首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to its high content of lactose and abundant availability, cheese whey powder (CWP) has received much attention for ethanol production in fermentation processes. However, lactose‐fermenting yeast strains including Kluyveromyces marxianus can only produce alcohol at a relatively low level, while the most commonly used distiller yeast strain Saccharomyces cerevisiae cannot ferment lactose since it lacks both β‐galactosidase and the lactose permease system. To combine the unique aspects of these two yeast strains, hybrids of K. marxianus TY‐22 and S. cerevisiae AY‐5 were constructed by protoplast fusion. The fusants were screened and characterized by DNA content, β‐galactosidase activity, ethanol tolerance, and ethanol productivity. Among the genetically stable fusants, the DNA content of strain R‐1 was 6.94%, close to the sum of the DNA contents of TY‐22 (3.99%) and AY‐5 (3.51%). The results obtained by random‐amplified polymorphic DNA analysis suggested that R‐1 was a fusant between AY‐5 and TY‐22. During the fermentation process with CWP, the hybrid strain R‐1 produced 3.8% v/v ethanol in 72 h, while the parental strain TY‐22 only produced 3.1% v/v ethanol in 84 h under the same conditions.  相似文献   

2.
There are remarkably few reports on d-arabitol production from lactose. Previous studies in our laboratory have shown that the osmophilic yeast Kluyveromyces lactis NBRC 1903 convert lactose to extracellular d-arabitol. The present study was undertaken to determine the participation of osmotic stress caused by lactose on d-arabitol production by K. lactis NBRC 1903 and to provide the information on the kinetics of d-arabitol production from lactose by K. lactis NBRC 1903. It was confirmed that d-arabitol production was triggered when an initial lactose concentration was above 278 mmol L−1. d-Arabitol yield increased with an increase in initial lactose concentration. The highest d-arabitol concentration of 79.5 mmol L−1 was achieved in the cultivation of K. lactis NBRC 1903 in a medium containing 555 mmol L−1 lactose and 40 g L−1 yeast extract. Lactose was found to play two important roles in d-arabitol production by K. lactis NBRC 1903 grown on lactose. First, lactose was assimilated as the substrate both for cell growth and d-arabitol production. Second, a high lactose concentration induced cellular response to high osmotic stress and up-regulated the flow from d-glucose-6-phosphate to d-arabitol. The arrest of cell growth triggered d-arabitol production.  相似文献   

3.
A 55 kilobase (kb) plasmid (pOZS550) in the non-clumping Lactococcus lactis subsp. lactis strain OZS1 carrying genes for lactose metabolism was characterised. A mobilizable cointegrate plasmid which is formed between pOZS550 and pOZS448 carries the necessary information for conjugation and transfer. Cointegrate formation was found to involve an insertional element located on pOZS550. The insertion sequence was found to be identical to ISS1 located on pSK08 in the clumping L. lactis subsp. lactis strain ML3. Restriction maps of pOZS550 and pSK08 were similar suggesting a close ancestral relationship, although pSK08, in addition to the lactose metabolism genes, expressed genes for proteinase activity and cell clumping, which were not expressed by pOZS550, and carried two copies of ISS1 compared to one on pOZS550. Furthermore, hybridization of the 18 base pair inverted repeat, of the insertion sequence, with various L. lactis subsp. lactis strains and two L. lactis subsp. cremoris strains showed moderate to strong hybridization to one plasmid in each organism.  相似文献   

4.
The present study is focused upon improving biomass of Kluyveromyces lactis cells expressing recombinant human interferon gamma (hIFN-γ), with the aim of augmenting hIFN-γ concentration using statistical and artificial intelligence approach. Optimization of medium components viz., lactose, yeast extract, and trace elements were performed with Box–Behnken design (BBD) and artificial neural network linked genetic algorithm (ANN-GA) for maximizing biomass of recombinant K. lactis (objective function). The studies resulted over 1.5-fold improvement in the biomass concentration in a medium composed of 80?g/L lactose, 10.353?g/L yeast extract, and 15?mL/L trace elements as compared with initial biomass value. In the same study hIFN-γ concentration reached 881?µg/L which was 2.28-fold higher as compared with initial hIFN-γ concentration obtained in unoptimized medium. Further the batch fermentation study displayed mixed growth associated kinetics with the maximum hIFN-γ production rate of 1.1?mg/L. BBD and ANN-GA, both optimization techniques predicted a higher lactose concentration was clearly beneficial for augmenting K. lactis biomass which in turn increased hIFN-γ concentration.  相似文献   

