首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An exo-inulinase was highly purified from the culture broth of Penicillium trzebinskii by anion exchange, hydrophobic, and gel filtration chromatographies. The enzyme was homogeneous by disc electrophoresis. The molecular weight was 8.7 × 104, and the isoelectric point was pH 4.3. The enzyme hydrolyzed not only inulin and sucrose but also inulooligosaccharides [1F(1-β-D-fructofuranosyl)n-1fructose, Fn (n= 25)] and fructooligosaccharides [1F(1-β-D-fructofuranosyl)n-1 sucrose, GFn, (n = 2—8)] liberating the nonreducing terminal fructose of the substrates. The substrate specificity was investigated. The Km (mM) and ko (sec?1were: inulin, 0.042 and 159; sucrose, 6.5 and 169; F2, 2.1 and 62.8; F3, 0.40 and 126; F4, 0.47 and 171; and F5, 0.47 and 131, respectively. Dependence of Km and ko values on the degree of polymerization of substrates was observed. The subsite affinities in the active site were 1.05, 4.57, 1.45, 0.09, and — 0.16kcal/mol for subsite 1, 2, 3, 4, and 5, respectively.  相似文献   

2.
The substrate specificity of honeybee α-glucosidase II, a monomeric protein, was investigated in detail. The enzyme hydrolyzed phenyl α-glucoside and p-nitrophenyl α-glucoside more rapidly than maltooligosaccharides. Unusual kinetics were observed in hydrolysis of sucrose, turanose, kojibiose, and soluble starch. The s versus v plots showed sigmoidal curves, and so the Lineweaver-Burk plots became concave, indicating positive kinetic cooperativity. The Hill coefficients for sucrose, turanose, kojibiose, and soluble starch were calculated to be 1.46, 1.34, 1.15, and 1.28, respectively. The Km values for these substrates were calculated as the concentration at one half of the maximum velocity. The ratios of the maximum velocities for maltose, malto-triose, -tetraose, -pentaose, -hexaose, -heptaose, maltodextrin ( = 13), kojibiose, nigerose, isomaltose, sucrose, turanose, phenyl α-glucoside, p-nitrophenyl α-glucoside, phenyl α-maltoside, and soluble starch were estimated to be 100:163:159:156:149:144:113:96.9:92.2: 31.8:81.5:68.8:268:341:127:17.0, and the Km values for these substrates, 5.4, 4.0, 6.3, 11, 31, 50, 50, 7.6, 20, 5.6, 6.7, 7.7, 1.6, 1.8, 2.0, and 9.4 mM, respectively. The enzyme was also active on α-glucose-1-phosphate. Its maximum activity was 79.9% of that to maltose and the Km was 50 mM. The substrate specificity of this enzyme was different from that of honeybee α-glucosidase I. The two enzymes were found to be immunologically distinct proteins. Based on the rate parameters for maltooligosaccharides, the subsite affinities (Ai’s) in the active site of the enzyme were evaluated. Subsites 1, 2, and 3 having the positive Ai value (A1, A2, and A3: 0.672, 4.61, and 0.483kcal/mol, respectively) were considered to be effective for binding of substrate to the active site.  相似文献   

3.
α-Glucosidase III, which was different in substrate specificity from honeybee α-glucosidases I and II, was purified as an electrophoretically homogeneous protein from honeybees, by salting-out chromatography, DEAE-cellulose, DEAE-Sepharose CL-6B, Bio-Gel P-150, and CM-Toyopearl 650M column chromatographies. The enzyme preparation was confirmed to be a monomeric protein and a glycoprotein containing about 7.4% of carbohydrate. The molecular weight was estimated to approximately 68,000, and the optimum pH was 5.5. The substrate specificity of α-glucosidase III was kinetically investigated. The enzyme did not show unusual kinetics, such as the allosteric behaviors observed in α-glucosidases I and II, which are monomeric proteins. The enzyme was characterized by the ability to rapidly hydrolyze sucrose, phenyl α-glucoside, maltose, and maltotriose, and by extremely high Km for substrates, compared with those of α-glucosidases I and II. Especially, maltotriose was hydrolyzed over 3 times as rapidly as maltose. However, maltooligosaccharides of four or more in the degree of polymerization were slowly degraded. The relative rates of the k0 values for maltose, sucrose, p-nitrophenyl α-glucoside and maltotriose were estimated to be 100, 527, 281 and 364, and the Km values for these substrates, 11, 30, 13, and 10 mM, respectively. The subsite affinities (Ai’s) in the active site were tentatively evaluated from the rate parameters for maltooligosaccharides. In this enzyme, it was peculiar that the Ai value at subsite 3 was larger than that of subsite 1.  相似文献   

