首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of anthranilic acid (AnA) was investigated for 40 bacterial strains in the presence and absence of aniline. Resting cells of all aniline-assimilating bacteria tested produced AnA with aniline, but not without aniline. The cells of aniline-assimilating Rhodococcus erythropolis strains produced more AnA than those of other aniline-assimilating bacteria. Resting cells of several non-aniline-assimilating strains produced AnA in the absence of aniline. However, its production by these strains was much lower than that by the Rhodococcus strains. The production of AnA by cells of aniline-assimilating R. erythropolis AN-13 was promoted by aliphatic monocarboxylates, ATP, biotin and coenzyme A, and repressed by catechol analogues, N-ethylmaleimide and iodoacetate. On the other hand, its production by non-aniline-assimilating Pseudomonas sp. AN-21 was repressed by glucose, mannose and some amino acids.  相似文献   

2.
The metabolic pathway of aniline was examined in Rhodococcus erythropolis AN-13 that was isolated from soil when aniline was provided as a sole source of carbon and nitrogen. cis, cis-Muconic acid and β-ketoadipic acid were detected by thin-layer chromatography in an incubation mixture containing aniline and resting cells of this strain. These two carboxylic acids were also formed from catechol, when the substrate was incubated with cell-free extract of aniline-grown cells, and characterized spectrally as crystalline samples. Ammonia was released from aniline by resting cells. The cell-free extract of aniline-grown cells had a strong catechol 1,2-dioxygenase activity. Catechol, once formed from aniline, was apparently converted so rapidly to cis, cis-muconic acid that it could not be isolated. These results suggest that R. erythropolis AN-13 converted aniline to catechol with the release of ammonia and then mineralized catechol ultimately to inorganic end products, H2O and CO2, through the β ketoadipic acid pathway.  相似文献   

3.
Cowan AK  Rose PD 《Plant physiology》1991,97(2):798-803
The interrelationship between abscisic acid (ABA) production and β-carotene accumulation was investigated in salt-stressed cells of the halotolerant green alga Dunaliella salina var bardawil. Cells were supplied with either R-[2-14C]mevalonolactone or [14C] sodium bicarbonate for 20 hours and then exposed to increased salinity (1.5 to 3.0 molar NaCl) for various lengths of time. Incorporation of label into abscisic acid and phaseic acid and the distribution of [14C]ABA between the cells and incubation media were monitored. [14C]ABA and [14C]phaseic acid were identified as products of both R-[2-14C]mevalonolactone and [14C]sodium bicarbonate metabolism. ABA metabolism was enhanced by hypersalinity stress. Actinomycin D, chloramphenicol, and cycloheximide abolished the stress-induced production of ABA, suggesting a role for gene activation in the process. Kinetic analysis of both ABA and β-carotene production demonstrated two stages of accelerated β-carotene production. In addition, ABA levels increased rapidly, and this increase occurred coincident with the early period of accelerated β-carotene production. A possible role for ABA as a regulator of carotenogenesis in cells of D. salina is therefore discussed.  相似文献   

4.
A study was made of the incorporation of methanol and bicarbonate into the cell constituents of denitrifying or aerobic methanol grown and autotrophic H2–O2–CO2 grown Hyphomicrobium sp. 53-49. Cells were incubated with [14C]methanol or [14C]bicarbonate, and the distribution of the radioactivity in the nonvolatile constituents of ethanol extracts of cells was examined. When denitrifying grown cells were incubated with [14C]methanol, the major part of the radioactivity was fixed to serine as the first stable compound. Aerobic methanol grown cells also fixed [14C]methanol mainly to serine. These results suggest that methanol grown cells assimilate methanol by the serine pathway. When denitrifying or aerobic methanol grown cells were incubated with [14C]bicarbonate, malate was mainly observed as a nonvolatile compound in the initial period of the incubation. Autotrophic grown cells also fixed the major part of [14C]bicarbonate to malate. In this case, phosphoglyceric acid was found in the phosphorylated compounds area.  相似文献   

