首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified a non-selective cation channel on pancreatic duct cells. These epithelial cells secrete the bicarbonate ions found in pancreatic juice; a process controlled by the hormone secretin, which uses cyclic AMP as an intracellular messenger. The non-selective channel is located on both apical and basolateral plasma membranes of the duct cell, is equally permeable to sodium and potassium, and has a linear I/V relationship with a single-channel conductance of about 25 pS. Channel opening requires the presence of 1 microM Ca2+ on the cytoplasmic face of the membrane, and is also increased by depolarization. Intracellular ATP, ADP, magnesium, and a rise in pH all decreased channel activity. The channel was not affected by 10 mM TEA, 1 mM Ba2+ or 0.5 mM decamethonium applied to the cytoplasmic face of the membrane, but 0.5 mM quinine caused a flickering block which was more pronounced at depolarizing potentials. We observed the channel only rarely in cell-attached patches on unstimulated duct cells, and acute exposure to stimulants did not cause channel activation. However, after prolonged stimulation, the proportion of cell-attached patches containing active channels was increased 9-fold. The role of this channel in pancreatic duct cell function remains to be elucidated.  相似文献   

2.
Depletion of intracellular Ca(2+) stores activates capacitative Ca(2+) influx in smooth muscle cells, but the native store-operated channels that mediate such influx remain unidentified. Recently we demonstrated that calcium influx factor produced by yeast and human platelets with depleted Ca(2+) stores activates small conductance cation channels in excised membrane patches from vascular smooth muscle cells (SMC). Here we characterize these channels in intact cells and present evidence that they belong to the class of store-operated channels, which are activated upon passive depletion of Ca(2+) stores. Application of thapsigargin (TG), an inhibitor of sarco-endoplasmic reticulum Ca(2+) ATPase, to individual SMC activated single 3-pS cation channels in cell-attached membrane patches. Channels remained active when inside-out membrane patches were excised from the cells. Excision of membrane patches from resting SMC did not by itself activate the channels. Loading SMC with BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), which slowly depletes Ca(2+) stores without a rise in intracellular Ca(2+), activated the same 3-pS channels in cell-attached membrane patches as well as whole cell nonselective cation currents in SMC. TG- and BAPTA-activated 3-pS channels were cation-selective but poorly discriminated among Ca(2+), Sr(2+), Ba(2+), Na(+), K(+), and Cs(+). Open channel probability did not change at negative membrane potentials but increased significantly at high positive potentials. Activation of 3-pS channels did not depend on intracellular Ca(2+) concentration. Neither TG nor a variety of second messengers (including Ca(2+), InsP3, InsP4, GTPgammaS, cyclic AMP, cyclic GMP, ATP, and ADP) activated 3-pS channels in inside-out membrane patches. Thus, 3-pS nonselective cation channels are present and activated by TG or BAPTA-induced depletion of intracellular Ca(2+) stores in intact SMC. These native store-operated cation channels can account for capacitative Ca(2+) influx in SMC and can play an important role in regulation of vascular tone.  相似文献   

3.
We recently described a large, multiple-conductance Cl- channel in excised patches from normal T lymphocytes. The properties of this channel in excised patches are similar to maxi-Cl- channels found in a number of cell types. The voltage dependence in excised patches permitted opening only at nonphysiological voltages, and channel activity was rarely seen in cell-attached patches. In the present study, we show that Cl- channels can be activated in intact cells at physiological temperatures and voltages and that channel properties change after patch excision. Maxi-Cl- channels were reversibly activated in 69% of cell-attached patches when the temperature was above 32 degrees C, whereas fewer than 2% of patches showed activity at room temperature. Upon excision, the same patches displayed large, multiple-conductance Cl- channels with characteristics like those we previously reported for excised patches. After patch excision, warm temperatures were not essential to allow channel activity; 37% (114/308) of inside-out patches had active channels at room temperature. The voltage dependence of the channels was markedly different in cell-attached recordings compared with excised patches. In cell-attached patches, Cl- channels could be open at cell resting potentials in the normal range. Channel activation was not related to changes in intracellular Ca2+ since neither ionomycin nor mitogens activated the channels in cell-attached patches, Ca2+ did not rise in response to warming and the Cl- channel was independent of Ca2+ in inside-out patches. Single-channel currents were blocked by internal or external Zn2+ (100-200 microM), 4-acetamido-4' isothiocyanostilbene-2,2'-disulfonate (SITS, 100-500 microM) and 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS, 100 microM). NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) reversibly blocked the channels in inside-out patches.  相似文献   

