首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huntington's disease (HD) is a progressive neurodegenerative disorder with autosomal-dominant inheritance. The disease is caused by a CAG trinucleotide repeat expansion located in the first exon of the HD gene. The CAG repeat is highly polymorphic and varies from 6 to 37 repeats on chromosomes of unaffected individuals and from more than 30 to 180 repeats on chromosomes of HD patients. In this study, we show that the number of CAG repeats in the HD gene can be determined by restriction of the DNA with the endonuclease EcoP15I and subsequent analysis of the restriction fragment pattern by electrophoresis through non-denaturing polyacrylamide gels using the ALFexpress DNA Analysis System. CAG repeat numbers in the normal (30 and 35 repeats) as well as in the pathological range (81 repeats) could be accurately counted using this assay. Our results suggest that this high-resolution method can be used for the exact length determination of CAG repeats in HD genes as well as in genes affected in related CAG repeat disorders.  相似文献   

2.
Huntington’s disease (HD) is a progressive neurodegenerative disorder with autosomal-dominant inheritance. The disease is caused by a CAG trinucleotide repeat expansion located in the first exon of the HD gene. The CAG repeat is highly polymorphic and varies from 6 to 37 repeats on chromosomes of unaffected individuals and from more than 30 to 180 repeats on chromosomes of HD patients. In this study, we show that the number of CAG repeats in the HD gene can be determined by restriction of the DNA with the endonuclease EcoP15I and subsequent analysis of the restriction fragment pattern by electrophoresis through non-denaturing polyacrylamide gels using the ALFexpress DNA Analysis System. CAG repeat numbers in the normal (30 and 35 repeats) as well as in the pathological range (81 repeats) could be accurately counted using this assay. Our results suggest that this high-resolution method can be used for the exact length determination of CAG repeats in HD genes as well as in genes affected in related CAG repeat disorders.  相似文献   

3.
Huntington disease (HD) is associated with an unstable trinucleotide CAG.CTG repeat expansion. Although the repeat length is inversely correlated with the age-at-onset of symptoms, variability between patients who have inherited the same HD repeat length clearly suggests that other factors influence this aspect of the disease. As repeat length profiles in somatic tissues suggest that repeat length gains may contribute to both the tissue-specificity and progressive nature of HD pathogenesis, genetic modifiers of mutation length variability may therefore influence the age-at-onset of the disease. Using a sensitive single molecule-PCR assay we show that HD mutation length profiles in buccal cell DNA vary from individual to individual. The resulting data provide the first quantitative evidence that inherited CAG.CTG repeat length has a major influence on somatic CAG.CTG repeat length variation. In addition, we confirm that further environmental and/or genetic modifiers of repeat length variation exist and discuss the implications that our results may have on understanding the factors that influence severity and age-at-onset of Huntington disease symptoms.  相似文献   

4.
Transgenic Huntington's disease (HD) mice, expressing exon 1 of the HD gene with an expanded CAG repeat, are totally resistant to striatal lesion induced by excessive NMDA receptor activation. We now show that striatal lesions induced by the mitochondrial toxin malonate are reduced by 70-80% in transgenic HD mice compared with wild-type littermate controls. This occurred in 6- and 12-week-old HD mice with 150 CAG repeats (line R6/2) and in 18-week-old, but not 6-week-old, HD mice with 115 CAG repeats (line R6/1). Therefore, we show for the first time that the resistance to neurotoxin in transgenic HD mice is dependent on both the CAG repeat length and the age of the mice. Importantly, most HD patients develop symptoms in adulthood and exhibit an inverse relationship between CAG repeat length and age of onset. Transgenic mice expressing a normal CAG repeat (18 CAG) were not resistant to malonate. Although endogenous glutamate release has been implicated in malonate-induced cell death, glutamate release from striatal synaptosomes was not decreased in HD mice. Malonate-induced striatal cell death was reduced by 50-60% in wild-type mice when they were treated with either the NMDA receptor antagonist MK-801 or the caspase inhibitor zVAD-fmk. These two compounds did not reduce lesion size in transgenic R6/1 mice. This might suggest that NMDA receptor- and caspase-mediated cell death pathways are inhibited and that the limited malonate-induced cell death still occurring in HD mice is independent of these pathways. There were no changes in striatal levels of the two anti cell death proteins Bcl-X(L) and X-linked inhibitor of apoptosis protein (XIAP), before or after the lesion in transgenic HD mice. We propose that mutant huntingtin causes a sublethal grade of metabolic stress which is CAG repeat length-dependent and results in up-regulation over time of cellular defense mechanisms against impaired energy metabolism and excitotoxicity.  相似文献   

5.

