首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acyl coenzyme A:cholesterol acyltransferase activity which directly incorporates palmitoyl coenzyme A into cholesterol esters using endogenous cholesterol as substrate was demonstrated in microsomal preparations from neonatal chick brain. The enzyme showed, at pH 7.4, about 2-fold greater activity than that observed at pH 5.6. Nearly 10-times higher esterifying activity was found in brain microsomes using palmitoyl coenzyme A than that with palmitic acid. The acyltransferase activity was clearly different from the other cholesterol-esterifying enzymes previously found in brain, which incorporated free fatty acids into cholesterol esters and did not require ATP or coenzyme A as cofactors. Chick brain microsomes also incorporated palmitoyl coenzyme A into phospholipids and triacylglycerols. However, most of the radioactivity from this substrate was found in the fatty acid fraction, due to the presence of an acyl coenzyme A hydrolase activity in the enzyme preparations. Therefore, the formation of palmitate was tested during all the experiments. The brain acyltransferase assay conditions were optimized with respect to protein concentration, incubation time and palmitoyl coenzyme A concentration. Microsomal activity was independent of the presence of dithiothreitol in the incubation medium and microsomes can be stored at −40°C for several weeks without losing activity. Addition of fatty acid-free bovine serum albumin to brain microsomal preparations produced a considerable increase in the acyltransferase activity, while acyl coenzyme A hydrolase was clearly inhibited. Results obtained show the existence in neonatal chick brain of an acyl coenzyme A:cholesterol acyltransferase activity similar to that found in a variety of tissues from different species but not previously reported in brain.  相似文献   

2.
An acyl coenzyme A:cholesterol acyltransferase activity which directly incorporates palmitoyl coenzyme A into cholesterol esters using endogenous cholesterol as substrate was demonstrated in microsomal preparations from neonatal chick brain. The enzyme showed, at pH 7.4, about 2-fold greater activity than that observed at pH 5.6. Nearly 10-times higher esterifying activity was found in brain microsomes using palmitoyl coenzyme A than that with palmitic acid. The acyltransferase activity was clearly different from the other cholesterol-esterifying enzymes previously found in brain, which incorporated free fatty acids into cholesterol esters and did not require ATP or coenzyme A as cofactors. Chick brain microsomes also incorporated palmitoyl coenzyme A into phospholipids and triacylglycerols. However, most of the radioactivity from this substrate was found in the fatty acid fraction, due to the presence of an acyl coenzyme A hydrolase activity in the enzyme preparations. Therefore, the formation of palmitate was tested during all the experiments. The brain acyltransferase assay conditions were optimized with respect to protein concentration, incubation time and palmitoyl coenzyme A concentration. Microsomal activity was independent of the presence of dithiothreitol in the incubation medium and microsomes can be stored at -40 degrees C for several weeks without losing activity. Addition of fatty acid-free bovine serum albumin to brain microsomal preparations produced a considerable increase in the acyltransferase activity, while acyl coenzyme A hydrolase was clearly inhibited. Results obtained show the existence in neonatal chick brain of an acyl coenzyme A:cholesterol acyltransferase activity similar to that found in a variety of tissues from different species but not previously reported in brain.  相似文献   

3.
A gene encoding an extracellular lipase (CaLIP4) from Candida albicans was successfully expressed in Saccharomyces cerevisiae after mutagenesis of its unusual CUG serine codon into a universal one. The ability of this lipase, which shares 60% sequence homology with the lipase/acyltransferase from Candida parapsilosis, to synthesise esters was investigated. CaLIP4 behaved as a true lipase, displaying activity towards insoluble triglycerides and having no activity in the presence of short-chain fatty acid (FA) esters and phosphatidylcholine. Methyl, ethyl and propyl esters were efficiently used. The lipase exhibited highest selectivity for unsaturated FA. With saturated FAs, C14–C16 acyl chains were preferred. In a biphasic aqueous/lipid system, CaLIP4 displayed a high alcoholysis activity with a range of alcohols (e.g. methanol, ethanol, propanol and isopropanol) as acyl acceptor. During the course of the alcoholysis reaction, new esters are produced at concentrations above the thermodynamic equilibrium of the esterification reaction, indicating that ester synthesis does not proceed by esterification but mainly by direct acyltransfer. Ester synthesis is under kinetic control due to the high rate of alcoholysis. Unwanted hydrolysis is limited by competition between the acyl acceptor (alcohol) and water for the acyltransfer reaction, favouring the alcohol.  相似文献   

