these mice.  相似文献   

5.
Pichia pastoris strains carrying 1, 6, 12, and 18 copies of the porcine insulin precursor (PIP) gene, were employed to investigate the effects of sorbitol co-feeding with methanol on the physiology of the strains. Multicopy clones of the methylotrophic yeast were generated to vary the PIP gene dosage and recombinant proteins. Elevated gene dosage increased levels of the recombinant PIP protein when methanol served as the sole carbon and energy source i.e., an increase of 1.9% for a strain carrying 1 copy, 42.6% for a strain carrying 6 copies, 34.7% for a strain carrying 12 copies and 80.9% for a strain carrying 18 copies, respectively (using sorbitol co-feeding with methanol during the induction phase). However, it had no significant influence on a lower gene dosage strain (1 copy), but this approach affirmed enhancement in cell growth and PIP production for higher gene dosage strain (6, 12, and 18 copies) via using sorbitol co-feeding with methanol. Additionally, the co-feeding strategy could hold vital importance for recombinant protein production by a multi-copy P. pastoris system.  相似文献   

6.
Zea mays L. is less tolerant to drought than Sorghum bicolor L. In the present study, we investigated the response of both plants to drought stress applied under field conditions by withholding water for 10 d. The plant growth in terms of shoot fresh and dry masses was more severely reduced in maize than in sorghum, consistently with reduction of leaf relative water content. Gas exchange was also more inhibited by drought in maize than in sorghum. The water use efficiency (WUE) of maize fluctuated during the day and in response to the drought stress. In contrast, sorghum was able to maintain a largely constant WUE during the day in the well-watered plants as well as in the stressed ones. Studying the expression of four aquaporin genes (PIP1;5, PIP1;6, PIP2;3, and TIP1;2) revealed that PIP1;5 in leaves and PIP2;3 in roots were highly responsive to drought in sorghum but not in maize, where they might have supported a greater water transport. The expression pattern of PIP1;6 suggests its possible role in CO2 transport in control but not droughty leaves of both the plants. TIP1;2 seemed to contribute to water transport in leaves of the control but not droughty plants. We conclude that PIP1;5 and PIP2;3 may have a prominent role in drought tolerance and maintenance of WUE in sorghum plants.  相似文献   

7.
8.
Divergent abiotic stresses induce osmotic stress on plant cells resulting in an imbalance in water homeostasis which is preserved by aquaporins. Since the plasma membrane aquaporins (PIPs) were shown to be involved in seed development and responses to abiotic stresses, we focused on determining the contribution of mannitol-induced osmotic stress, blue light (BL), and 7B-1 mutation to their gene expression in tomato (Solanum lycopersicum L.) seeds. To assess that, we used a quantitative RT-PCR to determine the expression profiles of genes encoding PIPs. Subsequently, a multiple linear regression analysis was used to evaluate the impact of studied stressors (mannitol and BL) and 7B-1 mutation on PIP gene expressions. We found that mannitol-induced osmotic stress and 7B-1 mutation (conferring the lower responsiveness to osmotic stress- and BL-induced inhibition of seed germination) decreased expression of PIP1;3, PIP2;3 and PIP1;2, PIP2;1 genes, respectively. This might be a way to retain water for radicle elongation and seed germination under the stress conditions. Interestingly, the expression of PIP1;3 gene was downregulated not only by osmotic stress, but also by BL. Altogether, our data indicate the existence of a link between osmotic stress and BL signalling and the involvement of the 7B-1 mutation in this crosstalk.  相似文献   

9.
The plant SWEET family is a sugar transporter family that plays a significant role in plant development. Here, seven loquat SWEET family members were identified by RNA-seq. These were designated as EjSWEET1, EjSWEET2a, EjSWEET2b, EjSWEET2c, EjSWEET4, EjSWEET15, and EjSWEET17. Phylogenetic and predictive functional annotation analyses suggest that the loquat SWEETs are classified as having sucrose, glucose and fructose transportation features. The in vivo responses of loquat SWEETs to exogenous sugar or NaCl was investigated by applying high concentrations of sugar or salt to 7-month-old loquat seedlings cultured in a nutrient medium. The results showed that most loquat SWEET genes can respond to exogenous applications of sucrose, glucose, fructose and salt. The response of EjSWEET1 to exogenous fructose was faster than the others, indicating that EjSWEET1 is more sensitive to exogenous fructose compared with other loquat SWEETs. EjSWEET15 can be induced by sucrose, but is suppressed by glucose. This indicates its possible role in sucrose transporting. The response of loquat SWEETs to NaCl showed broadly similar patterns compared to sugars. However, after a longer time of NaCl treatment, most loquat SWEETs are upregulated, especially EjSWEET15. This indicates its long-term response to high salinity.  相似文献   

10.
11.
12.
13.
14.
15.
16.

Background

Insulin secreted by pancreatic islet β-cells is the principal regulating hormone of glucose metabolism and plays a key role in controlling glucose level in blood. Impairment of the pancreatic islet function may cause glucose to accumulate in blood, and result in diabetes mellitus. Recent studies have shown that mitochondrial dysfunction has a strong negative effect on insulin secretion.

Methods

In order to study the cause of dysfunction of pancreatic islets, a multiple cell model containing healthy and unhealthy cells is proposed based on an existing single cell model. A parameter that represents the function of mitochondria is modified for unhealthy cells. A 3-D hexagonal lattice structure is used to model the spatial differences among β-cells in a pancreatic islet. The β-cells in the model are connected through direct electrical connections between neighboring β-cells.

Results

The simulation results show that the low ratio of total mitochondrial volume over cytoplasm volume per β-cell is a main reason that causes some mitochondria to lose their function. The results also show that the overall insulin secretion will be seriously disrupted when more than 15% of the β-cells in pancreatic islets become unhealthy.

Conclusion

Analysis of the model shows that the insulin secretion can be reinstated by increasing the glucokinase level. This new discovery sheds light on antidiabetic medication.
  相似文献   

17.
18.
19.
20.
Growth, ionic responses, and expression of candidate genes to salinity stress were examined in two perennial ryegrass accessions differing in salinity tolerance. The salinity tolerant (PI265349) and sensitive accessions (PI231595) were subjected to 75-mM NaCl for 14 days in a growth chamber. Across two accessions, salinity stress increased shoot dry weight and concentrations of malondialdehyde (MDA) and Na+ in the shoots and roots, but decreased shoot Ca2+ and root K+ concentrations. Salinity stress also increased root expressions of SOS1, PIP1, and TIP1. Plant height and chlorophyll content were unaffected by salinity stress in the tolerant accession but significantly decreased in the sensitive accession. Shoot MDA content did not change in the tolerant accession but increased in the sensitive accession. A more dramatic increase in Na+ was found in the roots of the sensitive accession. Relative to the control, salinity stress reduced expression of SOS1, NHX1, PIP1, and TIP1 in the shoots but increased expression of these genes in the roots of the tolerant accession. Expression levels of SOS1 increased in the roots and expression of NHX1 increased in the shoots but decreased in the roots of the sensitive accession under salinity stress. A decline in PIP1 expression in the shoots and dramatic increases in TIP expression in both shoots and roots were found in the sensitive accession under salinity stress. The results suggested maintenance of plant growth and leaf chlorophyll content, lesser Na+ accumulation in the roots, and lower lipid peroxidation in the shoots which could be associated with salinity tolerance. The decreased expressions of SOS1, NHX1, and TIP1 in the shoots, and increased expressions of NHX1 and PIP1 in the roots might also be related to salinity tolerance in perennial ryegrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号