4.
There is increasing interest in the roles played by potassium channels of smooth muscle in protecting against ischemic and anoxic insults. Hence, potassium-selective channels were studied in freshly dispersed porcine coronary artery smooth muscle cells using the inside-out variant of the patch-clamp technique. The most abundant potassium channel had a conductance of 148 pS in a 5.4/140 mM K+ gradient, at 0 mV, and was regulated by cytoplasmic ATP (0.05-3.0 mM), cytoplasmic Ca2+ (0.1-10 microM) and voltage. ATP and AMP-PNP (0.5 mM) reduced the probability of channel opening (Po) by 87 and 92%, respectively. This inhibition was partially reversed by the addition of 0.5 mM ADP. ADP on its own (2 mM) reduced Po by 46%. It appears, therefore, that this channel shares properties with both the ATP-sensitive and the calcium-regulated potassium channels, raising the possibility that it plays a central role in the regulation of coronary blood flow.  相似文献   

5.
Isolated cells from rat distal colon were investigated with the patch-clamp technique. In cell-attached and cell-excised patches (inside-out) single chloride channels with outward-rectifying properties were observed. In excised patches the single-channel conductance g was 47 +/- 5 pS at positive and 22 +/- 2 pS at negative clamp potentials (n = 6). The Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 10 microM) induced fast closing events, whereas 10 microM of 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) had no effect when applied to the cytosolic side. Quinine in the bath inhibited the Cl- channel by reducing its single-channel amplitude and increased open channel noise. With 0.1 mM the current amplitude decreased by 54% and with 1 mM quinine by 67%. Ca2(+)-dependent nonselective cation channels where observed after excision of the membrane patch. This channel was completely and reversibly inhibited by 100 microM DCDPC. Application of 1 mM quinine to the bath induced flickering and reduced the open-state probability from 0.94 to 0.44. In summary, besides its well established effects on K+ channels, quinine also inhibits nonselective cation channels and chloride channels by inducing fast closing events.  相似文献   

6.
Single-channel recordings were used to study the modulation of stretch-activated channels (SACs) by intracellular adenosine nucleotides in identified leech neurons. These channels exhibited two activity modes, spike-like (SL) and multiconductance (MC), displaying different polymodal activation. In the absence of mechanical stimulation, internal perfusion of excised patches with ATP induced robust and reversible activation of the MC but not of the SL mode. The ATP effect on channel activity was dose-dependent within a range of 1 microM-1 mM and was induced at different values of intracellular pH and Ca2+. The non-hydrolyzable ATP analog AMP-PNP, ATP without Mg2+ or ADP also effectively enhanced MC activity. Adenosine mimicked the effect of its nucleotides. At negative membrane potentials, both ATP and adenosine activated the channel. Moreover, ATP but not adenosine induced a flickering block. Addition of cAMP during maximal ATP activation completely and reversibly inhibited the channel, with activation and deactivation times of minutes. However, cAMP alone only induced a weak and rapid channel activation, without inhibitory effects. The expression of these channels in the growth cones of leech neurons, their permeability to Ca2+ and their sensitivity to intracellular cAMP are consistent with a role in the Ca2+ oscillations associated with cell growth.  相似文献   

7.
Antibody activates cationic channels via second messenger Ca2+   总被引:2,自引:0,他引:2  
Patch-clamp recordings were used to study single channels permeable to multiple cations in a macrophage cell line. At least three conductance levels were found, consistent with the existence of several types of nonselective cation channels or a single channel with multiple open states. The activity of the channels depended very little on voltage but was affected by internal Ca2+ concentration. Specific subclasses of immunoglobulins (IgG1 and IgG2b) bound to an Fc receptor on the surface of these macrophages. When an IgG2b was applied to the cell exterior after a patch pipette had been sealed in the cell-attached mode, the nonselective cation channels within the patch were activated. Thus, these channels must be modulated by a second messenger. Since antibodies binding to the Fc receptor have been shown to produce a rise in intracellular Ca2+, this cation must be considered a candidate as a second messenger that amplifies the effect of antibody in gating these channels.  相似文献   