5.
A comparative molecular genetic study of 37 Kluyveromyces strains of different origin has made it possible to find molecular markers that can differentiate between the dairy yeast Kluyveromyces lactis var. lactis and the genetically close wild Kl. lactis strains from the European “krassilnikovii” population, which are unable to ferment lactose. A restriction fragment length polymorphism analysis of the IGS2 rDNA region reveals two different AluI profiles, one of which corresponds to Kl. lactis var. lactis while the other corresponds to yeasts from the “krassilnikovii” population. The AluI restriction profile of the IGS2 region of the rDNA also makes it possible to differentiate between the physiologically similar species Kl. marxianus and Kl. lactis. The origin of clinical Kl. lactis var. lactis isolates is discussed.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 387–393.Original Russian Text Copyright © 2005 by Naumova, Sukhotina, Naumov.  相似文献   

6.
The fermentation of lactose (Lac+) in the dairy yeast Kluyveromyces lactis var. lactis is controlled by the LAC4 (β-galactosidase) and LAC12 (lactose permease) genes. The complementation analysis of twelve Kl. lactis var. drosophilarum natural homothallic Lac? strains of different origin was carried out using the genetic heterothallic lines of Kl. lactis var. lactis of the lac4LAC12 and LAC4lac12 genotypes. It was shown that the natural Lac? strains did not possess the LAC4LAC12 gene cluster. Southern hybridization of chromosomal DNA with LAC4 and LAC12 probes, as well as recombination analysis, showed that Kl. lactis var. drosophilarum yeasts do not have even silent copies of these genes. As distinct from this yeast, natural Lac? strains of the yeast Kl. marxianus are mutants impaired in the lactose permease gene (lac12 analogue), but possess an active β-galactosidase gene (LAC4 analogue). The origin of the LAC4LAC12 gene cluster of the dairy yeasts Kl. lactis is discussed.  相似文献   

7.
The endogenous β-galactosidase expressed in intestinal microbes is demonstrated to help humans in lactose usage, and treatment associated with the promotion of beneficial microorganism in the gut is correlated with lactose tolerance. From this point, a kind of recombinant live β-galactosidase delivery system using food-grade protein expression techniques and selected probiotics as vehicle was promoted by us for the purpose of application in lactose intolerance subjects. Previously, a recombinant Lactococcus lactis MG1363 strain expressing food-grade β-galactosidase, the L. lactis MG1363/FGZW, was successfully constructed and evaluated in vitro. This study was conducted to in vivo evaluate its efficacy on alleviating lactose intolerance symptoms in post-weaning Balb/c mice, which were orally administered with 1?×?106?CFU or 1?×?108?CFU of L. lactis MG1363/FGZW daily for 4?weeks before lactose challenge. In comparison with na?ve mice, the mice administered with L. lactis MG1363/FGZW showed significant alleviation of diarrhea symptoms in less total feces weight within 6?h post-challenge and suppressed intestinal motility after lactose challenge, although there was no significant increase of β-galactosidase activity in small intestine. The alleviation also correlated with higher species abundance, more Bifidobacterium colonization, and stronger colonization resistance in mice intestinal microflora. Therefore, this recombinant L. lactis strain effectively alleviated diarrhea symptom induced by lactose uptake in lactose intolerance model mice with the probable mechanism of promotion of lactic acid bacteria to differentiate and predominantly colonize in gut microbial community, thus making it a promising probiotic for lactose intolerance subjects.  相似文献   