Background

Age at onset of Huntington''s disease (HD) is largely determined by the CAG trinucleotide repeat length in the HTT gene. Importantly, the CAG repeat undergoes tissue-specific somatic instability, prevalent in brain regions that are disease targets, suggesting a potential role for somatic CAG repeat instability in modifying HD pathogenesis. Thus, understanding underlying mechanisms of somatic CAG repeat instability may lead to discoveries of novel therapeutics for HD. Investigation of the dynamics of the CAG repeat size changes over time may provide insights into the mechanisms underlying CAG repeat instability.

Methodology/Principal Findings

To understand how the HTT CAG repeat length changes over time, we quantified somatic instability of the CAG repeat in Huntington''s disease CAG knock-in mice from 2–16 months of age in liver, striatum, spleen and tail. The HTT CAG repeat in spleen and tail was very stable, but that in liver and striatum expanded over time at an average rate of one CAG per month. Interestingly, the patterns of repeat instability were different between liver and striatum. Unstable CAG repeats in liver repeatedly gained similar sizes of additional CAG repeats (approximately two CAGs per month), maintaining a distinct population of unstable repeats. In contrast, unstable CAG repeats in striatum gained additional repeats with different sizes resulting in broadly distributed unstable CAG repeats. Expanded CAG repeats in the liver were highly enriched in polyploid hepatocytes, suggesting that the pattern of liver instability may reflect the restriction of the unstable repeats to a unique cell type.

Conclusions/Significance

Our results are consistent with repeat expansion occurring as a consequence of recurrent small repeat insertions that differ in different tissues. Investigation of the specific mechanisms that underlie liver and striatal instability will contribute to our understanding of the relationship between instability and disease and the means to intervene in this process.  相似文献   

6.
《Journal of molecular biology》2019,431(9):1869-1877
Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin (HTT) gene, translating into an elongated polyglutamine stretch. In addition to the neurotoxic mutant HTT protein, the mutant CAG repeat RNA can exert toxic functions by trapping RNA-binding proteins. While few examples of proteins that aberrantly bind to mutant HTT RNA and execute abnormal function in conjunction with the CAG repeat RNA have been described, an unbiased approach to identify the interactome of mutant HTT RNA is missing. Here, we describe the analysis of proteins that preferentially bind mutant HTT RNA using a mass spectrometry approach. We show that (I) the majority of proteins captured by mutant HTT RNA belong to the spliceosome pathway, (II) expression of mutant CAG repeat RNA induces mis-splicing in a HD cell model, (III) overexpression of one of the splice factors trapped by mutant HTT ameliorates the HD phenotype in a fly model and (VI) deregulated splicing occurs in human HD brain. Our data suggest that deregulated splicing is a prominent mechanism of RNA-induced toxicity in HD.  相似文献   

7.
Somatic expansion of the CAG repeat tract that causes Huntington''s disease (HD) is thought to contribute to the rate of disease pathogenesis. Therefore, factors influencing repeat expansion are potential therapeutic targets. Genes in the DNA mismatch repair pathway are critical drivers of somatic expansion in HD mouse models. Here, we have tested, using genetic and pharmacological approaches, the role of the endonuclease domain of the mismatch repair protein MLH3 in somatic CAG expansion in HD mice and patient cells. A point mutation in the MLH3 endonuclease domain completely eliminated CAG expansion in the brain and peripheral tissues of a HD knock-in mouse model (HttQ111). To test whether the MLH3 endonuclease could be manipulated pharmacologically, we delivered splice switching oligonucleotides in mice to redirect Mlh3 splicing to exclude the endonuclease domain. Splice redirection to an isoform lacking the endonuclease domain was associated with reduced CAG expansion. Finally, CAG expansion in HD patient-derived primary fibroblasts was also significantly reduced by redirecting MLH3 splicing to the endogenous endonuclease domain-lacking isoform. These data indicate the potential of targeting the MLH3 endonuclease domain to slow somatic CAG repeat expansion in HD, a therapeutic strategy that may be applicable across multiple repeat expansion disorders.  相似文献   