8.
Stretch-activated channels (SACs) were investigated in myocytes isolated from the lateral oviduct in cricket Gryllus bimaculatus using the cell-attached or excised inside-out patch clamp technique. Application of both negative and positive pressure (10-100 cm H(2)O) into the patch pipettes induced the unitary channel current openings. The open probability (NPo) of the channel increased when negative pressure applied into the patch pipettes increased. The single channel conductance for this channel was approximately 20 pS with 140 mM Na(+), K(+), or Cs(+) in the patch pipettes and was approximately 13 pS with 100mM Ca(2+) or Ba(2+) in the patch pipettes. External application of Gd(3+), La(3+), Cd(2+) and Zn(2+)inhibited the channel with the IC(50) values of 14, 15, 28, and 18 microM respectively. Interestingly external application of TEA, a specific blocker of K(+) channel, also inhibited this channel with IC(50) value of 8.8mM. These results show for the first time the presence of stretch activated Ca(2+)-permeable nonselective cation channel in myocytes isolated from the cricket lateral oviduct. The physiological significance of this channel in oviposition behavior is discussed.  相似文献   

9.
Different hormones and neurotransmitters, using Ca2+ as their intracellular messenger, can generate specific cytosolic Ca2+ signals in different parts of a cell. In mouse pancreatic acinar cells, cytosolic Ca2+ oscillations are triggered by activation of acetylcholine (ACh), cholecystokinin (CCK) and bombesin receptors. Low concentrations of these three agonists all induce local Ca(2+)spikes, but in the case of bombesin and CCK these spikes can also trigger global Ca2+ signals. Here we monitor cytosolic Ca2+ oscillations induced by low (2-5 pM) concentrations of bombesin and show that, like ACh- and CCK-induced oscillations, the bombesin-elicited responses are inhibited by ryanodine(50 microM). We then demonstrate that, like CCK- but unlike ACh-induced oscillations, the responses to bombesin are abolished by intracellular infusion of the cyclic ADP ribose (cADPr) antagonist 8-NH2-cADPr (20 microM). We conclude that in mouse pancreatic acinar cells, bombesin, CCK and ACh all produce local Ca2+ spikes by recruiting common oscillator units composed of ryanodine and inositol trisphosphate receptors. However, bombesin and CCK also recruit cADPr receptors, which may account for the global Ca2+ signals that can be evoked by these two agonists. Our new results indicate that each Ca2+ -mobilizing agonist, acting on mouse pancreatic acinar cells, recruits a unique combination of intracellular Ca2+ channels.  相似文献   

10.
We used the patch-clamp technique to study the effects of ATP on the small-conductance potassium channel in the apical membrane of rat cortical collecting duct (CCD). This channel has a high open probability (0.96) in the cell-attached mode but activity frequently disappeared progressively within 1-10 min after channel excision (channel "run-down"). Two effects of ATP were observed. Using inside-out patches, low concentrations of ATP (0.05-0.1 mM) restored channel activity in the presence of cAMP-dependent protein kinase A (PKA). In contrast, high concentrations (1 mM) of adenosine triphosphate (ATP) reduced the open probability (Po) of the channel in inside-out patches from 0.96 to 0. 1.2 mM adenosine diphosphate (ADP) also blocked channel activity completely, but 2 mM adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP), a nonhydrolyzable ATP analogue, reduced Po only from 0.96 to 0.87. The half-maximal inhibition (Ki) of ATP and ADP was 0.5 and 0.6 mM, respectively, and the Hill coefficient of both ATP and ADP was close to 3. Addition of 0.2 or 0.4 mM ADP shifted the Ki of ATP to 1.0 and 2.0 mM, respectively. ADP did not alter the Hill coefficient. Reduction of the bath pH from 7.4 to 7.2 reduced the Ki of ATP to 0.3 mM. In contrast, a decrease of the free Mg2+ concentration from 1.6 mM to 20 microM increased the Ki of ATP to 1.6 mM without changing the Hill coefficient; ADP was still able to relieve the ATP-induced inhibition of channel activity over this low range of free Mg2+ concentrations. The blocking effect of ATP on channel activity in inside-out patches could be attenuated by adding exogenous PKA catalytic subunit to the bath. The dual effects of ATP on the potassium channel can be explained by assuming that (a) ATP is a substrate for PKA that phosphorylates the potassium channel to maintain normal function. (b) High concentrations of ATP inhibit the channel activity; we propose that the ATP-induced blockade results from inhibition of PKA-induced channel phosphorylation.  相似文献   

