首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apical border of the vomeronasal neuroepithelium, the olfactory epithelium proper, and the septal organ possess varying lectin-binding properties. This can be judged by their ability to bind a peculiar lectin and/or by their reactivity to the given lectin. The following lectins have been used: Triticum vulgaris agglutinin (WGA), Ulex europeus agglutinin (UEA-1), Arachis hypogea agglutinin (PNA), Lymbus polyphenus agglutinin (LPA), Glycine soja agglutinin (SBA) and Dolchos diflerus agglutinin (DBA). But if the apical border of the vomeronasal neuroepithelium possesses certain binding areas for all the lectins investigated, the olfactory epithelium proper and the septal organ are not able to bind some of them.  相似文献   

2.
Fluorescent lectins were used to study the chemical nature of carbohydrate moieties present on the surface of female and male germ cells isolated from mouse gonads during fetal and early posnatal development. Concanavalin A (ConA), lens culinaris agglutinin (LCA), ricinus communis agglutinin (RCAI) and wheat germ agglutinin (WGA) bound intensely to the germ cell plasma membrane at all stages studied. Other lectins such as ulex europaeus agglutinin (UEAI) and agglutinin (SBA) did not bind or bound moderately (SBA to female germ cells only). Distinct developmental-related changes were observed when female germ cells were labeled with fluorescein-conjugated peanut agglutinin (PNA) or dolichos biflorus agglutinin (DBA). DBA and PNA binding was absent or weak in fetal female and male germ cells, but became intensely positive in oocytes in the immediate postnatal period. The percentage of oocytes stained with DBA increased during the first three days after birth, and from day 3–4 onwards all oocytes were strongly labeled. I suggest that these changes in lectin binding reflect changes in biochemical structure of the oocyte surface related to differentiative events occurring in the mouse ovary immediately after birth.  相似文献   

3.
The ability of seven lectins to bind to newt epidermal cells and influence their motility was examined. Of the seven fluoresceinated lectins applied to frozen sections containing intact newt skin and migrating epidermis (wound epithelium), only Con A (concanavalin A), WGA (wheat germ agglutinin), and PNA (peanut agglutinin) produced detectable epidermal fluorescence. Con A and WGA each heavily labeled all layers of intact epidermis, but PNA bound only to the more superficial layers. In contrast to a single population of labeled cells in migrating epidermal sheets after treatment with Con A, there were both labeled and unlabeled cells after exposure to either WGA or PNA. The wound bed was labeled by both Con A and WGA, but not by PNA. DBA (Dolichos bifloris agglutinin), RCA I (Ricinus communis agglutinin), and UEA (Ulex europaeus agglutinin), did not produce significant fluorescence with either migrating or intact epidermis. In general, inhibitory effects on epidermal motility correlated with the binding studies. Thus, Con A, WGA, and PNA, the lectins which clearly bound to the epidermis, all produced a concentration-dependent depression in the rate of epidermal wound closure. RCA was somewhat paradoxical in that it was moderately inhibitory despite showing essentially no binding. The effects of SBA and UEA were equivocal. DBA had no effect. These results indicate that the inhibition of motility produced by Con A that we have described previously is not peculiar to this mannose-binding lectin, but is shared by at least one lectin with an affinity for D-GlcNAc (WGA), and one with an affinity for B-D-Gal(1-3)-D-GalNAc (PNA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