8.
亨廷顿病的基因诊断   总被引:2,自引:0,他引:2  
莫亚勤  李麓芸  卢光琇 《遗传》2005,27(6):861-864
为了简单高效检测HD基因开放阅读框5’端(CAG)n三核苷酸重复序列,建立快速准确的亨廷顿病(Huntington disease, HD)基因诊断方法,应用TaKaRa LA Taq DNA聚合酶配合GC buffer扩增HD基因包含(CAG)n重复序列的目的片段,非变性聚丙烯酰胺凝胶电泳检测后回收(CAG)n拷贝数异常增多的目的片段,再次PCR扩增后将产物连接至T载体,进行DNA测序确定CAG的拷贝数。应用该方法对一个HD家系的3名成员以及20名正常人进行基因诊断,结果显示该HD家系3名成员的一条染色体上的(CAG)n拷贝数在正常范围内,而另一条染色体上的(CAG)n拷贝数异常增多,分别为39、40、41,而20例正常人(CAG)n拷贝数均在正常范围内,正常和HD等位基因之间的(CAG)n拷贝数不相重叠。因此,应用该方法可以对HD进行准确的基因诊断,结果同时也证明HD基因的动态突变是导致中国人亨廷顿病的遗传基础。  相似文献   

9.
A total of 254 affected parent-child pairs with Huntington disease (HD) and 440 parent-child pairs with CAG size in the normal range were assessed to determine the nature and frequency of intergenerational CAG changes in the HD gene. Intergenerational CAG changes are extremely rare (3/440 [0.68%]) on normal chromosomes. In contrast, on HD chromosomes, changes in CAG size occur in approximately 70% of meioses on HD chromosomes, with expansions accounting for 73% of these changes. These intergenerational CAG changes make a significant but minor contribution to changes in age at onset (r2 = .19). The size of the CAG repeat influenced larger intergenerational expansions (> 7 CAG repeats), but the likelihood of smaller expansions or contractions was not influenced by CAG size. Large expansions (> 7 CAG repeats) occur almost exclusively through paternal transmission (0.96%; P < 10(-7)), while offspring of affected mothers are more likely to show no change (P = .01) or contractions in CAG size (P = .002). This study demonstrates that sex of the transmitting parent is the major determinant for CAG intergenerational changes in the HD gene. Similar paternal sex effects are seen in the evolution of new mutations for HD from intermediate alleles and for large expansions on affected chromosomes. Affected mothers almost never transmit a significantly expanded CAG repeat, despite the fact that many have similar large-sized alleles, compared with affected fathers. The sex-dependent effects of major expansion and contractions of the CAG repeat in the HD gene implicate different effects of gametogenesis, in males versus females, on intergenerational CAG repeat stability.  相似文献   