5.
《Gene》1997,185(1):49-54
Gram+ aniline-assimilating Rhodococcus erythropolis AN-13 (AN-13) produces catechol 1,2-dioxygenase (C12O) showing high enzymatic activities for 3- and 4-methylcatechols [Aoki et al. (1984) Agric. Biol. Chem. 48, 2087–2095]. A 3.0 kb Sau3AI fragment carrying a gene encoding C12O (catA) was cloned by selection of transformants showing C12O activity from a gene library of AN-13. Furthermore, we specified a 1.6 kb SalI fragment containing catA from the Sau3AI fragment by subcloning. Sequence analysis revealed that the 1.6 kb SalI fragment carried a 855 bp open reading frame (ORF) encoding the entire AN-13 catA, preceded by a potential ribosome binding site (RBS). From comparison of the deduced amino acid (aa) sequence of C12O from AN-13 with other C12O reported previously, it was found that the AN-13 enzyme shares 56.0% aa sequence identity with C12O from Arthrobacter sp. mA3 (mA3) [Eck and Belter (1991) Gene 123, 87–92] compared with less than 36.4% aa sequence identities with others. In conclusion, we classified all C12O including the AN-13 enzyme into three subfamilies on the basis of similarity of aa sequences, numbers of aa residues, and substrate specificity.  相似文献   

6.
Three lytic enzymes, C-2, C-4 and C-5, capable of lysing cells of Rhodococcus erythropolis AN-13 were purified from the cultural filtrate of Flavobacterium species SH-548 by (NH4)2S04 fractionation and column chromatographies on CM-Toyopearl and SP-Sephadex. The three purified enzymes gave single protein bands on polyacrylamide gels. C-4 and C-5 were stable between pH 3.0 and 12.5, and C-2 between pH 5.5 and 11.0. The molecular weights of C-4 and C-5 were 26,000 and that of C-2 was 36,000, as judged on sodium dodecylsulfate-polyacrylamide gel electrophoresis. C-4 and C-5 also showed proteolytic activity toward casein, but C-2 did not exhibit such activity. C-2 showed higher specific lytic activity toward cells of R. erythropolis AN-13 than C-4 and C-5.  相似文献   

7.
Although red algae are known to be obligatory photoautotrophs, the red microalga Porphyridium sp. was shown to assimilate and metabolize floridoside. A pulse‐chase experiment with [14C]floridoside showed that at the end of a 240‐min pulse, 70% of total 14C‐uptake by the cells remained in the floridoside fraction. To evaluate the assimilation of floridoside by Porphyridium sp. cells, we exposed Porphyridium sp. not only to [14C]floridoside but also to its constituents, [14C]glycerol and [14C]galactose, as compared with [14C]bicarbonate. The extent of incorporation of [14C] galactose by the Porphyridium sp. cells was insignificant (50–80 dpm·mL?1), whereas uptake of 14C from [14C]glycerol into the algal cells was evident (2.4 × 103 dpm·mL?1) after 60 min of the pulse. The pattern of 14C distribution among the major constituent sugars, xylose, glucose and galactose, of the labeled soluble polysaccharide was dependent on the 14C source. The relative content of [14C]galactose in the soluble polysaccharide was highest (28.8%) for [14C]floridoside‐labeled culture and lowest (19.8%) for the [14C]glycerol‐labeled culture. Upon incubation of [14C]floridoside with a crude extract of a cell‐free system prepared from nonlabeled cells of Porphyridium sp., the label was indeed found to be incorporated into the sulfated polysaccharide. Our results suggested that the carbon metabolic pathway in Porphyridium sp. passes through the low molecular weight photoassimilatory product—floridoside—toward sulfated cell‐wall polysaccharide production.  相似文献   