8.
Kluyveromyces marxianus is homothallic hemiascomycete yeast frequently isolated from dairy environments. It possesses phenotypic traits such as enhanced thermotolerance, inulinase production, and rapid growth rate that distinguish it from its closest relative Kluyveromyces lactis. Certain of these traits, notably fermentation of lactose and inulin to ethanol, make this yeast attractive for industrial production of ethanol from inexpensive substrates. There is relatively little known, however, about the diversity in this species, at the genetic, metabolic or physiological levels. This study compared phenotypic traits of 13 K. marxianus strains sourced from two European Culture Collections. A wide variety of responses to thermo, osmotic, and cell wall stress were observed, with some strains showing multi-stress resistance. These traits generally appeared unlinked indicating that, as with other yeasts, multiple resistance/adaptation pathways are present in K. marxianus. The data indicate that it should be possible to identify the molecular basis of traits to facilitate selection or engineering of strains adapted for industrial environments. The loci responsible for mating were also identified by genome sequencing and PCR analysis. It was found that K. marxianus can exist as stable haploid or diploid cells, opening up additional prospects for future strain engineering.  相似文献   

9.
10.
The linear plasmid pCLU1 from the yeast Kluyveromyces lactis normally replicates in the cytoplasm, with the aid of the helper linear plasmid pGKL2, using terminal protein (TP) as a primer. However, it relocates to the nucleus when selection is applied for the expression of a plasmid-borne nuclear marker. Migration to the nucleus occurred in K. lactis at a frequency of about 10−3/cell ten or more times higher than the rate observed in Saccharomyces cerevisiae. The nuclear plasmids existed only in a circularized form in K. lactis, while in S. cerevisiae a telomere-associated linear form is also found. Sequence analysis showed that circularization in K. lactis was caused by non-homologous recombination between the inverted terminal repeat (ITR) at the ends of the linear form and non-specific internal target sites in pCLU1. No sequence similarity existed among the junction sites, indicating that the free ITR end plays a crucial role in circularization. In S. cerevisiae, circular plasmids were generated not only by non-homologous recombination, but also by homologous recombination between short direct repeats within pCLU1. Circularization via the ITR end was observed independently of RAD52 activity. Sequences highly homologous to ARS core elements, 5′-ATTTATTGTTTT-3′ for K. lactis and 5′-(A/T)TTTAT(T/G)TTT(A/T)-3′ for S. cerevisiae, were detected at multiple sites in the nuclear forms of the plasmids. Received: 25 October 1999 / Accepted: 13 March 2000  相似文献   

11.
A cDNA fragment encoding the A catalytic domain of the Neocallimastix frontalis endoxylanase XYN3 was amplified and cloned by the polymerase chain reaction technique. The xyn3A DNA fragment was inserted between the Saccharomyces cerevisiae phosphoglycerate kinase gene promoter and terminator sequences on a multicopy episomal plasmid for Kluyveromyces lactis. The XYN3A domain was successfully expressed in K. lactis and functional endoxylanase was secreted by the yeast cells with the K. lactis killer toxin secretion signal. The XYN3A domain was also expressed in a strain of Penicillium roqueforti as a fusion protein (ShBLE::XYN3A) of the phleomycin-resistance gene product and the endoxylanase. Active endoxylanase was efficiently secreted from the fungal cells with the Trichoderma viride cellobiohydrolase (CBH1) secretion signal and processed by a related KEX2 endoprotease of the secretion pathway. Several differently glycosylated forms of the recombinant enzymes were secreted by the yeast and the filamentous fungus. Received: 10 November 1998 / Received revision: 8 March 1999 / Accepted: 14 March 1999  相似文献   

12.
Lactase Production from Lactobacillus acidophilus   总被引:1,自引:0,他引:1  
Summary A lactobacillus strain isolated from fermented Ragi (Eleusine coracana Gaertn.) was characterized as Lactobacillus acidophilus. The isolate was found to be homofermentative, slime-forming and a lactase (β-galactosidase) producer. Production, recovery, characterization and performance of lactase were studied at laboratory scale from 100 ml to 5 l under stationary and stirred conditions. 1.5% lactose was found to be the best carbon source for lactase production. The lactose content could be reduced to 0.75% by supplementing with 1% ragi, thus making the media economically more attractive. A 6.5-fold increase (5400 U ml−1) was achieved on scale-up. Performance of the lactase obtained from this strain was found to be slightly better than the commercial lactase produced by Kluyveromyces lactis.  相似文献   

