首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine zymosan-induced peritonitis is a widely used model for studying the molecular and cellular events responsible for the initiation, persistence and/or resolution of inflammation. Among these events, it is becoming increasingly evident that changes in glycosylation of proteins, especially in the plasma and at the site of inflammation, play an important role in the inflammatory response. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)-based glycosylation profiling, we investigated the qualitative and quantitative effect of zymosan-induced peritonitis on N-glycosylation in mouse plasma and peritoneal fluid. Our results show that both N-glycomes exhibit highly similar glycosylation patterns, consisting mainly of diantennary and triantennary complex type N-glycans with high levels (>95 %) of galactosylation and sialylation (mostly NeuGc) and a medium degree of core fucosylation (30 %). Moreover, MS/MS structural analysis, assisted by linkage-specific derivatization of sialic acids, revealed the presence of O-acetylated sialic acids as well as disialylated antennae (“branching sialylation”) characterized by the presence of α2-6-linked NeuGc on the GlcNAc of the NeuGcα2-3-Galβ1-3-GlcNAc terminal motif. A significant decrease of (core) fucosylation together with an increase of both α2-3-linked NeuGc and “branching sialylation” were observed in N-glycomes of mice challenged with zymosan, but not in control mice injected with PBS. Importantly, substantial changes in glycosylation were already observed 12 h after induction of peritonitis, thereby demonstrating an unexpected velocity of the biological mechanisms involved.  相似文献   

2.
The isolation of whey proteins from human and bovine milks followed by profiling of their entire N-glycan repertoire is described. Whey proteins resulting from centrifugation and ethanol precipitation of milk were treated with PNGase F to release protein-bound N-glycans. Once released, N-glycans were analyzed via nanoflow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry following chromatographic separation on a porous graphitized carbon chip. In all, 38 N-glycan compositions were observed in the human milk sample while the bovine milk sample revealed 51 N-glycan compositions. These numbers translate to over a hundred compounds when isomers are considered and point to the complexity of the mixture. High mannose, neutral, and sialylated complex/hybrid glycans were observed in both milk sources. Although NeuAc sialylation was observed in both milk samples, the NeuGc residue was only observed in bovine milk and marks a major difference between human and bovine milks. To the best of our knowledge, this study is the first MS based confirmation of NeuGc in milk protein bound glycans as well as the first comprehensive N-glycan profile of bovine milk proteins. Tandem MS was necessary for resolving complications presented by the fact that (NeuGc:Fuc) corresponds to the exact mass of (NeuAc:Hex). Comparison of the relative distribution of the different glycan types in both milk sources was possible via their abundances. While the human milk analysis revealed a 6% high mannose, 57% sialylation, and 75% fucosylation distribution, a 10% high mannose, 68% sialylation, and 31% fucosylation distribution was observed in the bovine milk analysis. Comparison with the free milk oligosaccharides yielded low sialylation and high fucosylation in human, while high sialylation and low fucosylation are found in bovine. The results suggest that high fucosylation is a general trait in human, while high sialylation and low fucosylation are general features of glycosylation in bovine milk.  相似文献   

3.
4.
Human immunoglobulin G (IgG) molecules are composed of two Fab portions and one Fc portion. The glycans attached to the Fc portions of IgG are known to modulate its biological activity as they influence interaction with both complement and various cellular Fc receptors. IgG glycosylation changes significantly with pregnancy, showing a vast increase in galactosylation and sialylation and a concomitant decrease in the incidence of bisecting GlcNAc. Maternal IgGs are actively transported to the fetus by the neonatal Fc receptor (FcRn) expressed in syncytiotrophoblasts in the placenta, providing the fetus and newborn with immunological protection. Two earlier reports described significant differences in total glycosylation between fetal and maternal IgG, suggesting a possible glycosylation-selective transport via the placenta. These results might suggest an alternative maternal transport pathway, since FcRn binding to IgG does not depend on Fc-glycosylation. These early studies were performed by releasing N-glycans from total IgG. Here, we chose for an alternative approach analyzing IgG Fc glycosylation at the glycopeptide level in an Fc-specific manner, providing glycosylation profiles for IgG1 and IgG4 as well as combined Fc glycosylation profiles of IgG2 and 3. The analysis of ten pairs of fetal and maternal IgG samples revealed largely comparable Fc glycosylation for all the analyzed subclasses. Average levels of galactosylation, sialylation, bisecting GlcNAc and fucosylation were very similar for the fetal and maternal IgGs. Our data suggest that the placental IgG transport is not Fc glycosylation selective.  相似文献   