8.
1. A study has been made of the incorporation of carbon from [14C]methane, [14C]methanol and [14C]bicarbonate by cultures of Pseudomonas methanica growing on methane, and [14C]methanol by cultures of the same organism growing on methanol. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compound for periods up to 3min., has been analysed by chromatography and radioautography. 3. Over 90% of the radioactivity fixed from [14C]methane or [14C]methanol at the earliest times of sampling appeared in phosphorylated compounds. Glucose phosphate and fructose phosphate together constituted the largest part of the radioactive phosphates (70–90%); phosphoglycerate was a relatively minor component (2–17%). Other compounds becoming labelled during the incubation included glycine, serine, glutamate, aspartate, malate, citrate and alanine. 4. The first stable products of [14C]bicarbonate fixation were malate and aspartate (containing between them over 90% of the total radioactivity fixed at the earliest times of sampling). 5. The percentage of the total radioactivity fixed that was contained in each of the radioactive compounds has been plotted against time. The slopes of the curves obtained show that hexose phosphates are primary stable products of [14C]methane and [14C]methanol incorporation and that aspartate and malate are primary stable products of [14C]bicarbonate incorporation. 6. No carboxydismutase activity has been found in cell-free extracts of the organism. This fact, together with the other findings, shows that an autotrophic metabolism involving the ribulose diphosphate cycle of carbon dioxide fixation cannot be operating.  相似文献   

9.
RATE OF STEROL FORMATION BY RAT BRAIN GLIA AND NEURONS IN VITRO AND IN VIVO   总被引:1,自引:1,他引:0  
The ability of 11-day-old rat glial and neuronal cells to biosynthesize sterol was studied as a function of time in vivo and in vitro. The in vitro experiments utilized [2-14C]mevalonic acid as precursor. Glial-enriched cell preparations demonstrated a greater ability to incorporate [2-14C]mevalonic acid into isoprenoid material than did neuronal-enriched preparations. Approximately 4 h were required for maximal uptake of labelled mevalonate by the glial preparations. Further metabolism of the isoprenoid material, involving squalene turnover and sterol demethylation, was still evident even after 15 h of incubation. In vivo, sterol biosynthesis was studied by intraperitoneal injection of sodium [2-14C]acetate and [U-14C]glucose, sacrifice of the animals at 2 or 24 h, subsequent isolation of glial- and neuronal-cell enriched fractions and analysis of labelled isoprenoid material. Glial-enriched fractions again contained the bulk of the labelled isoprenoid material.  相似文献   

10.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,147(5):389-395
Cell suspension cultures of Catharanthus roseus G. Don, Glycine max (L.) Merr. and Nicotiana tabacum L. were incubated with [14C]acetate, [14C]oleic acid and [14C]linoleic acid at five different temperatures ranging from 15 to 35° C. When the incubation temperature was increased, [14C]acetate was incorporated preferentially into [14C]palmitate, with a concomitant drop in [14C]oleate formation. Between 15 and 20° C, [14C]oleic acid accumulated in C. roseus cells. In all cultures, optimum desaturation of [14C]oleic acid to [14C]linoleic acid occurred between 20 and 25° C, and in G. max this was also the optimal range for desaturation of [14C]linoleic acid to [14C]linolenic acid. Elongation of [14C]palmitic acid was inhibited when cultures grown at 15° C for 25 h were subsequently incubated with [14C]acetate at 25° C. [14C]oleic acid accumulated in G. max and C. roseus cultures grown at 35° C for 25 h and subsequently incubated at 25° C. Desaturation of [14C]oleic acid increased up to 25° C, but then decreased or leveled off depending on the cell line and on the temperature prior to incubation.  相似文献   

11.
The main products of carbon fixation in the red algae are sulfated cell-wall polysaccharides, floridean starch, and low molecular weight (LMW) carbohydrates, mainly floridoside. In the red microalga Porphyridium sp., sulfated polysaccharide—cell bound and soluble—comprises up to 70% of the algal biomass. The purpose of this study was to elucidate the partitioning of fixed carbon in Porphyridium sp. toward the different products of carbon fixation. Using pulse-chase technique with [14C]bicarbonate, we followed 14C flow into the major compounds, namely, cell-wall polysaccharide, floridoside, starch, and protein, under various environmental conditions (i.e. carbon dioxide enrichment and nitrate starvation). 13C-NMR and gas chromatography analysis showed the main LMW product in Porphyridium sp. to be floridoside. After the short [14C]bicarbonate pulse (20 min), 42%–53% of total 14C uptake was initially found in floridoside. The appearance of 14C in the soluble polysaccharide was evident immediately at the end of the 20-min [14C]bicarbonate pulse. The specific radioactivity in the floridoside fraction declined by 80% after the 48-h chase, this decline being accompanied by increased labeling of starch and the soluble polysaccharide. In cells exposed to high CO2 concentration, larger amounts of 14C (about twice as much) were channeled into starch and soluble polysaccharide than in cells under low CO2 concentration. The most significant increase (1500%) in labeling during chase was found in the soluble polysaccharide of the nitrate-deprived cultures. It therefore seems likely that the large amounts of carbon incorporated by Porphyridium sp. cells into floridoside were subsequently used for the synthesis of macromolecular components. The data thus support the premise that floridoside serves as a dynamic carbon pool, which channels the fixed carbon toward polysaccharides and other end products according to the ambient conditions.  相似文献   