13.
 β-Galactosidases from Lactobacillus delbruekii subsp. bulgaricus 20056, Lb. casei 20094, Lactococcus lactis subsp. lactis 7962, Streptococcus thermophilus TS2, Pediococcus pentosaceus PE39 and Bifidobacterium bifidum 1901 were partially purified. The rate of hydrolysis of lactose given by the predominant β-galactosidase activity from each of the bacteria studied was in all cases enhanced by Mg2+, while the effect of K+ and Na+ differed from strain to strain. The β-galactosidases from all strains also catalysed transgalactosylation reactions. The types of oligosaccharides produced appeared to be very similar in each case, but the rates of their production differed. All the β-galactosidases were also capable of hydrolysing galactosyl-lactose although, unlike the other bacteria studied, Lb. delbruekii subsp. bulgaricus 20056 and Lc. lactis subsp. lactis 7962 were unable to utilise galactosyl-lactose as a carbon source for growth. Received: 4 October 1995/Received revision: 5 March 1996/Accepted 11 March 1996  相似文献   

14.
15.
Summary Polyethylene glycol 6000 mediated protoplast fusion between an alkane degrader Acinetobacter sp. A3, and a naphthalene degrader, Pseudomonas putida DP99 , resulted in fusants capable of degrading both hydrocarbons and were morphologically similar to Acinetobacter sp. A3. While fusant F4/13 and Pseudomonas putida DP99 degraded over 98% of naphthalene provided by the end of five days, tetradecane degradation by fusant F4/13 was 82% compared to 77% by Acinetobacter sp. A3 in the same time period. Also, while from naphthalene +tetradecane mixture, fusant F4/13 could degrade 99% and 53% of naphthalene and tetradecane respectively, both the parent strains together could degrade over 99% naphthalene but only about 16% tetradecane.  相似文献   

16.
Chymosin as an important industrial enzyme widely used in cheese manufacture. The yeast Kluyveromyces lactis is a promising host strain for expression of the chymosin gene. However, low yields (80 U/ml in shake flask cultures) were obtained when the K. lactis strain GG799 was used to express chymosin. We hypothesized that the codon-usage bias of the host may have resulted in inefficient translation and chymosin production. To improve expression efficiency of recombinant calf chymosin in K. lactis strain GG799, we designed and synthesized a DNA sequence encoding calf prochymosin using optimized codons, while keeping the G + C content relatively low. We altered 333 nucleotides to optimize codons encoding 315 amino acids. In shaking flask culture, chymosin activity was 575 U/ml in the strain expressing the optimized gene, a sevenfold higher expression level compared with the non-optimized control. SDS–PAGE analysis revealed that the purified recombinant calf chymosin had a molecular mass of 35.6 kDa, the same as the molecular weight of native calf chymosin. Alpha-casein, beta-casein, and kappa-casein were incubated with the recombinant calf chymosin from K. lactis strain GG799 or chymosin from calf stomach and the breakdown products were analyzed by SDS–PAGE. Both the recombinant calf chymosin and the native calf chymosin specifically hydrolyzed kappa-casein. Our results show that codon optimization of the calf chymosin gene improves expression in K. lactis strain GG799. Genetic manipulation to optimize codon usage has important applications for industrial chymosin production.  相似文献   