5.
In rodents, the Otx2 gene is expressed in the diencephalon, mesencephalon, and cerebellum and is crucial for the development of these brain regions. Together with Otx1, Otx2 is known to cooperate with other genes to develop the caudal forebrain and, further, Otx1 is also involved in differentiation of young neurons of the deeper cortical layers. We have studied the spatial and temporal expression of the two homeobox genes OTX2 and OTX1 in human fetal brains from 7 to 14 weeks postconception by in situ hybridization and immunohistochemistry. OTX2 was expressed in the diencephalon, mesencephalon, and choroid plexus, with a minor expression in the basal telencephalon. The expression of OTX2 in the hippocampal anlage was strong, with no expression in the adjacent neocortex. Contrarily, the OTX1 expression was predominantly located in the proliferative zones of the neocortex. At later stages, the OTX2 protein was found in the subcommissural organ, pineal gland, and cerebellum. The early expression of OTX2 and OTX1 in proliferative cell layers of the human fetal brain supports the concept that these homeobox genes are important in neuronal cell development and differentiation: OTX1 primarily in the neocortex, and OTX2 in the archicortex, diencephalon, rostral brain stem, and cerebellum. (J Histochem Cytochem 58:669–678, 2010)  相似文献   

6.
7.
The expressions of terminal sugars in synovial and plasma fibronectins were studied in relation to rheumatoid arthritis (RA) progression defined according to the early, established and late radiological changes in the patients’ hands. The relative amounts of sialic acid and fucose were analyzed by lectin-ELISA using appropriate sialic acid-linked α2-3 (Maackia amurensis) and α2-6 (Sambucus nigra) lectins as well as fucose-linked α1-6 (Aleuria aurantia), α1-2 (Ulex europaeus), and α1-3 (Tetragonolobus purpureus). In the early RA group, the synovial fibronectin reactivities were the lowest with the all lectins used. In the established and late groups, relative sialylation and fucosylation significantly increased. However, sialylation negligibly decreased, whereas fucosylation remained at nearly the same level in the late group. Moreover, the expression of α1-6-linked fucose was found to be related to disease activity. In contrast, plasma fibronectin reactivity with lectins showed different dynamic alterations. In the early RA group, the reactivity of fibronectin with the lectins used was similar to that of healthy individuals, whereas it increased significantly in the established RA group compared with the early and normal plasma groups. In the late RA group it decreased to a level similar to that of the normal group. The lower expressions of terminal sugars in synovial fibronectin were mainly associated with the early degenerative processes of RA. In conclusion, such alterations may be applicable as a stage-specific marker for diagnosis and therapy of RA patients. The higher expression of terminal sugars in fibronectin could be associated with repair and adaptation processes in longstanding disease.  相似文献   

8.

Background

Cell surface glycosylation patterns are markers of cell type and status. However, the mechanisms regulating surface glycosylation patterns remain unknown.

Methodology/Principal Findings

Using a panel of carbohydrate surface markers, we have shown that cell surface sialylation and fucosylation were downregulated in L1−/y neurons versus L1+/y neurons. Consistently, mRNA levels of sialyltransferase ST6Gal1, and fucosyltransferase FUT9 were significantly reduced in L1−/y neurons. Moreover, treatment of L1+/y neurons with L1 antibodies, triggering signal transduction downstream of L1, led to an increase in cell surface sialylation and fucosylation compared to rat IgG-treated cells. ShRNAs for both ST6Gal1 and FUT9 blocked L1 antibody-mediated enhancement of neurite outgrowth, cell survival and migration. A phospholipase Cγ (PLCγ) inhibitor and shRNA, as well as an Erk inhibitor, reduced ST6Gal1 and FUT9 mRNA levels and inhibited effects of L1 on neurite outgrowth and cell survival.