4.
1,2,4‐Butanetriol (BT) is a valuable chemical with versatile applications in many fields and can be produced through biosynthetic pathways. As a trihydric alcohol, BT possesses good water solubility and is very difficult to separate from fermentation broth, which does complicate the production process and increase the cost. To develop a novel method for BT separation, a biosynthetic pathway for 1,2,4‐butanetriol esters with poor water solubility was constructed. Wax ester synthase/acyl‐coenzyme A: diacylglycerol acyltransferase (Atf) from Acinetobacter baylyi, Mycobacterium smegmatis, and Escherichia coli were screened, and the acyltransferase from A. baylyi (AtfA) was found to have higher capability. The BT producing strain with AtfA overexpression produced 49.5 mg/L BT oleate in flask cultivation. Through enhancement of acyl‐CoA production by overexpression of the acyl‐CoA synthetase gene fadD and deleting the acyl coenzyme A dehydrogenase gene fadE, the production was improved to 64.4 mg/L. Under fed‐batch fermentation, the resulting strain produced up to 1.1 g/L BT oleate. This is the first time showed that engineered E. coli strains can successfully produce BT esters from xylose and free fatty acids.  相似文献   

5.
Acyl coenzyme A:1-acyl-sn-glycero-3-phosphorylcholine acyltransferase (EC 2.3.1.23) is capable of forming lipid bilayer vesicles from its soluble substrates lysophosphatidylcholine (LPC) and oleoyl CoA. This suggested a purification method in which rat liver microsomes are first washed with deoxycholate to increase specific activity of the endogenous acyltransferase approximately fivefold, then solubilized by the detergent effect of excess LPC and oleoyl CoA in 1:1 stoichiometric ratios. As the LPC is converted to phosphatidylcholine by acyl group transfer, the detergent effect is lost and lipid vesicles containing the enzyme activity are produced. Other microsomal proteins are excluded from the vesicles. The vesicles may be separated by density gradient flotation and are found to contain acyltransferase with a specific activity of 9–10 µmol/mg/min. This reflects a purification of approximately 140-fold, about ten times greater than achieved in previous studies.  相似文献   

6.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent K(m) values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9+/-2.1 microM and 13.9+/-0.3 microM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits approximately 85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl-oleate formation without influencing the retinyl-palmitate formation. Using this inhibitor, we estimate that approximately 64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

7.
Abstract: The biosynthesis of triglyceride from 1,2-diglyceride and long-chain acyl coenzyme A (CoA) was studied in developing rat brain. Diglyceride acyltransferase activity was highest in a microsomal fraction, had a neutral pH optimum, and was stimulated by MgCl2. Palmitoyl CoA and oleoyl CoA served equally well as acyl donors. The enzyme catalyzed the acylation of both endogenous diglyceride and several naturally occurring and synthetic exogenous diglycerides. In addition, short-chain primary and secondary alcohols were found to be acylated under these conditions. A second acylation system, active at low pH, was found to catalyze esterification of ethanol and cholesterol, but not diglyceride, with free fatty acid. These results demonstrate that brain has the capacity to acylate a wide variety of physiological and nonphysiological hydroxyl compounds.  相似文献   