17.
The ability to utilize lactose is requisite for lactic acid bacteria used as starters in the dairy industry. Modern genetic recombination techniques have facilitated the introduction of the lactose-positive phenotype into bacteria such as Pediococcus species, which traditionally have not been used as dairy starters. This study investigated lactose and galactose uptake along with phospho-β-galactosidase activity in pediococci that had been transformed with a Latococcus lactis lactose plasmid. Lactose-positive transformants, Pediococcus acidilactici SAL and Pediococcus pentosaceus SPL-2, demonstrated an ability to accumulate [14C]lactose at a rate greater than the Lactococcus lactis control. Phospho-β-galactosidase activity was also higher in transformants versus Lactococcus lactis. Studies of [3H]galactose uptake suggested that a wild-type galactose transport system and the introduced lactose phosphotransferase system both functioned in galactose uptake by Pediococcus spp. transformants. Significantly lower levels of free galactose were detected in milk fermented with Lactobacillus helveticus LH100 and SAL or SPL-2 than in milk fermented with a LH100 plus Streptococcus thermophilus TA061 control starter blend. Received: 16 September 1997 /  Received revision: 11 November 1997 / Accepted: 21 November 1997  相似文献   

18.
Glycoproteins secreted by the yeast Kluyveromyces lactis are usually modified by the addition at asparagines-linked glycosylation sites of heterogeneous mannan residues. The secreted glycoproteins in K. lactis that become hypermannosylated will bear a non-human glycosylation pattern and can adversely affect the half-life, tissue distribution and immunogenicity of a therapeutic protein. Here, we describe engineering a K. lactis strain to produce non-hypermannosylated glycoprotein, decreasing the outer-chain mannose residues of N-linked oligosaccharides. We investigated and developed the method of two-step homologous recombination to knockout the OCH1 gene, encoding α1,6-mannosyltransferase and MNN1 gene, which is homologue of Saccharomyces cerevisiae MNN1, encoding a putative α1,3-mannosyltransferase. We found the Kloch1 mutant strain has a defect in hyperglycosylation, inability in adding mannose to the core oligosaccharide. The N-linked oligosaccharides assembled on a secretory glycoprotein, HSA/GM–CSF in Kloch1 mutant, contained oligosaccharide Man13–14GlcNAc2, and in Kloch1 mnn1 mutant, contained oligosaccharide Man9–11GlcNAc2, whereas those in the wild-type strain, consisted of oligosaccharides with heterogeneous sizes, Man>30GlcNAc2. Taken together, these results indicated that KlOch1p plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in K. lactis. The KlMnn1p, was proved to be certain contribution to the outer hypermannosylation, most possibly encodes α1,3-mannosyltransferase. Therefore, the Kloch1 and Kloch1 mnn1 mutants can be used as a foundational host to produce glycoproteins lacking the outer-chain hypermannoses and further maybe applicable to be a promising system for yeast therapeutic protein production.  相似文献   

19.
Growth and β-galactosidase (β-gal) expression were characterized in the yeast Kluyveromyces lactis strain NRRL Y-1118 growing in aerobic chemostat cultures under carbon, nitrogen or phosphate limitation. In lactose or galactose-limited cultures, β-gal accumulated in amounts equivalent to 10–12% of the total cell protein. The induced β-gal expression was repressed when cells were grown under N- or P-limitation. In lactose medium, enzyme levels were 4–8 times lower than those expressed in C-limited cultures. A similar response was observed when galactose was the carbon source. These results suggest that a galactose-dependent signal (in addition to glucose) may have limited induction when cells were grown in carbon-sufficient cultures. Constitutive β-gal expression was highest in lactate-limited and lowest in glucose-limited media and was also repressed in glucose-sufficient cultures. Other K. lactis strains (NRRL Y-1140 and CBS 2360) also showed glucose repression (although with different sensitivity) under non-inducing conditions. We infer that these strains share a common mechanism of glucose repression independent of the induction pathway. The kinetics of β-gal induction observed in C-limited cultures confirms that β-gal induction is a short-term enzyme adaptation process. Applying a lactose pulse to a lactose-limited chemostat culture resulted in ‘substrate-accelerated death’. Immediately after the pulse, growth was arrested and β-gal was progressively inactivated. Yeast metabolism in C-limited cultures was typically oxidative with the substrate being metabolized solely to biomass and CO2. Cells grown under P- or N-limitation, either with glucose or lactose, exhibited higher rates of sugar consumption than C-limited cells, accumulated intracellular reserve carbohydrates and secreted metabolic products derived from the glycolytic pathway, mainly glycerol and ethanol. Received 16 October 1997/ Accepted in revised form 17 April 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号