Conclusions

Neuronal surface sialylation and fucosylation are regulated via PLCγ by L1, modulating neurite outgrowth, cell survival and migration.  相似文献   

9.
BackgroudGiven the increasing morbidity and mortality of colorectal cancer (CRC), it is urgent to develop a noninvasive screening strategy for early diagnosis of CRC. Altered IgG glycosylation is associated with CRC progression, whereas the association of IgG isomeric glycosylation with CRC were not investigated.MethodsMethylamidation of IgG N-glycans was conducted prior to PGC-based nanoLC-ESI-MS/MS analysis. Data processing was operated by a self-developed application based on MATLAB solution. Statistical analysis including K–S test, t-test, ROC curve and OPLS-DA were successively performed. Additionally, an independent set was utilized to validate the results.ResultsTotal 28 IgG glycans and 79 compositional isomers were identified, over half of which are firstly identified so far. Statistical analysis showed that CRC associates with increase in IgG agalactosylation, decrease in IgG sialylation and fucosylation of sialylated glycans. Additionally, it was found that three compositional isomers (H3N4F1-a, H3N4F1-b and H4N3S1F1-e) could distinguish CRC and early stages from controls with an accurate area under the receiver operating characteristic curve. Significantly, these results were validated in an independent set by multivariate statistical analysis.ConclusionsThis is the first comprehensively profiling of isomer-specific IgG N-glycosylation, which could differentiate normal controls from colorectal disease patients. The candidate IgG glyco-biomarkers provide important screening indicators for early diagnosis of CRC.General significanceColorectal cancer progression is strongly associated with isomer-specific IgG N-glycosylation.  相似文献   

10.
11.
Affinity cytochemistry and biochemistry revealed distinctivetemporal changes in the expression of sialylated and compositionallyrelated membrane glycoconjugates in the pig small intestinebetween birth and weaning. The expression of membrane NeuAc2,6moieties, recognized by Sambucus nigra agglutinin-1, was highin newborn pigs, declined slightly during sucking and was verylow in weaned animals. Conversely, the expression of membraneNeuAc2r3 moieties, recognized by Maackia amurensis agglutinin-2,was low at birth but higher in sucking and weaned animals. Histobloodgroup O- and A-antigen expression was first detected in a minorityof sucking pigs, but was evident in all weaned pigs examined.Lactase glycoforms were isolated from solubilized microvillarmembranes of newborn and weaned pigs. The newborn (predominantly2,6-sialylated) and weaned (predominantly 1,2-fucosylated) glycoformsexhibited similar specific activity, indicating that postnatallactase decline in the pig intestine is unrelated to temporalchanges in membrane sialylation and fucosylation. fucosylation lactase lectins intestine sialylation  相似文献   

12.
Exposure for 24 h of mucus-secreting HT-29 cells to the sugar analogue GalNAc-α-O-benzyl results in inhibition of Galβ1-3GalNAc:α2,3-sialyltransferase, reduced mucin sialylation, and inhibition of their secretion (Huet, G., I. Kim, C. de Bolos, J.M. Loguidice, O. Moreau, B. Hémon, C. Richet, P. Delannoy, F.X. Real., and P. Degand. 1995. J. Cell Sci. 108:1275–1285). To determine the effects of prolonged inhibition of sialylation, differentiated HT-29 populations were grown under permanent exposure to GalNAc-α-O-benzyl. This results in not only inhibition of mucus secretion, but also in a dramatic swelling of the cells and the accumulation in intracytoplasmic vesicles of brush border–associated glycoproteins like dipeptidylpeptidase-IV, the mucin-like glycoprotein MUC1, and carcinoembryonic antigen which are no longer expressed at the apical membrane. The block occurs beyond the cis-Golgi as substantiated by endoglycosidase treatment and biosynthesis analysis. In contrast, the polarized expression of the basolateral glycoprotein GP 120 is not modified. Underlying these effects we found that (a) like in mucins, NeuAcα2-3Gal-R is expressed in the terminal position of the oligosaccharide species associated with the apical, but not the basolateral glycoproteins of the cells, and (b) treatment with GalNAc-α-O-benzyl results in an impairment of their sialylation. These effects are reversible upon removal of the drug. It is suggested that α2-3 sialylation is involved in apical targeting of brush border membrane glycoproteins and mucus secretion in HT-29 cells.  相似文献   

13.
14.
Ovarian cancer is the most lethal gynaecological cancer and is often diagnosed in late stage, often as the result of the unavailability of sufficiently sensitive biomarkers for early detection, tumour progression and tumour-associated inflammation. Glycosylation is the most common posttranslational modification of proteins; it is altered in cancer and therefore is a potential source of biomarkers. We investigated the quantitative and qualitative effects of anti-inflammatory (acetylsalicylic acid) and pro-inflammatory (thioglycolate and chlorite-oxidized oxyamylose) drugs on glycosylation in mouse cancer serum. A significant increase in sialylation and branching of glycans in mice treated with an inflammation-inducing compound was observed. Moreover, the increases in sialylation correlated with increased tumour sizes. Increases in sialylation and branching were consistent with increased expression of sialyltransferases and the branching enzyme MGAT5. Because the sialyltransferases are highly conserved among species, the described changes in the ovarian cancer mouse model are relevant to humans and serum N-glycome analysis for monitoring disease treatment and progression might be a useful biomarker.  相似文献   

