首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Glucosyltransferase was purified from Pseudomonas mesoacidophila MX-45. The molecular weight was estimated to be 63,000 by SDS–PAGE, and the isoelectric point was pi 5.4. For enzyme activity based on sucrose decomposition, the optimum pH and the optimum temperature were pH 5.8 and 40°C, respectively. The ranges of stable pH and temperature were pH 5.1–6.7 and below 40°C, respectively. The purified enzyme of MX-45 converted sucrose into trehalulose (1-O-α-d-glucopyranosyl-d-fructose) and isomaltulose (palatinose, 6–O-α-d-glucopyranosyl-d-fructose) simultaneously, and the ratio of trehalulose to isomaltulose increased at lower reaction temperatures. Therefore, optimum conditions for trehalulose production were pH 5.5–6.5 at 20°C. The yield of trehalulose from sucrose (20–40% solution) was 91%. The Km for sucrose was 19.2 ± 3.3 mm estimated by the Hanes–Woolf plot. Product inhibition was observed, and the product inhibition constant was 0.17 m. Hg2+, Fe3+, Cu2+, Mg2+, Ag+, Pb2+, glucono-1,5-lactone, and Tris(hydroxymethyl)aminomethane inhibited the reaction.  相似文献   

2.
Twelve strains of lactose-fermenting yeast isolated from raw milk were evaluated on β-galactosidase producing ability. The enzymes from the four strains (Tolulopsis versatilis M6, Tolulopsis sphaerica J28, Candida pseudotropicalis B57 and A60), selected by high productivity, showed very similar properties and were characterized by a pH optimum of 7.0 or 7.5 and a relatively low optimal temperature of 30°C. The molecular weights were estimated by gel filtration to be 200,000-233,000. The Km values for o-nitrophenyl-β-d-galactopyranoside were 3.45 mm, 2.09 mm, 3.45 mm and 2.82 mm for enzymes from M6, J28, B57 and A60, respectively. All enzymes were activated by Mn2+ and inhibited by Mg2+, Zn2+ and Ca2+. The enzymes are sulfhydryl dependent and were completely inhibited by Hg2+ and sulfhydryl reagents. The yeasts may be a potential source for the enzyme for industrial use.  相似文献   

3.
Some enzymatic properties were examined on the transaminase (DOPA transaminase) which catalyzes the reaction between 3,4-dihydroxy phenyl pyruvate (DOPP) and certain amino acids to form 3,4-dihydroxyphenyl-L-alanine (DOPA). The cell-free extract from Alcaligenes faecalis IAM 1015 was used as the DOPA transaminase. L-Aspartate, L-glutamate, and L-phenylalanine were utilized efficiently as amino donor. The occurrence of three kinds of transaminase—aspartate-DOPP transaminase (ADT), glutamate-DOPP transaminase (GDT), and phenylalanine-DOPP transaminase (PDT)—was postulated.

The pH optima of these enzymes were observed in the alkaline pH range. The enzymes were unstable in the acidic range and inactivated above 60°C. Ca2+, Mg2+, and Mn2+ protected PDT from heat denaturation. Fe2+, Cu2+, and Al3+ remarkably inhibited the enzyme reaction.  相似文献   

4.
In was found that an intracellular ribonuclease was present as an inactive form in the fresh mycelium of Asp. oryzae. It was about 3 times activated either by 3 m urea or by the autolysis of mycelium at 30°C for 20 hr. The optimum pH of the ribonuclease activity was 8.3. It was heat sensitive (60°C, 10 min), and completely inhibited by 5 mm EDTA. It was activated by 1 mm Mg2+ and inhibited by Zn2+, Ca2+, Cd2+, Co2+ and Cu2+.  相似文献   