8.
Fatty acid ethyl esters are a family of non-oxidative metabolites of ethanol present in many tissues after ethanol consumption. In this report we demonstrate the existence in human liver of an acyl-CoA: ethanol acyltransferase activity which may be responsible in part for the synthesis of these compounds in vivo. The effects of oleoyl-CoA and ethanol concentrations, presence or absence of bovine serum albumin and detergent, pH and enzyme concentration on this activity have been determined. Acyl-CoA: ethanol acyltransferase activity is localised in the membrane-bound fraction. Using inhibitors directed against related enzyme activities, it has been shown that the activity is not related to serine-dependent carboxylesterases or acyl-CoA: cholesterol acyltransferase, but that it may be associated with acyl-CoA hydrolase activity. We have also compared acyl-CoA: ethanol acyltransferase activity with fatty acid ethyl ester synthase activity in microsomes and cytosol from the same liver. Our data indicate that these activities are comparable in vitro (on a units/g liver basis), and suggest that both may be significant in vivo.  相似文献   

9.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent Km values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9 ± 2.1 μM and 13.9 ± 0.3 μM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits ~85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl–oleate formation without influencing the retinyl–palmitate formation. Using this inhibitor, we estimate that ~64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

10.
The enzyme activity that catalyzes the transfer of palmitic acid from palmitoyl coenzyme A to the deacylated intact or deglycosylated gastric mucus glycoprotein was demonstrated in the detergent extracts of the microsomal fraction of antral and body mucosa of the rat stomach. Both types of mucosa exhibited similar acyltransferase activities and acceptor specificities. A 10-14% decrease in the fatty acyltransferase activity was observed with the reduced and S-carboxymethylated mucus glycoprotein, but the proteolytically degraded glycoprotein showed no acceptor capacity. This indicated that the acylation of mucus glycoprotein with fatty acids occurs at its nonglycosylated polypeptide regions and that some of the fatty acids may be linked via thiol esters. Optimum enzyme activity was obtained at pH 7.4 with the detergent Triton X-100, NaF, and dithiothreitol. The apparent Km values for the intact and deglycosylated mucus glycoproteins were 0.45 and 0.89 microM, respectively. The acyltransferase activity of the microsomal enzyme was inhibited by ethanol. With both intact and deglycosylated glycoprotein substrates, the rate of inhibition was proportional to the ethanol concentration up to 0.4 M and was of the competitive type. The K1 values were 0.80 microM for the intact mucus glycoprotein and 1.82 microM for the deglycosylated glycoprotein. Preincubation of the microsomal enzyme with low concentrations of ethanol (up to 0.5 M) did not seem to exert any additional deterrent effect on acyltransferase activity. Higher concentrations of ethanol (1.0 M and above), however, caused substantial reduction in the transferase activity due to denaturation of the enzyme.  相似文献   

11.
Crude particulate preparations obtained from anaerobic, light-grown cells of Rhodopseudomonas spheroides have been shown to possess a significant level of sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity. In contrast to the enzyme from Escherichia coli, the R. spheroides glycerophosphate acyltransferase has a high specificity for acyl thiolester derivatives of acyl carrier protein (ACP) as acyl donors for the reaction. Only limited , nonlinear glycerophosphate incorporation into lipid occurs when acyl coenzyme A (CoA) derivatives are employed as acyl substrate. With oleyl-ACP as substrate, maximal enzyme activity was observed at 40 degrees, over a broad pH range (6.0 to 8.5) and did not require a divalent metal cation. The presence of dithiothreitol stimulated enzyme-activity 15 to 20%. When oleyl-ACP or palmityl-ACP was employed as sole acyl group donor, the major products recoverable from the reaction mixtures were lysophosphatidic acid, phosphatidic acid, and monoglyceride. Althouh oleyl-ACP and palmityl-ACP gave comparable maximal velocities in the initial acylation of glycerophosphate, the formation of phosphatidic acid occurred preferentially with the unsaturated acyl-ACP derivative.  相似文献   