4.
The subsite structure of Thermoactinomyces vulgaris α-amylase was estimated from its action mode and rate parameters of hydrolysis on maltooligosaccharides. These results led to the conclusion that this α-amylase has six subsites with the catalytic site located between the third and fourth subsites from the non-reducing end side. Subsite affinities were calculated to be 0.38, 5.46, 2.72 and 0.23 kcal/mol for subsites 1, 2, 5 and 6, respectively, and the sum of the affinities of subsite 3 and 4 to be ?3.41 kcal/mol. The unique action mode of this α-amylase on various substrates was interpreted in terms of the subsite structure.  相似文献   

5.
We estimated the subsite structure of α-amylase II (TVA II) from Thermoactinomyces vulgaris R-47 expressed in Escherichia coli. TVA II has eight subsites, and the catalytic site is between the 5th and 6th subsite from the non-reducing end side. The subsite affinities, A-5, A-4, A-3, A-2, (A-1+A+1), A+2, and A+3, were calculated to be -0.35, 0.93, 0.55, 2.56, 1.18, 1.71, and 0.01 kcal mol-1, respectively.  相似文献   

6.
Analysis of the binding of phenylalanine to phenylalanyl-tRNA synthetase   总被引:1,自引:0,他引:1  
Using the complete rate equation for the PPi-ATP exchange reaction at equilibrium, the dissociation constants of phenylalanine (10?5m), phenylalanine butyl ester (8 × 10?5m), benzyl alcohol (6 × 10?4m), phenylalaninol (2 × 10?4m), hydrocinnamic acid (3 × 10?3m) and glycine (>1 m) with the phenylalanyl-tRNA synthetase (Escherichia coli K12) were determined. Taking the model of Koshland (1962) for the estimation of the configurational free energy change due to proximity and orientation, and decomposing the process of binding into several thermodynamic steps, the contribution to binding of the benzyl group, glycine unit, protonated amino group, carboxylate group and joint interactions were estimated. The results are: (1) the standard free energy contributions for binding phenylalanine are benzyl group (?8.2 kcal/mol), glycine unit (?2.5 kcal/mol), protonated amino group (?0.8 kcal/mol) and carboxylate group (1 kcal/mol). (2) The standard free energy change due to the change in the interaction between the protonated amino group and carboxylate group when they are transferred from the aqueous environment to the enzyme environment is ?2.7 kcal/mol. (3) A dissociation constant for glycine of 7.5 m is calculated without the hypothesis that a conformational change occurs in the enzyme when the benzyl unit of phenylalanine binds, permitting an interaction of the enzyme with the protonated amino and/or carboxylate groups.The detection of E·AA2 and E·ATP shows that a sequential addition of substrates is not necessary for binding. A comparison of the dissociation constants of E·AA (10?5m), E·ATP (1.5 × 10?3m), E·PP (5.5 × 10?4m), E·I (8 × 10?5m) and the mixed complexes E·I·ATP (6 × 10?8m2), E·I·PP (5 × 10?8m2) and E·AA·PP (7 × 10?9m2), with phenylalanine butyl ester as the inhibitor, indicates no strong interaction between the binding of ATP or PPi with the binding of phenylalanine.  相似文献   