5.
Formyltetrahydrofolate synthetase (E. C. 6. 3. 4. 3) was found in fresh spinach leaves and purified about 60-fold by treatments of ammonium sulfate, protamine sulfate, dialysis, and DEAE-cellulose column chromatography. Some properties of the enzyme were investigated. Optimum pH was found to be 7.5, and optimum temperature was observed to be at 37°C. In the enzyme reaction, FAH4 and formate were required specifically as the substrates, and Mg++ and ATP were essential components. The Michaelis constants for dl-FAH4, formate, ATP and magnesium chloride were 1.7×10?3 m, 1.7×10?2 m, 4.1×10?4 m and 3.3×10?3 m, respectively. The primary product formed in the reaction catalyzed by the enzyme was suggested as N10-formyl-FAH4 spectrophotometrically. It was observed that the enzyme also catalyzed the reverse reaction. The possible role of the enzyme in plants was discussed.  相似文献   

6.
Purification and properties of a new alkaline protease of rat skeletal muscle have been reported. The purification procedure of the enzyme is as follows: skeletal muscle tissue was extracted successively with Hasselbach-Schneider solution, 5 m urea solution and 2% sodium deoxycholate solution. After then, the enzyme was extracted from the residue with 1.1 m potassium iodide solution. This enzyme solution was treated with n-butanol, and dialyzed against water. The enzyme precipitated during dialysis was collected and dissolved in 1.1 m potassium iodide solution. The enzyme solution was fractionated with acetone, and chromatographed on Sephadex G-200. The final preparation showed over 20,000 times of purity.

The optimum pH range of the enzyme activity is 9.5~10.5, and the maximum reaction rate occurs at 47~57°C. The enzyme is stable below 47°C at pH 7.3. At 37°C, the enzyme is stable during 30 min at least, in the pH range of 5.5~10.0. Below pH 5.0, it is relatively labile. Hg2+, Ca2+, Mg2+, Mn2+, Co2+, and Zn2+ scarcely affect the enzyme activity at the concentration of 1 mm. Ethylenediaminetetraacetate shows little effect on the activity at the concentration of 10 mm, and iodoacetamide, 2,4-dinitrophenol, p-chloromercuribenzoate show the similar effect at the concentration of 1 mm. Diisopropyl-flurophosphate inhibits the enzyme activity. From the results obtained, this enzyme is presumed to be responsible for the activity of autolytic breakdown of rat skeletal muscle proteins in the alkaline pH range.  相似文献   

7.
l-Alanine adding enzymes from Bacillus subtilis and Bacillus cereus which catalyzed l-alanine incorporation into UDPMurNAc were partially purified and the properties of the enzymes were examined. The enzyme from B. subtilis was markedly stimulated by reducing agents including 2-mercaptoethanol, dithiothreitol, glutathione and cysteine. Mn2+ and Mg2+ activated l-alanine adding activity and their optimal concentrations were 2 to 5 mm and 10 mm, respectively. The optimum pH was 9.5 and the Km for l-alanine was 1.8×10?4m. l-Alanine adding reaction was strongly inhibited by p-chloromercuribenzoate and N-ethyl-maleimide. Among glycine, l- and d-amino acids and glycine derivatives, glycine was the most effective inhibitor of the l-alanine adding reaction. The enzyme from B. cereus was more resistant to glycine than that from B. subtilis. Glycine was incorporated into UDPMurNAc in place of l-alanine, and the Ki for glycine was 4.2×l0?3m with the enzyme from B. subtilis. From these data, the growth inhibition of bacteria by glycine is discussed.  相似文献   

8.
Cephalosporin C acetyl-hydrolase, which had not yet been found in Cephalosporium acremonium cultures, was partially purified from the culture fluid of the mutant No. 81 by ammonium sulfate fractionation, dialysis and DEAE-cellulose column chromatography. The optimum pH and temperature of the enzyme reaction were found to be about 8.0 and 50°C, respectively. The enzyme activity was hardly affected by Mg2+, Mn2+, Zn2+, Co2+, Ni2+, Na+, K+, EDTA, PCMB and 2,4-dinitrophenol, but markedly inhibited by diisopropylfluoro-phosphate at 1 mm. The product formed from cephalosporin C by the enzyme reaction was proved to be deacetylcephalosporin C by physical and chemical analyses and chromatographic behaviors.  相似文献   