12.
Glycerophosphate acyltransferase, a membrane-bound enzyme catalyzing the initial step of phospholipid biosynthesis in Escherichia coli, has been extracted with Triton X-100, a nonionic detergent, and purified 20- to 40-fold. This preparation is free from lysophosphatidate acyltransferase. Glycerophosphate acyltransferase is inactive in detergent extracts, but can be reconstituted by the addition of phospholipid. Under such conditions, the enzyme is associated with phospholipid. The sole product of the reaction with acyl coenzyme A as substrate is 1-acyl-sn-glycero-3-phosphate. Furthermore, the enzyme shows a marked preference for saturated fatty acyl conenzyme A, implying that this enzyme is responsible for the predominance of saturated moieties in position 1 of E. coli phospholipids. Acyltransferase from two mutants, plsA and plsB, was partially purified and characterized. Results support the view that plsB is a structural gene for the acyltransferase, but suggest that the plsA gene product is not directly involved in phospholipid biosynthesis.  相似文献   

13.
S Mogelson  L G Lange 《Biochemistry》1984,23(18):4075-4081
Fatty acyl ethyl esters, previously identified in our laboratory as metabolites of ethanol in human and rabbit myocardium, arise from an esterification of free fatty acids with ethanol in the absence of ATP and coenzyme A. This study was designed to isolate and purify the enzyme(s) in rabbit myocardium that catalyze(s) this reaction. Enzyme activity in homogenates of rabbit myocardium, as assayed by the rate of synthesis of ethyl [14C]oleate from 0.4 mM [14C]oleic acid and 0.2 M ethanol, was 31 nmol/(g.h), and all of it was recovered in the 48400g supernatant. This soluble ethyl ester synthase activity bound to DEAE-cellulose at pH 8, and elution with a NaCl gradient (0-0.25 M) separated two enzyme activities accounting for 13 and 87% of recovered synthase activity. The major enzyme activity was then purified over 5000-fold to homogeneity by sequential gel permeation, hydrophobic interaction, and anti-albumin affinity chromatographies with an overall yield of 40%. Up to 45 micrograms of enzyme was present per g of myocardium. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single polypeptide with Mr 26 000, and gel permeation chromatography under nondenaturing conditions indicated a Mr of 50 000 for the active enzyme. Kinetic analyses using the purified enzyme indicated that greatest rates of ethyl ester synthesis were observed with unsaturated octadecanoic fatty acid substrates [Vmax = 1.9 and 1.5 nmol/(mg.s) for linoleate and oleate, respectively], with lesser rates associated with palmitate, stearate, and arachidonate substrates [0.14, 0.03, and 0.35 nmol/(mg.s), respectively].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The incorporation of 1-[14C]-palmitate into the lipids of microsomal and mitochondrial membranes from peas (Pisum sativum L., var. Massey Gem) and the relative effects of ATP and coenzyme A(CoA) on the process have been examined. Both mitochondrial and microsomal pellets possessed acyltransferase capacity, which responded similarly to additions of ATP and CoA. Incorporation of 1-[14C]-palmitate into phospholipid was promoted by ATP alone, but incorporation into triacylglycerols was not. The addition of CoA alone did not promote incorporation. The addition of CoA and ATP further promoted incorporation into phospholipids and also stimulated incorporation into triacylglycerol. It was concluded that some CoA must be membrane-bound and available for phospholipid but not for triacylglycerol synthesis. Phospholipase A, treatment of microsomal and mitochondrial phospholipids, previously labelled with 1-[14C]-palmitate in the presence of ATP and coenzyme A, showed that incorporation occurred only into the 2-position of phosphatidyl choline and phosphatidyl ethanolamine. There was enough lyso-phosphatidyl choline in the phospholipids of microcomal membranes (obtained from a 100 000 g pellet) to account for the observed incorporations of palmitate. Using microsomal membranes whose fatty acyl groups were pre-labelled by incubation of tissue with 1-[14C]-acetate, no evidence of acyl exchange was found during subsequent incubations with unlabelled palmitate. Similar observations were made using oleate instead of palmitate. It was concluded that acyl-CoA: 1-acylglycerophosphocholine o-acyltransferase (E.C. 2.3.1.23) was responsible for the observed acyl transfer to phosphatidyl choline. Sucrose gradient analysis of whole homogenates and of the 10 000 g pellet showed that both mitochondrial and rough endoplasmic reticulum possessed acyltransferase capacity, with the bulk of this residing in the mitochondria. The possible significance of this widely distributed membrane activity is briefly discussed.  相似文献   