5.
Canine and feline platelet cytocentrifuge preparations (CCPs), cryostat and paraffin-embedded bone marrow sections were used in this study. We evaluated whether platelets, megakaryocytes and megakaryocyte precursor cells could be labelled by monoclonal antibodies (Y2/51, CLB-thromb/1, HPL1) against human platelet membrane glycoprotein GP IIIa and the GP IIb/IIIa complex or by the following 10 biotinylated lectins: concanavalin A (Con A), Lens culinaris agglutinin (LCA), Pisum sativum agglutinin (PsA), wheat germ agglutinin (WGA), peanut agglutinin (PNA), Phaseolus vulgaris lectin (PHA-L), Ricinus communis agglutinin 120 (RCA120), Ulex europaeus agglutinin — I(UEA-1), soybean agglutinin (SBA) and Dolichos biflorus agglutinin (DBA). Monoclonal antibodies Y2/51 and HPL1 cross reacted with platelets and megakaryocytic cells from both species, whereas CLB-thromb/1 was unreactive with canine preparations. Only Y2/51 labelled megakaryocytic cells in paraffin-embedded samples. LCA, PSA, WGA and PHA-L labelled feline and canine platelets and different numbers of morphologically identifiable megakaryocytes and numerous other, mostly myeloid, cells. Immunoblots of dog and cat platelet lysates using Y2/51 visualized a single protein of 95 kDa (unreduced), a mol·wt value within the range of those reported for GP IIIa. Some of the platelet (but not necessarily megakaryocyte) glycoproteins reacting with LCA, PSA and WGA could be identified in lectin blots following one- or two (nonreduced/reduced)-dimensional sodium dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE). Thus in dogs and cats, the immunohistochemical detection of GP IIIa (and eventually GP IIb/IIIa) rather than lectin binding patterns could be important for the diagnosis of megakaryoblastic leukaemias.  相似文献   

6.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

7.
Summary The binding of a panel of eight different fluorescein-conjugated lectins to rat spermatogenic cells was investigated. Particular attention was paid to the effects of different fixation methods and proteolytic enzyme digestion on the staining pattern.Concanavalin A (Con A), wheatgerm agglutinin (WGA), succinylated WGA (s-WGA) and agglutinin from gorse (UEA I) stained the cytoplasm of most germ cells as well as the spermatid acrosome. In contrast, peanut agglutinin (PNA), castor bean agglutinin (RCAI) and soy bean agglutinin (SBA) mainly stained the acrosome. The staining pattern varied depending on the fixation method used. PNA was particularly sensitive to formalin fixation, while SBA, DBA and UEA I showed decreased binding and Con A, WGA, s-WGA and RCA I were insensitive to this type of fixation. Pepsin treatment of the sections before lectin staining caused marked changes in the staining pattern; staining with PNA in formalin-fixed tissue sections was particularly improved but there was also enhanced staining with SBA and horse gram agglutinin (DBA). On the other hand, in Bouin- and particularly in acetone-fixed tissue sections, pepsin treatment decreased the staining with several of the lectins, for example WGA and UEA I.  相似文献   

8.
Summary Two different receptor sites, located on the cell surface ofAmoeba proteus were detected by using fluorescent analog cytochemistry (FAC) and electron microscopy (EM). Bovine serum albumin labeled with fluoresceine-isothiocyanate (FITC-BSA) and unlabeled ferritin bind, in a pH-dependent manner, as cations at the outer filaments of the mucous layer. The anionic receptor sites show a high affinity for Ca-ions which suppress the binding capacity of FITC-BSA and ferritin at low pH-values. The cation receptors obviously play an important role in the initiation of pinocytosis as demonstrated by the internalization, intracellular translocation and sequestration of the FITC-BSA. FITC- or ferritin-labeled concanavalin A (FITC-Con A, ferritin-Con A) bind predominantly in a pH-independent manner at the tips of the outer filaments and the basal zone of the mucous layer. The binding capacity of FITC-Con A is not influenced by external Ca-ions. Other lectins such asDolichos bifloris agglutinin (DBA), peanut agglutinin (PNA),Ricinus communis agglutinin I (RCA I), soybean agglutinin (SBA),Ulex europaeus agglutinin I (UEA I) and wheat germ agglutinin (WGA) are not specifically bound to the cell surface. So far, no experimental evidence has been gathered for the definitive function of a Con-A receptor in the mucos layer ofAmoeba proteus.Abbreviations BSA bovine serum albumin - Con A concanavalin A - CTC chlorotetracycline - DBA Dolichos bifloris agglutinin - DTE dithioeritritol - FITC fluorosceine-isothiocyanate - IEP iso electric point - PIPES 1-4-piperazine-diethane sulfonic acid - PNA peanut agglutinin - RCA I Ricinus communis agglutinin I - SBA soybean agglutinin - Uac uranylacetat - UEA I Ulex europaeus agglutinin I - WGA wheat germ agglutinin  相似文献   