9.
Phosphodiesterase production with bis-p-nitrophenyl phosphate as a substrate by alkalophilic Bacillus No. A-40-2 increased with increasing Mn2+ concentration, showing maximum productivity at 10 mm. The enzyme production was negligible in the medium without Mn2+. The simultaneous addition of 10 mm Mn2+ and one of the several cations Mg2+, Co2+, Mo6+, and Pb2+ at suitable concentrations stimulated the enzyme production 1.8-fold at most over that with only 10 mm Mn2+. Inorganic phosphate hardly repressed the enzyme production. The enzyme was purified homogeneously. The purified enzyme had the optimum pH of 7.5 and was fairly stable from pH 7–11. The enzyme hydrolyzed 2′,3′-cyclic-nucleotides and 3′-nucleotides, but did not hydrolyze 3′,5′-cyclic-nucleotides or 5′-nucleotides, indicating it to be a 2′,3′-cyclic-nucleotide 2′-phosphodiesterase (EC 3.1.4.16). The enzyme had activity without metals, but Mg2+, Ca2+, Ba2+, and Mo6+ activated the enzyme reaction.  相似文献   

10.
Properties of 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthetase from Corynebacterium glutamicum were examined using the cell free extract. The optimum pH for the reaction was broad ranging from 5.5 to 7.0 and the optimum temperature was 37°C. Co2+ inhibited the enzyme activity at 20°C, whereas Co2+ apparently stimulated the enzyme activity at 37°C because the ion protected the enzyme from inactivation at 37°C. Co2+ reversed the inhibition of the enzyme activity by EDTA. The activity of DAHP synthetase was feedback inhibited only weakly by l-phenylalanine, l-tyrosine or l-tryptophan alone, but was strongly inhibited synergistically by l-phenylalanine and l-tyrosine. l-Tryptophan enhanced the inhibition by the pair of l-tyrosine and l-phenylalanine. Maximal inhibition was near 90 % in the simultaneous presence of the three amino acids. Sensitivity of the enzyme to the inhibitors was lost during the purification process of the enzyme or during the reaction at 37°C. Especially sensitivity to l-tryptophan was easily lost. Co2+ protected the enzyme from the desensitization. Mutants resistant to p-fluorophenylalanine plus l-tyrosine (or 3-aminotyrosine) had DAHP synthetase which was released from the feedback inhibition by the three amino acids. The formation of the enzyme was not affected by aromatic amino acids.  相似文献   

11.
d-Xylose (xylose) isomerase was extracted from xylose-grown cells of a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. The enzyme was purified 70-fold, over the original cell- free extract, with a yield of 2.4% in a homogeneous state, as judged on sodium dodecyl sulfate- polyacrylamide gel electrophoresis and high performance liquid chromatography. The molecular weight of the enzyme was determined to be 130,000, the enzyme being composed of two subunits of 65,000. The optimum pH and temperature for activity were 4.5 and 37~45°C, respectively. The enzyme activity was markedly enhanced by Mn2+, Mg2+ and Co2+, and the enzyme isomerized aldopentoses and aldohexoses. The Km values for xylose and d-glucose were 5.6 × 10?1m and 4.1 × 10?1m, and the Vmax values were 5.8 × 102 and 3.3 × 102 µmol/min/mg, respectively. NaHAsO4 7H2O and NaCN strongly inhibited the activity, but HgCl2, NaN3, dithiothreitol, monoiodoacetate and polyols such as d-sorbitol, xylitol and d-mannitol did not inhibit the activity.  相似文献   

12.
The theanine (THE: γ-glutamylethylamide) content and the growth rate of cultured cells of tea (Camellia sinensis L.) were increased greatly to 22.3%, in dry wt. with a medium containing 60 mM nitrate and 25 mM ethylamine as a nitrogen source. The optimum concentrations of nitrate, Mg2+, and K+ for the growth and formation of THE in suspension cells were 40mM, 3mM, and 104mM, respectively. The yield of THE accumulated in the cultured cells with the medium modified for THE formation was increased greatly due to a great increase of the growth rate.  相似文献   