15.
Dihydroxyacetone-phosphate:acyl coenzyme A acyltransferase (EC 2.3.1.42) was solubilized and partially purified from guinea pig liver crude peroxisomal fraction. The peroxisomal membrane was isolated after osmotic shock treatment and the bound dihydroxyacetone-phosphate acyltransferase was solubilized by treatment with a mixture of KCl-sodium cholate. The solubilized enzyme was partially purified by ammonium sulfate fractionation followed by Sepharose 6B gel filtration. The enzyme was purified 1200-fold relative to the guinea pig liver homogenate and 80- to 100-fold from the crude peroxisomal fraction, with an overall yield of 25–30% from peroxisomes. The partially purified enzyme was stimulated two- to fourfold by Asolectin (a soybean phospholipid preparation), and also by individual classes of phospholipid such as phosphatidylcholine and phosphatidylglycerol. The kinetic properties of the enzyme showed that in the absence of Asolectin there was a discontinuity in the reciprocal plot indicating two different apparent Km values (0.1 and 0.5 mm) for dihydroxyacetone phosphate. The Vmax was 333 nmol/min/mg protein. In the presence of Asolectin the reciprocal plot was linear, with a Km = 0.1 mm and no change in Vmax. The enzyme catalyzed both an exchange of acyl groups between dihydroxyacetone phosphate and palmitoyl dihydroxyacetone phosphate in the presence of CoA and the formation of palmitoyl [3H]coenzyme A from palmitoyl dihydroxyacetone phosphate and [3H]coenzyme A, indicating that the reaction is reversible. The partially purified enzyme preparation had negligible glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity.  相似文献   

16.
Rat liver acyl coenzyme A:diacylglycerol acyltransferase, an intrinsic membrane activity associated with the endoplasmic reticulum, catalyzes the terminal and rate-limiting step in triglyceride synthesis. This enzyme has never been purified nor has its gene been isolated. Inactivation by ionizing radiation and target analysis were used to determine its functional size in situ. Monoexponential radiation inactivation curves were obtained which indicated that a single-sized unit of 72 +/- 4 kDa is required for expression of activity. The size corresponds only to the protein portion of the target and may represent one or several polypeptides.  相似文献   

17.
The activities, properties, and steady-state kinetics of the five enzymes catalyzing the synthesis of 1-acyl- and 1-alkyl-sn-glycerol 3-phosphate in the cultured skin fibroblasts from Zellweger syndrome patients and normal controls were studied in detail. Judging from their Km and Vmax values, glycerol phosphate acyltransferase (EC 2.3.1.15), acyl/alkyl dihydroxyacetone phosphate reductase (EC 1.1.1.101), and acyl coenzyme A reductase (long-chain alcohol forming), appear to be affected only slightly by the absence of peroxisomes characteristic of the Zellweger syndrome. Glycerophosphate acyltransferase also showed no differences in N-ethylmaleimide sensitivity nor in inhibition by dihydroxyacetone phosphate between these cell types. Dihydroxyacetone phosphate acyltransferase (EC 2.3.1.42) and alkyl dihydroxyacetone phosphate synthase (EC 2.5.1.26) have altered activity and kinetic constants in homogenates from Zellweger syndrome fibroblasts. Dihydroxyacetone phosphate acyltransferase has similar Km (DHAP) values in both control and Zellweger syndrome cells; however, the value for the Vmax in Zellweger syndrome cells is only 6% of that found in the controls. This is interpreted as indicating that this enzyme is not defective in this disease but is simply present at a depressed level. Also, this enzyme activity has a maximum rate at pH 7.0-7.5 in the mutant cells as opposed to pH 5.4 in the controls. Acylation of dihydroxyacetone phosphate by control cell homogenate was stimulated by N-ethylmaleimide at both pH 5.7 and 7.5 whereas this activity from Zellweger syndrome cells was slightly inhibited at pH 5.7 and strongly inhibited at pH 7.5. In the absence of detergent, dihydroxyacetone phosphate acyltransferase in the Zellweger syndrome cells was much more labile to trypsin than in the control cells. Alkyl dihydroxyacetone phosphate synthase had a slightly higher Km (33 vs 17 microM) for palmitoyl dihydroxyacetone phosphate and a lower Vmax (0.07 vs 0.24 mU/mg protein) in the Zellweger syndrome cells as compared to controls. Although this is a substantial decrease in activity, it probably contributes little to the decreased rate of ether lipid synthesis in these cells. The major problem in this respect is apparently the loss of dihydroxyacetone phosphate acyltransferase activity. All of these enzymes, in both control and Zellweger syndrome cell homogenates, are sedimentable by centrifugation at 100,000g. Also, with the exception of dihydroxyacetone phosphate acyltransferase they had similar patterns of inactivation by heat in both cell types.  相似文献   