9.
Summary Distribution of carbohydrate moieties in the membrane system of the human blood platelet was studied by electron microscopy employing lectins as a probe. Glutaraldehyde-fixed platelets were treated with biotinylatedlectins (ConA, RCA, WGA, PNA, SBA, DBA and UEA-1) and labeled with horseradish peroxidase-conjugated avidin. Among the lectins used, ConA bound uniformly to the plasma membrane as well as to the membrane of the opencanalicular system (OCS). Other lectins showed more or less reduced binding on the OCS membrane compared with that on the plasma membrane, indicating that there exist regional differences in the distribution pattern of glycoconjugates in the membrane system of the platelet. The relationship of the distribution pattern of the glycoconjugates with the distribution of the major platelet glycoproteins GPIb and GPIIbIIIa is discussed.  相似文献   

10.
Distribution of carbohydrate moieties in the membrane system of the human blood platelet was studied by electron microscopy employing lectins as a probe. Glutaraldehyde-fixed platelets were treated with biotinylated-lectins (ConA, RCA, WGA, PNA, SBA, DBA and UEA-1) and labeled with horseradish peroxidase-conjugated avidin. Among the lectins used, ConA bound uniformly to the plasma membrane as well as to the membrane of the open-canalicular system (OCS). Other lectins showed more or less reduced binding on the OCS membrane compared with that on the plasma membrane, indicating that there exist regional differences in the distribution pattern of glycoconjugates in the membrane system of the platelet. The relationship of the distribution pattern of the glycoconjugates with the distribution of the major platelet glycoproteins GPIb and GPIIbIIIa is discussed.  相似文献   

11.
Lectin histochemistry of human skeletal muscle   总被引:3,自引:0,他引:3  
Biotinyl derivatives of seven plant lectins-concanavalin A (Con A), peanut agglutinin (PNA), Ricinus communis agglutinin I (RCA I), Ulex europeus agglutinin I (UEA I), soybean agglutinin (SBA), Dolichos biflorus agglutinin (DBA), and wheat germ agglutinin (WGA)-were bound to cryostat sections of biopsied normal human muscle and visualized with avidin-horseradish peroxidase conjugates. A distinct staining pattern was observed with each lectin. The most general staining was observed with Con A, RCA I, and WGA, which permitted strong visualization of the plasmalemma-basement membrane unit, tubular profiles in the interior of muscle fibers, blood vessels, and connective tissue. PNA gave virtually no intracellular staining, while SBA and UEA I selectively stained blood vessels. DBA was unique in providing good visualization of myonuclei. In each case, lectin staining could be blocked by appropriate sugar inhibitors. Neuraminidase pretreatment of the cryostat sections altered the pattern of staining by all lectins except UEA I and Con A; staining with RCA I became stronger and that with WGA became less intense, while staining with PNA, SBA and DBA became stronger and more generalized, resembling that of RCA I. These effects of neuraminidase pretreatment are in conformity with the known structure of the oligosaccharide chains of membrane glycoproteins and specificities of the lectins involved.  相似文献   