7.
8.
R.K. Sindhu  H.V. Desai 《Phytochemistry》1979,18(12):1937-1938
Agmatine iminohydrolase was purified ca 375-fold from groundnut cotyledons. The enzyme exhibited an optimum pH between 5.5 and 8.5 and the energy of activation was 22 kcal/mol. The Km for agmatine was (7.57 ± 0.77) × 10?4 M. The enzyme was inhibited by tryptamine, putrescine, cadaverine, spermidine and spermine. Inhibition by cadaverine and spermidine was competitive. The Ki values for cadaverine and spermidine were 4.1 × 10?3 and 7.5 × 10?4 M, respectively.  相似文献   

9.
Summary Two new forms of the plasma membrane ATP-ase ofMicrococcus lysodeikticus NCTC 2665 were isolated from a sub-strain of the microorganism by polyacrylamide gel electrophoresis. One of them had a mol.wt of 368,000 and a very low specific activity (0.80 µ mol.min–1.mg protein–1) that could not be stimulated by trypsin. This form has been called BI (strain B, inactive). If the electrophoresis was carried out in the presence of reducing agents (i.e., dithiothreitol) and the pH of the effluent maintained at a value of 8.5 another form of the enzyme was obtained. This had a mol.wt of 385,000 and a specific activity of 2.5–5.0 µ mol.min–1.mg protein–1 that could be stimulated by trypsin to 5–10 µ mol.min–1.mg protein–1. This preparation of the ATPase has been called form BA (strain B, enzyme active). The subunit composition of both forms has been studied by sodium dodecyl sulphate and urea gel electrophoresis and compared to that of the enzyme previously purified from the original strain (form A). The three forms of the enzyme had similar and subunits, with mol.wt of about 50,000 and 30,000 dalton, respectively. They also had in common the component(s) of relative mobility 1.0, whose status as true subunit(s) of the enzyme remains yet to be established. However, subunit, that had a mol.wt of about a 52,500 in form A (Andreu et al. Eur. J. Biochem. (1973) 37, 505–515), had a mol.wt similar to in form BI and about 60,000 in form BA. Furthermore BA usually showed two types of this subunit ( and) and an additional peptide chain () with a mol.wt of about 25,000 dalton. This latter subunit seemed to account for the stimulation by trypsin of form BA.Forms BA could be converted to BI by storage and freezing and thawing. Conventional protease activity could not be detected in any of the purified ATPase forms and addition of protease inhibitors to form BA failed to prevent its conversion to form BI. The low activity form (BI) was more stable than the active forms of the enzyme and also differed in its circular dichroism. These results show thatM. lysodeikticus ATPase can be isolated in several forms. Although these variations may be artifacts caused by the purification procedures, they provide model systems for understanding the structural and functional relationships of the enzyme and for drawing some speculations about its functionin vivo.  相似文献   

10.
pKa1 values of 3-methoxy-N-desmethyldiazepam in acetonitrile and methanol containing various acid concentrations were determined by spectrophotometry to be 3.5 and 1.3, respectively. Temperature-dependent racemization of enantiomeric 3-methoxy-N-desmethyldiazepam in methanol containing 0.5 M H2SO4 was studied by circular dichroism spectropolorimetry and the racemization reactions were found to follow apparent first-order kinetics. Thermodynamic parameters of the racemization reaction were found to be: Eact = 18.8 kcal/mol, and at 25°C: ΔH? = 18.3 kcal/mol, ΔS? = ?14.8 entropy unit, and ΔG? = 22.7 kcal/mol, respectively. The racemization had an isotope effect (kH/kD) of 1.6 at 42°C. Based on the results of this report and those of earlier reports by other investigators, a nucleophilically solvated C3 carbocation intermediate resulting from either a P (plus) or an M (minus) conformation is proposed to be an intermediate and responsible for the stereoselective nucleophilic substitution and the subsequent racemization of 3-methoxy-N-desmethyldiazepam enantiomers. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Simultaneous curve fitting for the ionization parameters of oxidized and reduced horse heart cytochrome c in 0.15M KCl and 20°C yields values for the ionization constants (as pK′) and the heats of ionization (ΔHi) which can reconstruct either the potentiometric or thermal titration curves. Reduced cytochrome c requires 8 sets of groups, whereas oxidized cytochrome c requires 10 sets of groups. The additional groups in the oxidized preparation appear to involve the ferriheme (pK′, 9.25; ΔHi, 13.7 kcal/mol) and a tyrosine (pK′ ? 10.24) that is not present in the reduced form. The potentiometric and thermal difference curves (reduced – oxidized) involve the appearance of 17 kcal/mol centered at pH 9.7 and 5.8 kcal/mol centered at pH 4.9. The carboxyl groups in both species appear to be normal for the hydrogen-bonded form. Only one histidine has normal ionization properties (pK′, 6.7; ΔHi, 7.5 kcal/mol), as do 17 of the lysine residues (pK′, 10.8; ΔHi, 11.5 kcal/mol).  相似文献   