18.
3-Hydroxy-4-oxobutyl-1-phosphonate, the phosphonic acid analogue of glyceraldehyde 3-phosphate, enters Escherichia coli via the glycerol 3-phosphate transport system. There is no differential effect upon the accumulation of deoxyribonucleic acid, ribonucleic acid, or phosphoglycerides, although the accumulation of proteins was less effected. Examination of the phospholipids revealed that phosphatidylglycerol accumulation was most severely inhibited and cardiolipin accumulation was least affected. Concentrations of glyceraldehyde 3-phosphate and its phosphonic acid analogue that markedly inhibit macromolecular and phosphoglyceride biosynthesis have no effect upon the intracellular nucleoside triphosphate pool size. The phosphonate is a competitive inhibitor of sn-glycerol 3-phosphate in reactions catalyzed by acyl coenzyme A:sn-glycerol-3-phosphate acyltransferase and CDP-diacylglycerol:sn-glycerol-3-phosphate phosphatidyltransferase. A Km mutant for the former enzyme was susceptible to the phosphonate. The phosphonate did not affect acyl coenzyme A:lysophosphatidate acyltransferase activity. Studies with mutant strains ruled out the aerobic glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate synthase, and fructose-1,6-biphosphate aldolase as the primary sites of action.  相似文献   

19.
In vivo and in vitro experiments were performed to determine how phenethyl alcohol (PEA) inhibits phospholipid synthesis in Escherichia coli. This drug drastically reduced the rate of incorporation of sn-glycerol 3-phosphate into the phospholipids of an sn-glycerol 3-phosphate auxotroph. PEA also reduced the rate of fatty acid incorporation into the phospholipids of a fatty acid auxotroph. The kinetics of PEA inhibition of the rate of incorporation of sn-glycerol 3-phosphate were almost identical to those of PEA inhibition of the rate of fatty acid incorporation into phospholipids. The in vivo experiments suggested that the rate-limiting step(s) in phospholipid biosynthesis inhibited by PEA is at the level of the acylation of sn-glycerol 3-phosphate or beyond this step. PEA inhibited the sn-glycerol 3-phosphate acyltransferase with either palmitoyl coenzyme A or palmitoyl-acyl carrier protein as the acyl donor. This drug, however, had no effect on the cytidine 5'-diphosphate-diglyceride:glycerol 3-phosphate phosphatidyl transferase, cytidine 5'-diphosphate-diglyceride:L-serine phosphatidyl transferase, and acyl coenzyme A:lysophatidic acid acyltransferase. The in vitro findings suggested that PEA inhibits phospholipid synthesis primarily at the level of sn-glycerol 3-phosphate acyltransferase.  相似文献   

20.
Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号