10.
Huntington disease phenocopy is a familial prion disease   总被引:2,自引:0,他引:2       下载免费PDF全文
Huntington disease (HD) is a common autosomal dominant neurodegenerative disease with early adult-onset motor abnormalities and dementia. Many studies of HD show that huntingtin (CAG)n repeat-expansion length is a sensitive and specific marker for HD. However, there are a significant number of examples of HD in the absence of a huntingtin (CAG)n expansion, suggesting that mutations in other genes can provoke HD-like disorders. The identification of genes responsible for these "phenocopies" may greatly improve the reliability of genetic screens for HD and may provide further insight into neurodegenerative disease. We have examined an HD phenocopy pedigree with linkage to chromosome 20p12 for mutations in the prion protein (PrP) gene (PRNP). This reveals that affected individuals are heterozygous for a 192-nucleotide (nt) insertion within the PrP coding region, which encodes an expanded PrP with eight extra octapeptide repeats. This reveals that this HD phenocopy is, in fact, a familial prion disease and that PrP repeat-expansion mutations can provoke an HD "genocopy." PrP repeat expansions are well characterized and provoke early-onset, slowly progressive atypical prion diseases with an autosomal dominant pattern of inheritance and a remarkable range of clinical features, many of which overlap with those of HD. This observation raises the possibility that an unknown number of HD phenocopies are, in fact, familial prion diseases and argues that clinicians should consider screening for PrP mutations in individuals with HD-like diseases in which the characteristic HD (CAG)n repeat expansions are absent.  相似文献   

11.
The mutation causing Huntington disease (HD) has been identified as an expansion of a polymorphic (CAG) n repeat in the 5 part of the huntingtin gene. The specific neuropathology of HD, viz. selective neuronal loss in the caudate nucleus and putamen, cannot be explained by the widespread expression of the gene. Since somatic expansion is observed in affected tissue in myotonic dystrophy, we have studied the length of the (CAG) n repeat in various regions of the brain. Although we have not found clear differences when comparing severely and mildly affected regions, we have observed a minor increase in repeat length upon comparison of affected brain samples with cerebellum or peripheral blood. Hence, although further somatic amplification seems to occur in affected areas of the brain, the differences between affected and unaffected regions are too small to make this mechanism an obvious candidate for the cause of differential neuronal degeneration in HD.  相似文献   

12.
Huntington’s disease (HD) is a neurodegenerative disorder associated with CAG repeat expansion. We measured transglutaminase (TGase) activity in lymphocytes from 35 HD patients and from healthy individuals to ascertain whether it was altered in this condition. TGase activity was above maximum control levels in 25% of HD patients; it was correlated with the age of the patient and inversely correlated with the CAG repeat length. These results suggest that: (1) HD could be biochemically heterogeneous, and (2) the length of the CAG repeat expansion/TGase ratio could be important in the manifestation of HD. Received: 25 March 1996 / Revised: 23 June 1996  相似文献   

13.
Huntington''s disease (HD), a neurodegenerative disease characterized by progressive dementia, psychiatric problems, and chorea, is known to be caused by CAG repeat expansions in the HD gene HTT. However, the mechanism of this pathology is not fully understood. The translesion DNA polymerase θ (Polθ) carries a large insertion sequence in its catalytic domain, which has been shown to allow DNA loop-outs in the primer strand. As a result of high levels of oxidative DNA damage in neural cells and Polθ''s subsequent involvement in base excision repair of oxidative DNA damage, we hypothesized that Polθ contributes to CAG repeat expansion while repairing oxidative damage within HTT. Here, we performed Polθ-catalyzed in vitro DNA synthesis using various CAG•CTG repeat DNA substrates that are similar to base excision repair intermediates. We show that Polθ efficiently extends (CAG)n•(CTG)n hairpin primers, resulting in hairpin retention and repeat expansion. Polθ also triggers repeat expansions to pass the threshold for HD when the DNA template contains 35 repeats upward. Strikingly, Polθ depleted of the catalytic insertion fails to induce repeat expansions regardless of primers and templates used, indicating that the insertion sequence is responsible for Polθ''s error-causing activity. In addition, the level of chromatin-bound Polθ in HD cells is significantly higher than in non-HD cells and exactly correlates with the degree of CAG repeat expansion, implying Polθ''s involvement in triplet repeat instability. Therefore, we have identified Polθ as a potent factor that promotes CAG•CTG repeat expansions in HD and other neurodegenerative disorders.  相似文献   