11.
The single channel properties of TASK-like oxygen-sensitive potassium channels were studied in rat carotid body type 1 cells. We observed channels with rapid bursting kinetics, active at resting membrane potentials. These channels were highly potassium selective with a slope conductance of 14-16 pS, values similar to those reported for TASK-1. In the absence of extracellular divalent cations, however, single channel conductance increased to 28 pS in a manner similar to that reported for TASK-3. After patch excision, channel activity ran down rapidly. Channel activity in inside-out patches was markedly increased by 2 and 5 mM ATP and by 2 mM ADP but not by 100 microM ADP or 1 mM AMP. In cell-attached patches, both cyanide and 2,4-dinitrophenol strongly inhibited channel activity. We conclude that 1) whilst the properties of this channel are consistent with it being a TASK-like potassium channel they do not precisely conform to those of either TASK-1 or TASK-3, 2) channel activity is highly dependent on cytosolic factors including ATP, and 3) changes in energy metabolism may play a role in regulating the activity of these background K+ channels.  相似文献   

12.
This study reports the identification of an endogenous inhibitor of the G protein-gated (K(ACh)) channel and its effect on the K(ACh) channel kinetics. In the presence of acetylcholine in the pipette, K(ACh) channels in inside-out atrial patches were activated by applying GTP to the cytoplasmic side of the membrane. In these patches, addition of physiological concentration of intracellular ATP (4 mM) upregulated K(ACh) channel activity approximately fivefold and induced long-lived openings. However, such ATP-dependent gating is normally not observed in cell-attached patches, indicating that an endogenous substance that inhibits the ATP effect is present in the cell. We searched for such an inhibitor in the cell. ATP-dependent gating of the K(ACh) channel was inhibited by the addition of the cytosolic fraction of rat atrial or brain tissues. The lipid component of the cytosolic fraction was found to contain the inhibitory activity. To identify the lipid inhibitor, we tested the effect of approximately 40 different lipid molecules. Among the lipids tested, only unsaturated free fatty acids such as oleic, linoleic, and arachidonic acids (0.2-2 microM) reversibly inhibited the ATP-dependent gating of native K(ACh) channels in atrial cells and hippocampal neurons, and of recombinant K(ACh) channels (GIRK1/4 and GIRK1/2) expressed in oocytes. Unsaturated free fatty acids also inhibited phosphatidylinositol-4, 5-bisphosphate (PIP(2))-induced changes in K(ACh) channel kinetics but were ineffective against ATP-activated background K(1) channels and PIP(2)-activated K(ATP) channels. These results show that during agonist-induced activation, unsaturated free fatty acids in the cytoplasm help to keep the cardiac and neuronal K(ACh) channels downregulated by antagonizing their ATP-dependent gating. The opposing effects of ATP and free fatty acids represent a novel regulatory mechanism for the G protein-gated K(+) channel.  相似文献   

13.
Light activates a K+ channel and transiently depolarizes the plasma membrane of Arabidopsis mesophyll cells. Genetically or chemically impairing photosynthesis abolished this electrical response to light. These results indicate that illuminated chloroplasts produce a factor that activated K+ channels in the plasma membrane. By patch clamping at the single-channel level, we have obtained evidence that ATP is one such factor. Application of 0.2 to 2 mM ATP to the cytoplasmic side of excised patches of membrane reversibly activated the type of channel that was activated by light in cell-attached patches. In addition, an outward-rectifying K+ channel and an outward-rectifying nonselective cation channel were similarly activated by ATP, whereas a nonselective stretch-activated channel was unaffected by this treatment. This novel mechanism for controlling the permeability of the plasma membrane to K+ may be important to photosynthetic metabolism.  相似文献   

14.
Regulation by cytosolic nucleotides of Ca2+- and ATP-sensitive nonselective cation channels (CA-NSCs) in rat brain capillary endothelial cells was studied in excised inside-out patches. Open probability (Po) was suppressed by cytosolic nucleotides with apparent KI values of 17, 9, and 2 microM for ATP, ADP, and AMP, as a consequence of high-affinity inhibition of channel opening rate and low-affinity stimulation of closing rate. Cytosolic [Ca2+] and voltage affected inhibition of Po, but not of opening rate, by ATP, suggesting that the conformation of the nucleotide binding site is influenced only by the state of the channel gate, not by that of the Ca2+ and voltage sensors. ATP inhibition was unaltered by channel rundown. Nucleotide structure affected inhibitory potency that was little sensitive to base substitutions, but was greatly diminished by 3'-5' cyclization, removal of all phosphates, or complete omission of the base. In contrast, decavanadate potently (K1/2 = 90 nM) and robustly stimulated Po, and functionally competed with inhibitory nucleotides. From kinetic analyses we conclude that (a) ATP, ADP, and AMP bind to a common site; (b) inhibition by nucleotides occurs through simple reversible binding, as a consequence of tighter binding to the closed-channel relative to the open-channel conformation; (c) the conformation of the nucleotide binding site is not directly modulated by Ca2+ and voltage; (d) the differences in inhibitory potency of ATP, ADP, and AMP reflect their different affinities for the closed channel; and (e) though decavanadate is the only example found to date of a compound that stimulates Po with high affinity even in the presence of millimolar nucleotides, apparently by competing for the nucleotide binding site, a comparable mechanism might allow CA-NSC channels to open in living cells despite physiological levels of nucleotides. Decavanadate now provides a valuable tool for studying native CA-NSC channels and for screening cloned channels.  相似文献   

