首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From an ether extract of the twigs and leaves of Sapium insigne four new diterpene esters were isolated. They were identified as 12-O-(2′E, 4′E-decadienoyl)-4-deoxy-16-hydroxyphorbol-13-acetate, 12-O-hexanoyl-4α-deoxy-phorbol-13-acetate, 12-O-hexanoyl-4α-deoxy-16-hydroxyphorbo-1-13-acetate and 12-O-dodecanoyl-4α-deoxy-16-hydroxyphorbol-13-acetate by spectroscopic and chemical methods.  相似文献   

2.
From the unripe fruits of Sapium indicum, three aliphatic esters of the tigliane nucleus were isolated. These compounds were derivatives of 4-deoxyphorbol. Sapatoxin A was identified as 12-O-[n-deca-2,4,6-trienoyl]-4-deoxyphorbol-13-acetate, B as 12-O-[n-deca-2,4,6-trienoyl]-4-deoxy-5-hydroxyphorbol-13-acetate and C as 12-O-[n-deca-2,4,6-trienoyl]-4,20-dideoxy-5-hydroxyphorbol-13-acetate, by spectroscopic analysis and hydrolysis reactions.  相似文献   

3.
Bioactivity-guided fractionation on the leaves of Aleurites fordii led to the isolation of a new tigliane diterpene ester, 12-O-hexadecanoyl-7-oxo-5-ene-16-hydroxyphorbol-13-acetate (1) along with four known compounds, 12-O-hexadecanoyl-7-oxo-5-ene-phorbol-13-acetate (2), 12-O-hexadecanoyl-phorbol-13-acetate (3), 12-O-hexadecanoyl-16-hydroxyphorbol-13-acetate (4), and 12-O-hexadecanoyl-4-deoxy-4α-16-hydroxyphorbol-13-acetate (5). The structures of these compounds were determined by interpretation of NMR (1D and 2D) spectroscopic data and MS data. All the isolates were evaluated for their effects on the induction of IFN-γ in NK92 cells. Compounds 3 and 4 exhibited the most potent responses in IFN-γ induction, comparable to the positive control, phorbol 12-myristate 13-acetate (PMA).  相似文献   

4.
From the ether-soluble fraction of an extract of Sapium indicum two new nitrogen-containing esters of deoxyphorbol, sapintoxins B and C, were isolated. Both were characterized by the bright blue fluorescence which they exhibited in UV light. Sapintoxin B was identified as 12-(N-methylaminobenzoyl)-4-deoxy-5-hydroxyphorbol-13-acetate and sapintoxin C as 12-(N-methylaminobenzoyl)-4,20-dideoxy-5-hydroxyphorbol-13-acetate.  相似文献   

5.
From the commercial extract of the leaves of Stevia rebaudiana, two new diterpenoid glycosides were isolated besides the known steviol glycosides including stevioside, rebaudiosides A–F, rubusoside, and dulcoside A. The structures of the two new compounds were identified as 13-[(2-O-6-deoxy-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-6-deoxy-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies.  相似文献   

6.
From the commercial extract of the leaves of Stevia rebaudiana, two new minor diterpene glycosides having α-glucosyl linkage were isolated besides the known steviol glycosides including stevioside, steviolbioside, rebaudiosides A–F, rubusoside and dulcoside A. The structures of the two compounds were identified as 13-[(2-O-(3-α-O-d-glucopyranosyl)-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-β-d-glucopyranosyl-3-O-(4-O-α-d-glucopyranosyl)-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies.  相似文献   

7.
Preparation of the following glycosides is described: 2-aminoethyl β-d-glycosides of (A) 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-d-glucopyranose, (B) 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranose (N,N′-diacetylchitobiose pentaacetate), (C) 4-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-2,3,6-tri-O-acetyl-β-d-glucopyranose (cellobiose heptaacetate); 8-carboxyoctyl glycosides of (D) cellobiose, and (E) N,N′-diacetylchitobiose. Conjugates were prepared from (A), (B), and (C) by coupling to bovine serum albumin by cyanuric trichloride and subsequent deacetylation; (D) and (E) were coupled to bovine serum albumin by the mixed-anhydride reaction. Conjugates (A) and (B) were insoluble; conjugates (C), (D), and (E) functioned as artificial antigens and gave rise to precipitating antibodies in rabbits. Specificities of the antisera were determined by inhibition studies.  相似文献   