12.
β-d-Xylosidase catalyzes hydrolysis of xylooligosaccharides to d-xylose residues. The enzyme, SXA from Selenomonas ruminantium, is the most active catalyst known for the reaction; however, its activity is inhibited by d-xylose and d-glucose (K i values of ~10?2?M). Higher K i’s could enhance enzyme performance in lignocellulose saccharification processes for bioethanol production. We report here the development of a two-tier high-throughput screen where the 1° screen selects for activity (active/inactive screen) and the 2° screen selects for a higher K i(d-xylose) and its subsequent use in screening ~5,900 members of an SXA enzyme library prepared using error-prone PCR. In one variant, termed SXA-C3, K i(d-xylose) is threefold and K i(d-glucose) is twofold that of wild-type SXA. C3 contains four amino acid mutations, and one of these, W145G, is responsible for most of the lost affinity for the monosaccharides. Experiments that probe the active site with ligands that bind only to subsite ?1 or subsite +1 indicate that the changed affinity stems from changed affinity for d-xylose in subsite +1 and not in subsite ?1 of the two-subsite active site. Trp145 is 6 Å from the active site, and its side chain contacts three active-site residues, two in subsite +1 and one in subsite ?1.  相似文献   

13.
This communication consists of a mathematical analysis encompassing the maximization of the average rate of monomer production in a batch reactor performing an enzymatic reaction in a system consisting of a multiplicity of polymeric substrates which compete with one another for the active site of a soluble enzyme, under the assumption that the form of the rate expression is consistent with the Michaelis-Menten mechanism. The general form for the functional dependence of the various substrate concentrations on time is obtained in dimensionless form using matrix terminology; the optimum batch time is found for a simpler situation and the effect of various process and system variables thereon is discussed. The reasoning developed here emphasizes, in a quantitative fashion, the fact that the commonly used lumped substrate approaches lead to nonconservative decisions in industrial practice, and hence should be avoided when searching for trustworthy estimates of optimum operation.List of Symbols O 1/s row vector of zeros - a 1/s row vector of rate constants k i(i = 2,...,N) - A 1/s matrix of rate constants k i and k–i (i=2,...,N) - b 1/s row vector of rate constant k 2 and zeros - C mol/m3 molar concentration of S - C mol/m3 vector of molar concentrations of C i (i=0, 1, 2, ..., N) - C 0 mol/m3 column vector of initial molar concentrations of C i(i=0, 1, 2,.., N) - C –01 mol/m3 column vector of initial molar concentrations of C i(i=2,..., N) - C E, tot mol/m3 total molar concentration of enzyme molecules - C i mol/m3 molar concentration of S i (i=0,1,2,...,N) - C i, o mol/m3 initial molar concentration of S i(i=0, 1, 2, ..., N) - E enzyme molecule - I identity matrix - K 1/s matrix of lumped rate constants - k i 1/s pseudo-first order lumped rate constant associated with the formation of S i -1 (i=1, 2, ...,N) - k cat, i 1/s first order rate constant associated with the formation of S i-1 (i=1, 2, ..., N) - K m mol/m3 Michaelis-Menten constant - L number of distinct eigenvalues - M i multiplicity of the i-th eigenvalue - N maximum number of monomer residues in a single polymeric molecule - r 1 mol/m3 s rate of formation of S 0 - r i mol/m3 s rate of release of S i -1 - r opt maximum average dimensionless rate of production of monomer S0 - S lumped, pseudo substrate - S1 inert moiety - S i substrate containing i monomer residues, each labile to detachment as - S0 by enzymatic action (i=1,2,...,N) - t s time elapsed since startup of batch reaction - t lag s time interval required for cleaning, loading, and unloading the batch reactor - t opt s time interval leading to the maximum average rate of monomer production - v ij s1-j eigenvectors associated with eigenvalue imi (i=1, 2, ..., L; j =1, 2, ..., Mi) Greek Symbols ij mol/m3 arbitrary constant associated with eigenvalue i (i=1, 2, ..., L; j=1, 2, ..., M i ) - 1/s generic eigenvalue - i 1/s i-th eigenvalue  相似文献   