14.
Prior studies describing the relationship between CAG size and the age at onset of Huntington disease (HD) have focused on affected persons. To further define the relationship between CAG repeat size and age at onset of HD, we now have analyzed a large cohort of affected and asymptomatic at-risk persons with CAG expansion. This cohort numbered 1,049 persons, including 321 at-risk and 728 affected individuals with a CAG size of 29-121 repeats. Kaplan-Meier analysis has provided curves for determining the likelihood of onset at a given age, for each CAG repeat length in the 39-50 range. The curves were significantly different (P < .0005), with relatively narrow 95% confidence intervals (95% CI) (+/-10%). Penetrance of the mutation for HD also was examined. Although complete penetrance of HD was observed for CAG sizes of > or = 42, only a proportion of those with a CAG repeat length of 36-41 showed signs or symptoms of HD within a normal life span. These data provide information concerning the likelihood of being affected, by a specific age, with a particular CAG size, and they may be useful in predictive-testing programs and for the design of clinical trials for persons at increased risk for HD.  相似文献   

15.
Huntington disease (HD) has been shown to be associated with an expanded CAG repeat within a novel gene on 4p16.3 (IT15). A total of 30 of 1,022 affected persons (2.9% of our cohort) did not have an expanded CAG in the disease range. The reasons for not observing expansion in affected individuals are important for determining the sensitivity of using repeat length both for diagnosis of affected patients and for predictive testing programs and may have biological relevance for the understanding of the molecular mechanism underlying HD. Here we show that the majority (18) of the individuals with normal sized alleles represent misdiagnosis, sample mix-up, or clerical error. The remaining 12 patients represent possible phenocopies for HD. In at least four cases, family studies of these phenocopies excluded 4p16.3 as the region responsible for the phenotype. Mutations in the HD gene that are other than CAG expansion have not been excluded for the remaining eight cases; however, in as many as seven of these persons, retrospective review of these patients' clinical features identified characteristics not typical for HD. This study shows that on rare occasions mutations in other, as-yet-undefined genes can present with a clinical phenotype very similar to that of HD.  相似文献   

16.
17.
PCR amplification of the CAG repeat in exon 1 of the IT15 gene is routinely undertaken to confirm a clinical diagnosis of Huntington disease (HD) and to provide predictive testing for at-risk relatives of affected individuals. Our studies have detected null alleles on the chromosome carrying the expanded repeat in three of 91 apparently unrelated HD families. Sequence analysis of these alleles has revealed the same mutation event, leading to the juxtaposition of uninterrupted CAG and CCG repeats. These data suggest that a mutation-prone region exists in the IT15 gene bounded by the CAG and CCG repeats and that caution should be exercised in designing primers that anneal to the region bounded by these repeats. Two of the HD families segregated null alleles with expanded uninterrupted CAG repeats at the lower end of the zone of reduced penetrance. The expanded repeats are meiotically unstable in these families, although this instability is within a small range of repeat lengths. The haplotypes of the disease-causing chromosomes in these two families differ, only one of which is similar to that reported previously as being specific for new HD mutations. Finally, no apparent mitotic instability of the uninterrupted CAG repeat was observed in the brain of one of the HD individuals.  相似文献   

18.
BACKGROUND: An expanded CAG trinucleotide repeat is the genetic trigger of neuronal degeneration in Huntington's disease (HD), but its mode of action has yet to be discovered. The sequence of the HD gene places the CAG repeat near the 5' end in a region where it may be translated as a variable polyglutamine segment in the protein product, huntingtin. MATERIALS AND METHODS: Antisera directed at amino acid stretches predicted by the DNA sequence upstream and downstream of the CAG repeat were used in Western blot and immunohistochemical analyses to examine huntingtin expression from the normal and the HD allele in lymphoblastoid cells and postmortem brain tissue. RESULTS: CAG repeat segments of both normal and expanded HD alleles are indeed translated, as part of a discrete approximately 350-kD protein that is found primarily in the cytosol. The difference in the length of the N-terminal polyglutamine segment is sufficient to distinguish normal and HD huntingtin in a Western blot assay. CONCLUSIONS: The HD mutation does not eliminate expression of the HD gene but instead produces an altered protein with an expanded polyglutamine stretch near the N terminus. Thus, HD pathogenesis is probably triggered by an effect at the level of huntingtin protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号