15.
Store-operated Ca(2+) channels (SOC) are expressed in cultured human mesangial cells and activated by epidermal growth factor through a pathway involving protein kinase C (PKC). We used fura-2 fluorescence and patch clamp experiments to determine the role of PKC in mediating the activation of SOC after depletion of internal stores by thapsigargin. The measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) revealed that the thapsigargin-induced Ca(2+) entry pathway was abolished by calphostin C, a protein kinase C inhibitor. The PKC activator, phorbol 12-myristate 13-acetate (PMA), promoted a Ca(2+) influx that was significantly attenuated by calphostin C and La(3+) but not by diltiazem. Neither PMA nor calphostin C altered the thapsigargin-induced initial transient rise in [Ca(2+)](i). In cell-attached patch clamp experiments, the thapsigargin-induced activation of SOC was potentiated by PMA and abolished by both calphostin C and staurosporine. However, SOC was unaffected by thapsigargin when clamping [Ca(2+)](i) with 1,2-bis (o-Aminophenoxy)ethane-N,N,N',N'tetraacetic acid tetra(acetoxymethyl)ester. In the absence of thapsigargin, PMA and phorbol 12, 13-didecanoate evoked a significant increase in NP(O) of SOC, whereas calphostin C did not affect base-line channel activity. In inside-out patches, SOC activity ran down immediately upon excision but was reactivated significantly after adding the catalytic subunit of 0.1 unit/ml of PKC plus 100 microm ATP. Neither ATP alone nor ATP with heat-inactivated PKC rescued a rundown of SOC. Metavanadate, a general protein phosphatase inhibitor, also enhanced SOC activity in inside-out patches. Bath [Ca(2+)] did not significantly affect the channel activity in inside-out patch. These results indicate that the depletion of Ca(2+) stores activates SOC by PKC-mediated phosphorylation of the channel proteins or a membrane-associated complex.  相似文献   

16.
ATP-sensitive K+ channels in inside-out membrane patches from dispersed rat pancreatic B-cells were studied using patch-clamp methods. The dose-response curve for ATP-induced channel inhibition was shifted to higher concentrations in the presence of ADP (2 mM). In glucose-free solution, the total intracellular concentration of ATP was 3.8 mM and of ADP 1.5 mM; glucose (20 mM) increased ATP and decreased ADP by approx. 40%. These results suggest that both ADP and ATP may be involved in regulating the activity of the glucose-sensitive K+ channel in intact B-cells.  相似文献   

17.
Agonist-specific cytosolic Ca2+ oscillation patterns can be observed in individual cells and these have been explained by the co-existence of separate oscillatory mechanisms. In pancreatic acinar cells activation of muscarinic receptors typically evokes sinusoidal oscillations whereas stimulation of cholecystokinin (CCK) receptors evokes transient oscillations consisting of Ca2+ waves with long intervals between them. We have monitored changes in the cytosolic Ca2+ concentration ([Ca2+]i) by measuring Ca2(+)-activated Cl- currents in single internally perfused mouse pancreatic acinar cells. With minimal intracellular Ca2+ buffering we found that low concentrations of both ACh (50 nM) and CCK (10 pM) evoked repetitive short-lasting Ca2+ spikes of the same duration and frequency, but the probability of a spike being followed by a longer and larger Ca2+ wave was low for ACh and high for CCK. The probability that the receptor-evoked shortlasting Ca2+ spikes would initiate more substantial Ca2+ waves was dramatically increased by intracellular perfusion with solutions containing high concentrations of the mobile low affinity Ca2+ buffers citrate (10-40 mM) or ATP (10-20 mM). The different Ca2+ oscillation patterns normally induced by ACh and CCK would therefore appear not to be caused by separate mechanisms. We propose that specific receptor-controlled modulation of Ca2+ signal spreading, either by regulation of Ca2+ uptake into organelles and/or cellular Ca2+ extrusion, or by changing the sensitivity of the Ca2(+)-induced Ca2+ release mechanism, can be mimicked experimentally by different degrees of cytosolic Ca2+ buffering and can account for the various cytosolic Ca2+ spike patterns.  相似文献   