14.
Tapan K. Biswas 《Phytochemistry》1985,24(12):2831-2833
The β-galactosidase activity in cotyledons of Vigna sinensis increases during seed germination and is inhibited by cycloheximide. The increasing activity may be due to the de novo synthesis of enzyme protein. The enzyme has been partially purified by gel filtration and characterized with respect to some biochemical parameters. The optimum pH and optimum temperature are 4.5 and 55°, respectively and the enzymes follows typical Michaelis kinetics with Km and Vmax of 4.5 x 10?4 M and 2.0 x 10?5 mol/hr respectively. Ki for galactose and lactose are 4.5 and 220 mM, respectively. The energy of activation of the enzyme for p-nitrophenyl β-D-galactoside is 9.83 kcal/mol. The apparent relative MW of the enzyme as determined by gel filtration was 56000.  相似文献   

15.
Glucose dehydrogenase (E.C. 1.1.1.47) from B. megaterium M 1286 was immobilized together with mutarotase (E.C. 5.1.3.3) on several organic carriers and by different methods. The storage stability of the enzyme at pH-values > 6 is slightly improved by immobilization and the pH-optimum is shifted from 8.3 to 8.0. Kinetic constants of the immobilized enzyme are: KM(NAD+) = 5.36 × 10?4 mol/l KM(glucose) = 3.76 · 10?2 mol/l and Vmax = 5.54 · 10?5 mol/(l min g carrier) for the most active preparation (2.16 mg enzyme/g carrier). In reactor experiments the immobilized glucose dehydrogenase was used with glucose to regenerate NADPH in NADPH-dependent iron-III-protoporphyrin-IX-imidazole catalyzed hydroxylation and demethylation of model substrates of cytochrome P-450. The advantages of the coupling of both reactions with cofactor recycling are shown and discussed.  相似文献   

16.
Steady-state inhibitory kinetic studies on almond β-glucosidase-catalyzed reactions were done to elucidate the binding subsite of several monosaccharides on this enzyme.

Glucono-1,5-Iactone (a transition-state analog), glucose, 2-deoxy glucose, fucose, and methyl α-glucoside showed mixed-type inhibition, but galactose, galactosamine, mannose, N-acetyl glucosamine, and glucosamine showed pure competitive inhibition on the hydrolysis of P-nitrophenyl β-glucoside.

These results are reasonably accounted for by assuming that the former monosaccharides (the mixed type inhibitors) bind to subsite 1 (the nonreducing-end side subsite to which the nonreducing-end glucose residue of a substrate binds in a productive binding mode), and that the latter (the competitive inhibitors) bind to subsite 2, the adjacent subsite to subsite 1.

The binding affinity ( — ΔG°) of glucono-1,5-lactone (— ΔG° = 6.7 kcal mol 1 at pH 5.0, 25°C) was significantly greater than those of the others (0.3 ~ 1.6 kcal mol-1).  相似文献   