15.
16.
17.
18.
Protein alterations during the development of the mouse brain were studied by two-dimensional gel electrophoresis. A protein spot with a molecular weight (MW) of 68,000 and pI value of 5.6 was found in the brain of the 11th day of gestation. Between the 12th and the 14th day of gestation, spots with the same MW and lower pI values appeared progressively. Neuraminidase digestion converted the pI of these acidic spots to 5.6. Thus, increased sialylation appeared to occur during this period. This class of molecules became hardly detectable on the 15th day, and disappeared completely after the 16th day. Analogous spots were present in the heart, liver, and stomach of the embryos, although the increased sialylation was not observed in the liver. No adult organs so far examined showed these spots. On the other hand, two polypeptides (MW 55,000, pI 4.7, and 53,000, pI 4.6) appeared in the brain on the 13th day of gestation and persisted throughout the fetal period. After birth, they became hardly detectable. Furthermore, a spot (MW 48,000, pI 4.8) became newly detectable in the brain 4-5 weeks after the birth.  相似文献   

19.
Phosphatidic acid (PA) is one of the phospholipids composing the plasma membrane and acts as a second messenger to regulate a wide variety of important cellular events, including mitogenesis, migration and differentiation. PA consists of various molecular species with different acyl chains at the sn-1 and sn-2 positions. However, it has been poorly understood what PA molecular species are produced during such cellular events. Here we identified the PA molecular species generated during retinoic acid (RA)-induced neuroblastoma cell differentiation using a newly established liquid chromatography/mass spectrometry (LC/MS) method. Intriguingly, the amount of 32:0-PA species was dramatically and transiently increased in Neuro-2a neuroblastoma cells 24–48 h after RA-treatment. In addition, 30:0- and 34:0-PA species were also moderately increased. Moreover, similar results were obtained when Neuro-2a cells were differentiated for 24 h by serum starvation. MS/MS analysis revealed that 32:0-PA species contains two palmitic acids (16:0 s). RT-PCR analysis showed that diacylglycerol kinase (DGK) δ and DGKζ were highly expressed in Neuro-2a cells. The silencing of DGKζ expression significantly decreased the production of 32:0-PA species, whereas DGKδ-siRNA did not. Moreover, neurite outgrowth was also markedly attenuated by the deficiency of DGKζ. Taken together, these results indicate that DGKζ exclusively generates very restricted PA species, 16:0/16:0-PA, and up-regulates neurite outgrowth during the initial/early stage of neuroblastoma cell differentiation.  相似文献   

20.
Due to its position at the outermost of glycans, sialic acid is involved in a myriad of physiological and pathophysiological cell functions such as host-pathogen interactions, immune regulation, and tumor evasion. Inhibitors of cell surface sialylation could be a useful tool in cancer, immune, antibiotic, or antiviral therapy. In this work, four different C-3 modified N-acetylmannosamine analogs were tested as potential inhibitors of cell surface sialylation. Peracetylated 2-acetylamino-2-deoxy-3-O-methyl-d-mannose decreases cell surface sialylation in Jurkat cells in a dose-dependent manner up to 80%, quantified by flow cytometry and enzyme-linked lectin assays. High-performance liquid chromatography experiments revealed that not only the concentration of membrane bound but also of cytosolic sialic acid is reduced in treated cells. We have strong evidence that the observed reduction of sialic acid expression in cells is caused by the inhibition of the bifunctional enzyme UDP-GlcNAc-2-epimerase/ManNAc kinase. 2-Acetylamino-2-deoxy-3-O-methyl-d-mannose inhibits the human ManNAc kinase domain of the UDP-GlcNAc-2-epimerase/ManNAc kinase. Binding kinetics of the inhibitor and human N-acetylmannosamine kinase were evaluated using surface plasmon resonance. Specificity studies with human N-acetylglucosamine kinase and hexokinase IV indicated a high specificity of 2-acetylamino-2-deoxy-3-O-methyl-d-mannose for MNK. This substance represents a novel class of inhibitors of sialic acid expression in cells, targeting the key enzyme of sialic acid de novo biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号