13.
The physico-chemical properties of the purified glucose isomerases [d-xylose ketol isomerase, EC 5.3.1.5] of Streptomyces olivochromogenes and Bacillus stearothennophilus were examined. The molecular size and shape of both enzymes were similar. The molecular weights, sedimentation coefficients, partial specific volumes, diffusion constants and Stokes’ radii of the Streptomyces and Bacillus enzymes were determined to be 120,000 and 130,000, 7.55 S and 9.35 S, 0.725 and 0.736 ml/g, 5.87 × 10-7 and 6.82 × 10-7 cm2/sec, and 51 and 53 Å, respectively. The Streptomyces glucose isomerase was found to consist of two subunits, each having a molecular weight of 56,000. Large differences were found in the amino acid compositions of these two enzymes, especially in their serine, proline, tyrosine, lysine and arginine contents. The enzymatic properties of both these purified glucose isomerases were also examined, and it was seen that they both displayed activity on d-xylose, d-xylulose, d-glucose, d-fructose, d-arabinose and d-ribose. The smaller Km values and the larger molecular activities for d-xylose and d-xyluIose indicated that both enzymes are essentially d-xylose isomerases. The optimum temperature was 80°C for both enzymes. The optimum pH was 8 to 10 for the Streptomyces enzymes and 7.5 to 8.0 for the Bacillus enzyme. The Bacillus enzyme was more thermostable than the Streptomyces enzyme, but required cobalt ions in addition to magnesium ions for the full expression of its activity.  相似文献   

14.
l-Fucose (l-galactose) dehydrogenase was isolated to homogeneity from a cell-free extract of Pseudomonas sp. No 1143 and purified about 380-fold with a yield of 23 %. The purification procedures were: treatment with polyethyleneimine, ammonium sulfate fractionation, chromatographies on phenyl-Sepharose and DEAE-Sephadex, preparative polyacrylamide gel electrophoresis, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of about 34,000. The optimum pH was at 9 — 10.5 and the isoelectric point was at pH 5.1. l-Fucose and l-galactose were effective substrates for the enzyme reaction, but d-arabinose was not so much. The anomeric requirement of the enzyme to l-fucose was the β-pyranose form, and the reaction product from l-fucose was l-fucono- lactone. The hydrogen acceptor for the enzyme reaction wasNADP+, and NAD + could be substituted for it to a very small degree. Km values were 1.9mm, 19mm, 0.016mm, and 5.6mm for l-fucose, l- galactose, NADP+, and NAD+, respectively. The enzyme activity was strongly inhibited by Hg2 +, Cd2 +, and PCMB, but metal-chelating reagents had almost no effect. In a preliminary experiment, it was indicated that the enzyme may be usable for the measurement of l-fucose.  相似文献   

15.
A new aryl-peptidyl amidase has been isolated from a Lactobacillus casei homogenate. Its ribosomal localization was shown by fractionation and its general properties studied after purification on Sepharose 6B and DEAE-Sephacel. The enzyme requires 1 mM Mg2+ for stability, while Zn2+, Mn2+, Co2+ and Ca2+ result in only partial stability. No inhibitory effects were noted after treatment with phenylmethylsulfonylfluoride or EDTA. Enzymatic activity was totally inhibited by 5mM p-hydroxymercuribenzoate; activity was restored by dithiothreitol. The only substrates hydrolyzed by this enzyme were the succinyl-L-phenylalanine-p-nitroanilide type, with a pH optimum between 6 and 7 and a Michaelis constant of 0.76 mM. No hydrolysis could be detected using proteins, peptides, amides or esterase substrates. This enzyme would thus not be an endopeptidase (E.C. 3.4.21), but would to rather be considered as belonging to the group of amidases (E.C. 3.5.1)  相似文献   