8.
Methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside, and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside, prepared from methyl 2-acetamido-2-deoxy-α-D-glucopyranoside, were coupled with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate (13), to give the phosphoric esters methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (16), methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (23), and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (17). Compound 13 was prepared from penta-O-acetyl-β-D-glucopyranose by the phosphoric acid procedure, or by acetylation of α-D-glucopyranosyl phosphate. Removal of the allyl groups from 16 and 17 gave 23 and methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (19), respectively. O-Deacetylation of 23 gave methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (26) and O-deacetylation of 19 gave methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (24). Propyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (25) was prepared by coupling 13 with allyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranoside, followed by catalytic hydrogenation of the product to give the propyl glycoside, which was then O-deacetylated. Compounds 24, 25, and 26 are being employed in structural studies of the Micrococcus lysodeikticus cell-wall.  相似文献   

9.
A new glyceroglycolipid, ishigoside (1, 2-di-O-palmitoyl-3-O-(6-deoxy-6-amino)-α-D-glucopyranosyl-glycerol, 1), along with two known compounds were isolated from the brown alga Ishige okamurae. The structure of the new compound was determined on the basis of spectroscopic analysis, including 1D and 2D NMR, MS techniques and chemical methods. Moreover, direct free radical scavenging activities of ishigoside were investigated by electron spin resonance spectrometry (ESR) technique. The results suggested that ishigoside was a potential free-radical scavenger against DPPH, hydroxyl, alkyl, and superoxide radicals with the EC50 of 31.2, 16.7, 22.7, and 26.8 μM, respectively.  相似文献   

10.
4-Deoxy-4-fluoro-α- -sorbose (6) was prepared in crystalline form by the action of potassium hydrogen fluoride on 3,4-anhydro-1,2-O-isopropylidene-β- -psicopyranose (3) followed by deacetonation. Under identical conditions 3,4-anhydro-1,2-O-isopropylidene-β- -tagatopyranose (7) underwent epoxide migration to give 4,5-anhydro- 1,2-O-isopropylidene-β- -fructopyranose (12), which after deacetonation yielded 4-deoxy-4-fluoro- -tagatose (15) 5-deoxy-5-fluoro-α- -sorbopyranose (16) the latter as the crystalline free sugar. The action of glycol-cleavage reagents on the isopropylidene acetals of the deoxyfluoro sugars was consistent with the assigned structures. The structures were established by 13C n.m.r. studies of the free deoxyfluoro sugars 6 and 16 of the isopropylidene acetal 13, and by 1H n.m.r. studies on the acetylated isopropylidene acetals 5 diacetate, 13 diacetate, and 14 diacetate. 5-Deoxy-5-fluoro- -sorbose (16) was biologically active producing in mice effects characteristic of deoxyfluorotrioses and of fluoroacetate. 4-Deoxy-4-fluoro- -tagatose (15) and 4-deoxy-4-fluoro- -sorbose (6) produced no apparent effects in mice up to a dose of 500 mg/kg. The implications of these findings with respect to transport phosphorylation, and the action of aldolase on ketohexoses are discussed.  相似文献   

11.
Abstract

4-Amino-6-methylthio-1-(3′-deoxy-β-D-ribofuranosyl)-1H-pyrazolo-[3, 4-d]pyrimidine (11) and 6-methylthio-4(5H)-oxo-1-(3′-deoxy-β-D-ribofuranosyl)-1H-pyrazolo[3, 4-d]pyrimidine (12) have been synthesized from 1, 2-di-O-acetyl-5-O-benzoyl-3-deoxyribofuranose (5) and 4, 6-bis (methylthio)-1H-pyrazolo-[3, 4-d]pyrimidine (6). in a convergent fashion. Structural proofs are based on MS, IR, 1H NMR, 13C NMR and elemental analyses.  相似文献   

12.
3-C-(Acetamidomethyl)-1,2-O-isopropylidene-β-l-threofuranose (4) and the 3-acetate (5) have been prepared in high yields from mono-O-isopropylidene-d-apiose [3-C-(hydroxymethyl)-1,2-O-isopropylidene-β-l-threofuranose] (1). Acid-catalyzed methanolysis of 4 caused migration of the isopropylidene group and the formation of methyl 4-acetamido-4-deoxy-3-C-(hydroxymethyl)-2,3-O-isopropylidene-β-d-erythrofuranoside (8) in 25% yield. The major product (45%) from the acetolysis of 4 was also a pyrrolidine derivative, namely, 4-acetamido-3-C-(acetoxymethyl)-1-O-acetyl-4-deoxy-2,3-O-isopropylidene-β-d-erythrofuranose (10). Acetolysis of 5 removed the isopropylidene group and gave four acetylated pyrrolidines (isomeric at C-1 and C-2). Conditions which resulted in minimal epimerization at C-2 were established, and the major isomers 12 and 13 were isolated in reasonable yields. 1H- and 13C-n.m.r. data for equilibrium solutions of the pyrrolidines, and for intermediates 1-5, are given.  相似文献   