12.
Summary The pattern of lectin binding in normal human labial mucosa was examined by light and electron microscopy using eight different lectins (ConA, LCA, WGA, UEA-1, RCA-1, SBA, DBA and PNA) and compared with the patterns in normal human skin and oesophageal mucosa. As seen by light microscopy, ConA, LCA, and WGA stained cell membranes in all layers of the mucosae. RCA-1 stained the plasma membrane of cells in the basal and middle layers, whereas cells in the superficial layers showed little positive staining. UEA-1, SBA, and PNA stained the cells in the middle layers weakly in some cases. No positive staining for DBA was seen. By electron microscopy, reaction product indicating ConA-binding sites was observed in the plasma membrane, cisternae of the endoplasmic reticulum, nuclear envelope and the Golgi apparatus. Binding of LCA, WGA, and RCA-1 was observed in the plasma membrane. These results show that the binding pattern of PNA, SBA, and RCA-1 in labial mucosa is different from that in the normal skin or oesophageal mucosa, although the labial mucosal epithelium, epidermis, and oesophageal epithelium are all stratified squamous epithelia. These differences in the cell-surface sugar residues are likely to be related to the possible functional differences in these tissues.  相似文献   

13.
The distribution of structural and secretory glycoconjugates in the gastric region of metamorphosing Xenopus laevis was studied by the avidin-biotin-peroxidase (ABC) histochemical staining method using seven lectins (concanavalin A, Con A; Dolichos biflorus agglutinin, DBA; peanut agglutinin, PNA; Ricinus communis agglutinin I, RCA-I; soybean agglutinin, SBA; Ulex europeus agglutinin I, UEA-I; and wheat germ agglutinin, WGA). Throughout the larval period to stage 60, the epithelium consisting of surface cells and gland cells was stained in various patterns with all lectins examined, whereas the thin layer of connective tissue was positive only for RCA-I. At the beginning of metamorphic climax, the connective tissue became stained with Con A, SBA, and WGA, and its staining pattern varied with different lectins. The region just beneath the surface cells was strongly stained only with RCA-I. With the progression of development, both the epithelium and the connective tissue gradually changed their staining patterns. The surface cells, the gland cells, and the connective tissue conspicuously changed their staining patterns, respectively, for Con A and WGA; for Con A, PNA, RCA-I, SBA, and WGA; and for Con A, RCA-I, and WGA. At the completion of metamorphosis (stage 66), mucous neck cells became clearly identifiable in the epithelium, and their cytoplasm was strongly stained with DBA, PNA, RCA-I, and SBA. These results indicate that lectin histochemistry can provide good criteria for distinguishing among three epithelial cell types, namely, surface cells, gland cells, and mucous neck cells, and between adult and larval cells of each type.  相似文献   

14.
This study determined the effects of lectin binding to theronts of Ichthyophthirius multifiliis on theront immobilization, invasion, trophont development and survival in channel catfish Ictalurus punctatus excised fins in vitro. Soybean agglutinin (SBA), lentil agglutinin (LCA), gorse agglutinin (UEA-I) and wheat germ agglutinin (WGA) were used to treat theronts. Percentages of theronts immobilized by 4 lectins ranged from 12.0 to 19.4% at a concentration of 1000 microg ml(-1). These lectins bound more than half of the theronts at a concentration of 50 microg ml(-1). More theronts were labeled by SBA and WGA than by lectin LCA at concentrations of 50 and 100 microg ml(-1), respectively. The binding of these lectins to theronts indicated that monosaccharides (D-galactose, L-fucose, D-mannose and D-glucose) and amino sugar derivatives (N-acetylgalactosamine and N-acetylglucosamine) were present on the surface of theronts. Invasion was reduced significantly for theronts treated with LCA, UEA-I and WGA. No difference in invasion was found between control and SBA bound theronts (p > 0.05). The binding of lectin LCA, UEA-I and WGA to theronts significantly reduced the development of trophonts (p < 0.05). The mean volumes of trophonts labeled with these 3 lectins were smaller than volumes in control trophonts from 8 to 48 h after exposure. Survival was lower in trophonts labeled with lectins than in control trophonts at 48 h after exposure.  相似文献   