16.
An enzyme, which catalyzes the isomerization of d-glucose to d-fructose, has been found in a newly isolated bacterium which tentatively identified as Pacacolobacterum aerogenoides. The enzyme converts not only d-glucose but also d-mannose to d-fructose, and NAD and Mg++ are required as cofactor for this isomerization. The properties of this enzyme were summarized as follows: (1) As a cofactor for the isomerization by this enzyme, NAD was absolutely necessary, whereas NADP, FMN and FAD were not. (2) The optimum pH was found to be at 7.5 and optinum temperature was at about 40°C. (3) The enzyme activity was markedly reduced by EDTA treatment and the reduced activity by EDTA was restored by the addition of Mg++, Mn++ or Co++. (4) The enzyme activity was strongly inhibited by monoiodoacetate, p-chloromercuribenzoate, and Cu++, however, the activity was recovered by adding cysteine or glutathione.  相似文献   

17.
d-Xylose isomerase requires manganese ions for its action, but l-arabinose isomerase has a less specific on metal requirement. l-Arabinose isomerase is activated by addition of Mn++ or Co++, less effectively by addition of Zn++, Ca++, Mg++, Sr++ or Cd++. Moreover, manganese and potassium ions for d-xylose isomerase, and manganese and cobaltous ions for l-arabinose isomerase were also shown to have protective effect on respective enzymes against thermal inactivation.  相似文献   

18.
The transglycosylation reaction of the cyclodextrin glycosyltransferase from Bacillus megaterium strain No. 5 was examined in the reaction system containing kojibiose and soluble starch. As the transglycosylation product, a new trisaccharide was chromatographically isolated. It was confirmed that the trisaccharide was 2-α-maltosyl-glucose ([α]d + 162.0°, α-undecaacetate: mp 105~106°C, [α]d + 163.0°), α-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→2)-α-d-glucose (42-α-glucosyl-kojibiose).

The transfer action to kojibiose occurred only to the C4-hydroxyl group of the non-reducing end glucose unit of kojibiose, leading to the formation of 2-α-maltosyl-glucose.  相似文献   

19.
Glutaminase (EC 3.5.1.2) was isolated from Pseudomonas nitroreducens IFO 12694 grown on 0.6% sodium glutamate as a nitrogen source (325-fold purification, 13% yield). The molecular weight of the enzyme was estimated to be 40,000 by gel filtration and SDS-gel electrophoresis. The enzyme hydro-lyzed glutamine optimally at pH 9, and its Km was 6.5 mm. d-Glutamine, γ-glutamyl p-nitroanilide, γ-glutamylmethylamide, γ-glutamylethylamide (theanine), and glutathione showed respectively 107, 85, 78, 74, and 82% reactivity of glutamine. Zn2+, Ni2+, Cd2+, Co2+, Fe2+, and Cu2+ repressed the enzyme activity strongly.

Glutaminase formed γ-glutamylhydroxamate in the reaction mixture containing glutamine and hydroxylamine (transferring reaction). The optimum pH of the transferring reaction was 7–8, and the Km for glutamine and hydroxylamine were 4 mm and 120 mm, respectively. γ-Glutamyl derivatives hydrolyzable by glutaminase showed reactivity for the transferring reaction. Methylamine or ethylamine was replaceable for hydroxylamine with 3 or 8% reactivity. The effect of divalent cations was not so striking as in the hydrolyzing reaction.  相似文献   

20.
Isocitrate lyase was purified from the purple nonsulfur bacterium Rhodopseudomonas sp. No. 7. The purified enzyme was electrophoretically homogeneous. The molecular weights of the native enzyme and its subunit were estimated to be approximate 250,000 and 62,000 by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis, respectively. The optimum pH for its activity was 6.5. The optimum temperature was 45°C. The Km for dl-isocitrate was 0.136 mm in potassium phosphate buffer (pH 6.0). Mg2+ was required for full activity of the enzyme as a non-essential activator. The enzyme activity was inhibited by SH-blocking reagents. Non-competitive inhibitory effects on the enzyme were examined with malate and succinate. The Ki for malate and succinate were 2.7 and 0.24 mm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号