13.
Methyl 6-deoxy-4-C-hydroxymethyl-5-O-methyl-2,3-O-methylene-l-idonate, isolated from everninomicin B and D, was synthesized from benzyl 4-O-benzyl-4-C-[(S)-1-methoxyethyl]-2,3-O-methylene-β-l-arabinopyranoside by successive hydrogenolysis of the O-benzyl groups, oxidation to the aldonate, and esterification. The configuration of the methyl 4-C-acetyl-6-deoxy-2,3-O-methylenehexonate from flambamycin and avilamycin A was shown to be d-galacto by a synthesis from the corresponding benzyl α-d-galactopyranoside using the above pathway.  相似文献   

14.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

15.
6-O-Tosyl (1, d.s. 0.94, 80% yield), 6-deoxy-6-iodo (2, d.s. 0.49, 86% yield) and 6-deoxy (3, d.s. 0.49, 50% yield) derivatives of N-acetylchitosan were prepared, and a 13C CP/MAS NMR spectral analysis was performed because no suitable solvent for 3 was found. The 13C signal for CH3 at C-6 in 3 was detected at 18.9 ppm, and that for C-4 in 1–3 appeared at 72.2–72.7 ppm, which is in a higher magnetic field than those (82.5–86.0 ppm) in N-acetylchitosan, 6-O- (ethylthio), 6-O-(benzylthio)- and 6-O-(methylthio)-thiocarbonyl derivatives, chitosan, and chitin. This strongly suggests a different molecular conformation for 1–3.  相似文献   

16.
Nitrous acid deamination of 2-amino-1,6-anhydro-2-deoxy-β-D-glucopyranose (1) in the presence of weakly acidic, cation-exchange resin gave 1,6:2,3-dianhydro-β-D-mannopyranose (3) and 2,6-anhydro-D-mannose (6), characterized, respectively, as the 4-acetate of 3 and the per-O-acetylated reduction product of 6, namely 2,3,4,6- tetra-O-acetyl-1,5-anhydro-D-mannitol, obtained in the ratio of 7:13. Comparative deaminatior of the 4-O-benzyl derivative of 1 led to similar qualitative results. Deamination of 3-amino-1,6-anhydro-3-deoxy-β-D-glucopyranose gave 1,6:2,3- and 1,6:3,4-dianhydro-β-D-allopyranose (13 and 16), characterized as the corresponding acetates, obtained in the ratio of 31:69, as well as the corresponding p-toluenesulfonates. Deamination of 4-amino-1,6-anhydro-4-deoxy-β-D-glucopyranose and of its 2-O-benzyl derivative gave the corresponding 1,6:3,4-D-galacto dianhydrides as the only detectable products. 2,5-Anhydro-D-glucose, characterized as the 1,3,4,6-tetra-O- acetyl derivative of the corresponding anhydropolyol, was obtained in 39% yield from the same deamination reaction performed on 2-amino-1,6-anhydro-2-deoxy-β-D- mannopyranose (24). In 90% acetic acid, the nitrous acid deamination of 24, followed by per-O-acetylation, gave only 1,3-4-tri-O-acetyl-2,5-anhydro-α-D-glucoseptanose. In the case of 1,6-anhydro-3,4-dideoxy-3,4-epimino-β-D-altropyranose, only the corresponding glycosene was formed, namely, 1,6-anhydro-3,4-dideoxy-β-D-threo--hex-3-enopyranose.  相似文献   

17.
Benzoylation of benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-α-d-glucopyranoside, benzyl 2-deoxy-2-(dl-3-hydroxytetradecanoylamino)-4,6-O-isopropylidene-α-d-glucopyranoside, and benzyl 2-deoxy-4,6-O-isopropylidene-2-octadecanoylamino-β-d-glucopyranoside, with subsequent hydrolysis of the 4,6-O-isopropylidene group, gave the corresponding 3-O-benzoyl derivatives (4, 5, and 7). Hydrogenation of benzyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside, followed by chlorination, gave a product that was treated with mercuric actate to yield 2-acetamido-1,4,6-tri-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucopyranose (11). Treatment of 11 with ferric chloride afforded the oxazoline derivative, which was condensed with 4, 5, and 7 to give the (1→6)-β-linked disaccharide derivatives 13, 15, and 17. Hydrolysis of the methyl ester group in the compounds derived from 13, 15, and 17 by 4-O-acetylation gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives 19–21 in excellent yields. Hydrolysis of 19–21, followed by hydrogenation, gave the respective O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→6)-2-acylamino-2-deoxy-d-glucoses in good yields. The immunoadjuvant activity of these compounds was examined in guinea-pigs.  相似文献   