15.
Colloidal gold-labeled soybean agglutinin (SBA), Helix pomatia agglutinin (HPA), Dolichos biflorus agglutinin (DBA), and Griffonia simplicifolia lectin (GS-1) were used for electron microscopic observation of blood cells. Colloidal gold-labeled SBA, HPA, and DBA showed marked deposition on eosinophil granules at all stages of maturation. Gold particles were not deposited on basophils, neutrophils, monocytes, lymphocytes, or other blood cells. Only a few colloidal gold-labeled GS-1 were deposited on eosinophil granules. Eosinophil granules are rich in N-acetyl-D-galactosamine compounds, and the colloidal gold-labeled SBA, HPA, and DBA are useful for electron microscopic detection of eosinophil granules.  相似文献   

16.
The binding of fluorescein isothiocyanate (FITC) conjugated lectins to gametes of Aglaothamnion byssoides Itono during the fertilization was studied by the use of confocal microscope. The physiological effects of lectins and carbohydrates on gamete binding were also examined. Three lectins, concanavalin A (ConA), Soybean agglutinin (SBA) and wheat germ agglutinin (WGA) bound to the surface of spermatia, but each lectin labeled different region of the spermatium. SBA bound only to the spermatial appendages but ConA bound to the whole spermatial surface except spermatial appendages. WGA labeled narrow region which connects spermatial body and appendages. During fertilization, ConA and WGA specific substances on the spermatial surface moved towards the area contacting with trichogyne and accumulated on the surface of fertilization canal. Spermatial binding to trichogynes was inhibited by pre‐incubation of spermatia with SBA, while trichogyne receptors were blocked by the complementary carbohydrate, N‐acetyl‐D‐galactosamine. WGA and its complementary carbohydrate had little effect on gamete binding. For searching the step of sexual isolation, crossing experiment was performed between Aglaothamnion byssoides and twelve other red algal species. Results showed that the gamete recognition was genus‐specific: the gametes bound freely with their partners of the same genus. When two species from same genus were crossed, sexual isolation occurs gradually during the fertilization process. Therefore, sexual isolation in red algae appears to be determined by multi‐step process and gamete binding is the initial step.  相似文献   

17.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

18.
Light-microscopical lectin-binding studies were carried out in healthy and pathologically altered synovial tissue (osteoarthrosis, rheumatoid arthritis (RA)). Seven lectins were studied: Con A, DBA, PNA, RCA, SBA, UEA-I, and WGA. Con A and WGA mark all lining cells and the majority of subintimal synovial cells. RCA and SBA stain only a portion of lining cells, regardless of the basic pathology. The lectin PNA reacts only with RA and arthrotic material, and is thus suitable for the diagnosis of inflammatory changes in synovial tissue. UEA-1 is a consistent marker for capillary endothelium and large vessels.  相似文献   

19.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRAT at 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diamino-benzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A greater than PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WAG, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Profound digestion of unsealed human erythrocyte ghosts with high concentrations of Pronase results in a near complete loss of intramembrane particles while trypsin digestion is less effective. The small vesicles formed by proteolysis are agglutinable by soybean agglutinin (SBA), wheat germ agglutinin (WGA), and phytohemagglutinin (PHA), but not concanavalin A (ConA). Densitometer tracings of Pronase-treated vesicles analyzed on SDS-polyacrylamide gels demonstrated no detectable protein or glycoprotein migrating slower than the marking dye. The vesicles showed a loss of 90% Lowry positive material (the remainder may be non-protein chromogens), near depletion of sialyl residues, no significant change in lipid composition, and equal amounts of phospholipid phosphorus compared to an equal volume of ghosts. The lipid material extracted from Pronase-derived vesicles or intact ghosts inhibited hemagglutination with SBA and WGA but not ConA. SBA but not ConA was found to specifically bind to Pronase-derived vesicles while both lectins bound to native ghosts. These observations suggest that neither the integrity of the intramembrane particles nor the presence of membrane glycoprotein appears essential for SBA-, WGA-, and PHA-mediated agglutination. Furthermore, it appears that native membrane glycolipids (and perhaps glycopeptides) can bind SBA, WGA and PHA. The membrane glycolipids may play a larger role than heretofore realized in lectin-mediated agglutination of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号