18.
A Cl- channel with a small single-channel conductance (3 pS) was observed in cell-attached patches formed on the apical membrane of cells from the distal nephron cell line (A6) cultured on permeable supports. The current-voltage (I-V) relationship from cell-attached patches or inside-out patches with 1 microM cytosolic Ca2+ strongly rectified with no inward current at potentials more negative than ECl. However, the rectification decreased (i.e., inward current increased) when the cytosolic Ca2+ concentration ([Ca2+]i) was increased above 1 microM. If [Ca2+]i is increased to 800 microM, the I-V relationship became linear. Besides the change in the I-V relationship, an increase in [Ca2+]i also increases the open probability of the channel. Regardless of the recording condition, the channel has one open and one closed state. Both closing and opening rates were dependent on [Ca2+]i; an increase of [Ca2+]i decreased the closing rate and increased the opening rate. The Ca2+ dependence of transition rates at positive membrane potentials (cell interior with respect to external surface) were much larger than the dependence at negative intracellular potentials. The I-V relationship of chloride channels in inside-out patches from cells pretreated with insulin was linear even with 1 microM [Ca2+]i, while channel currents from cells under similar conditions but without insulin still strongly rectified. Alkaline phosphatase applied to the intracellular surface of inside-out patches altered the outward rectification of single channels in a manner qualitatively similar to that of insulin pretreatment. These observations suggest that phosphorylation/dephosphorylation of the channel modulates the sensitivity of the Cl- channel to cytosolic Ca2+ and that insulin produces its effect by promoting dephosphorylation of the channel.  相似文献   

19.
The patch-clamp technique was applied to the antiluminal membrane of freshly isolated capillaries of rat brain (blood-brain barrier). With 1.3 mM Ca2+ in the bath, excision of membrane patches evoked ion channels, which could not be observed in cell-attached mode. The channel was about equally permeable to Na+ and K+ ions, but not measurable permeable to Cl- and the divalent ions Ca2+ and Ba2+. The current-voltage curve was linear in the investigated voltage range (-80 mV to +80 mV), and the single-channel conductance was 31 +/- 2 pS (n = 22). The channel open probability was not dependent on the applied potential. Lowering of Ca2+ to 1 microM or below on the cytosolic side inactivated the channels, whereas addition of cytosolic ATP (1 mM) inhibited channel activity completely and reversibly. The channel was blocked by the inhibitor of nonselective cation channels in rat exocrine pancreas 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC, 10 microM) and by the antiinflammatory drugs flufenamic acid (greater than 10 microM) and tenidap (100 microM), as well as by gadolinium (10 microM). Thus, these nonselective cation channels have many properties in common with similar channels observed in fluid secreting epithelia. The channel could be involved in the transport of K+ ions from brain to blood side.  相似文献   

20.
Non-selective cation channels have been described in the basolateral membrane of the renal tubule, but little is known about functional channels on the apical side. Apical membranes of microdissected fragments of mouse cortical thick ascending limbs were searched for ion channels using the cell-free configuration of the patch-clamp technique. A cation channel with a linear current-voltage relationship (19pS) that was permeable both to monovalent cations [P(NH4)(1.7)>P(Na) (1.0)=P(K) (1.0)] and to Ca(2+) (P(Ca)/P(Na)≈0.3) was detected. Unlike the basolateral TRPM4 Ca(2+)-impermeable non-selective cation channel, this non-selective cation channel was insensitive to internal Ca(2+), pH and ATP. The channel was already active after patch excision, and its activity increased after reduced pressure was applied via the pipette. External gadolinium (10(-5)M) decreased the channel-open probability by 70% in outside-out patches, whereas external amiloride (10(-4)M) had no effect. Internal flufenamic acid (10(-4)M) inhibited the channel in inside-out patches. Its properties suggest that the current might be supported by the TRPM7 protein that is expressed in the loop of Henle. The conduction properties of the channel suggest that it could be involved in Ca(2+) signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号