18.
《Carbohydrate research》1988,172(1):11-25
Benzyl-3-O-benzyl-2-benzyloxycarbonylamino-6-O-[2-benzyloxycarbonyl-amino-2-deoxy-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)- β-d-glucopyranosyl]-2-deoxy-α-d-glucopyranoside was coupled with methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-α-d-manno-2-octulopyranosyl bromide)onate (13) to yield the α-glycosidically linked trisaccharide. After deacetylation and selective introduction of a second 7′,8′-O-tetraisopropyldisiloxane group, a further glycosidation reaction with 13 led regioselectively to the tetrasaccharide benzyl O-[methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-α-d-manno-2-octulopyranosyl)onate]-(2→4)-O-{methyl [3-deoxy-7,8-O-(tetraisopropyldisiloxane-1,3-diyl)-α-d-manno-2-octulopyranosyl]-onate}-(2→6)-O- [2-benzyloxycarbonylamino-2-deoxy-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)-β-d-glucopyranosyl]- (1→6)-3-O-benzyl-2-benzyloxycarbonyl-amino-2-deoxy-α-d-glucopyranoside. A series of deblocking steps gave O-(3-deoxy-α-d-manno-2-octulopyranosylonic acid)-(2→4)-O-(3-deoxy-α-d-manno-2-octulopyranosylonic acid)- (2→6)-O-(2-amino-2-deoxy-β-d-glucopyranosyl)-(1→6)-2-amino-2-deoxy-d-glucopyranose which was identical with a tetrasaccharide that had been isolated by hydrazinolysis of the lipopolysaccharide from Salmonella minnesota R 595. Hence, synthetic proof is provided for the linkages in this part of the inner core region of lipopolysaccharides.  相似文献   

19.
The crude product of deamination of the commercially available -homoserine was acetylated and the 2-O-acetyl-3-deoxy- -glycero-tetronolactone (18) formed was used to N-acylate methyl perosaminide (methyl 4-amino-4,6-dideoxy-α- -mannopyranoside, 12) and its 2,3-O-isopropylidene derivative. The major product isolated from the reaction was the crystalline methyl 4-(4-O-acetyl-3-deoxy- -glycero-tetronamido)-4,6-dideoxy-α- -mannopyranoside (1, 70–75%) resulting from acetyl group migration in the initially formed 2'-O-acetyl derivative. O-Deacetylation of 1 gave the title amide 2. Compound 2, obtained crystalline for the first time, was fully characterized, and its crystal structure was determined. Deoxytetronamido derivatives diastereomeric with 1 and 2, respectively, were obtained by the acylation of 12 with 2-O-acetyl-3-deoxy- -glycero-tetronolactone (prepared from -homoserine), and subsequent deacetylation. Structures of several byproducts of the reaction of 12 with 18 have been deduced from their spectral characteristics. Since these byproducts were various O-acetyl derivatives of 2, the title compound could be obtained in ≈ 90% yield by deacetylating (Zemplén) the crude mixture of N-acylation products, followed by chromatography.  相似文献   

20.
A new complex triterpenoid saponin was isolated from the stem bark of Samanea saman by using chromatographic methods. Its structure was established as 3-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]-2,23-dihydroxy-(2β,3β,4α)-olean-12-en-28-oic acid O-β-d-glucopyranosyl-(1  3)-O-[O-β-d-glucopyranosyl-(1  4)]-O-6-deoxy-α-l-mannopyranosyl-(1  2)-6-O-[4-O-[(2E,6S)-2,6-dimethyl-1-oxo-2,7-octadienyl]-6-deoxy-α-l-mannopyranosyl)oxy]-β-d-glucopyranosyl ester (1). Structural elucidation was performed using detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques and chemical conversions. The haemolytic activity of the saponin was evaluated using in vitro assays, and its adjuvant potential on the cellular immune response against ovalbumin antigen was investigated using in vivo models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号