17.
Responses of photosynthesis (A) to intercellular CO2 concentration (ci) in 2-year-old Pinus radiata D. Don seedlings were measured at a range of temperatures in order to parametrize a biophysical model of leaf photosynthesis. Increasing leaf temperature from 8 to 30°C caused a 4-fold increase in Vcmax, the maximum rate of carboxylation (10.7–43.3 μol m?2 s?1 and a 3-fold increase in Jmax, the maximum electron transport rate (20.5–60.2 μmol m ?2 s?1). The temperature optimum for Jmax was lower than that for Vcmax, causing a decline in the ratio Jmax:Vcmax from 2.0 to 1.4 as leaf temperature increased from 8 to 30°C. To determine the response of photosynthesis to leaf nitrogen concentration, additional measurements were made on seedlings grown under four nitrogen treatments. Foliar N concentrations varied between 0.36 and 1.27 mol kg?1, and there were linear relationships between N concentration and both Vcmax and Jmax. Measurements made throughout the crown of a plantation forest tree, where foliar N concentrations varied from 0.83 mol kg?1 near the base to 1.54 mol kg?1 near the leader, yielded similar relationships. These results will be useful in scaling carbon assimilation models from leaves to canopies.  相似文献   

18.
7β-(4-Carboxybutanamido)cephalosporanic acid acylase (penicillin amidohydrolase, EC 3.5.1.11) was crystallized from cell-free extracts of a mutant derived from Pseudomonas SY-77-1. Purification of the enzyme was performed by a procedure involving ammonium sulfate fractionation and column chromatographies on DEAE-Sephadex, TEAE-cellulose and Sephadex G-200. The crystalline enzyme was homogeneous on polyacrylamide gel disc electrophoresis. The molecular weight of the acylase was estimated to be 1.3 × 105 by gel filtration. The enzyme was fully active at pH above 6.5 and was highly stable at a pH range of 6.0 to 8.0 and below 38°C. The Michaelis-Menten constant (Km) and Vmax for 7β-(4-carboxybutanamido)cephalosporanic acid were 0.16mM and 4.91 μmol/min/mg-protein, respectively. It was also indicated that this enzyme-protein occupied 2.3% of the dry-cell weight.  相似文献   

19.
The catalytically active form (Ea) of pyruvate formate-lyase in Escherichia coli cells is generated from an inactive form of the enzyme (Ei) through a post-translational process that requires a distinct activating enzyme and is linked to the cleavage of adenosylmethionine to methionine and 5′-deoxyadenosine. Ei and the activating enzyme were purified to homogeneity and structurally characterized. Ei has an α2 oligomeric structure (2 × 85 kDa) and contains no cofactor. The amino acid composition has been determined. Out of a total of six cysteinyl residues per subunit, one shows an unusually fast reaction with iodoacetate (k2 = 7 (m? s?) at pH 6.8, 30 °C), which is accompanied by loss of the activatability of the enzyme. The 1500-fold purified activating enzyme is a monomeric protein of 30 kDa. It contains a covalently bound, as yet unidentified chromophoric factor which has an optical absorption peak at 388 nm. Further studies of the in situ state of pyruvate formate-lyase detected a reversible backconversion of the active form Ea into Ei when anaerobic cells become nutrient-depleted.  相似文献   

20.
The supernatant above hatched sea urchin (Strongylocentrotus purpuratus) blastulae contains crude hatching protease, which is heterogeneous in molecular weight, solubility, charge, and density. It requires urea treatment (6 m, 22 °C, 6 h) to dissociate from the enzyme the heterogeneous population of fragments it has generated in digesting its substrate, the fertilization envelope. It can then be purified 340-fold by diethylaminoethyl-cellulose, ammonium sulfate, and Sephadex G-100. The resulting preparation, homogeneous by the criteria of gel exclusion chromatography, sodium dodecyl sulfate gel electrophoresis, and thermal inactivation, has the following properties: specific activity = 1.44 U mg?1 (1.44 μmol min?1 mg?1); kcat = 0.72 s-1; molecular weight = 29,000; energy of activation = 12.9 kcal mol?1 on dimethylated casein;Km = 0.93 mgml?1 dimethylated casein. The pure enzyme is optimally active at pH 7 to 9, 0.5 m NaCl, 10 mm Ca2+, and 42 °C. Purification renders the enzyme less stable to freezing and thawing and increases the rate of its thermal inactivation at 37 °C by 100-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号