12.
Carvone has previously been found to highly inhibit its own production at concentrations above 50 mM during conversion of a diastereomeric mixture of (−)-carveol by whole cells of Rhodococcus erythropolis. Adaptation of the cells to the presence of increasing concentrations of carveol and carvone in n-dodecane prior to biotransformation proved successful in overcoming carvone inhibition. By adapting R. erythropolis cells for 197 h, an 8.3-fold increase in carvone production rate compared to non-adapted cells was achieved in an air-driven column reactor. After an incubation period of 268 h, a final carvone concentration of 1.03 M could be attained, together with high productivity [0.19 mg carvone h−1 (ml organic phase)−1] and high yield (0.96 g carvone g carveol−1).  相似文献   

13.
Green nonsulfur-like bacteria (GNSLB) in hot spring microbial mats are thought to be mainly photoheterotrophic, using cyanobacterial metabolites as carbon sources. However, the stable carbon isotopic composition of typical Chloroflexus and Roseiflexus lipids suggests photoautotrophic metabolism of GNSLB. One possible explanation for this apparent discrepancy might be that GNSLB fix inorganic carbon only during certain times of the day. In order to study temporal variability in carbon metabolism by GNSLB, labeling experiments with [13C]bicarbonate, [14C]bicarbonate, and [13C]acetate were performed during different times of the day. [14C]bicarbonate labeling indicated that during the morning, incorporation of label was light dependent and that both cyanobacteria and GNSLB were involved in bicarbonate uptake. 13C-labeling experiments indicated that during the morning, GNSLB incorporated labeled bicarbonate at least to the same degree as cyanobacteria. The incorporation of [13C]bicarbonate into specific lipids could be stimulated by the addition of sulfide or hydrogen, which both were present in the morning photic zone. The results suggest that GNSLB have the potential for photoautotrophic metabolism during low-light periods. In high-light periods, inorganic carbon was incorporated primarily into Cyanobacteria-specific lipids. The results of a pulse-labeling experiment were consistent with overnight transfer of label to GNSLB, which could be interrupted by the addition of unlabeled acetate and glycolate. In addition, we observed direct incorporation of [13C]acetate into GNSLB lipids in the morning. This suggests that GNSLB also have a potential for photoheterotrophy in situ.  相似文献   

14.
A sterile glucose-mineral salts broth was inoculated with conidia of Penicillium rubrum P-13 and P-3290. Radiolabeled compounds were added to some cultures, these being incubated quiescently at 28° C for 14 days. Other stationary cultures were grown for 21 days, received labeled compounds, and were then grown for 5 more days. The remaining cultures were inoculated with 72-h-old mycelial pellets, received labeled materials and were incubated with shaking for 60 h. Rubratoxin was resolved by thin-layer chromatography. Labeled [114C]acetate, [1,514C]citrate, [214C]malonate, [114C]glucose, [U14C]glucose or [114C]hexanoate were incorporated into rubratoxins A and B by P. rubrum 3290 and into rubratoxin B by P. rubrum 13. Incorporation of [114C]acetate and [214C]malonate increased when exogenous unlabeled acetate, malonate, pyruvate, or phosphoenol-pyruvate was added. Acetate incorporation was influenced by cultural conditions, attaining maximum amounts in quiescent cultures which received labeled acetate after 21 days of incubation. Acetate incorporation in shake cultures was enhanced by reduced nicotinamide adenine dinucleotide phosphate (NADPH) and by unlabeled exogenous citrate.Abbreviations GMS glucose-mineral salts - RCM replacement culture medium - TCA tricarboxylic acid - PEP phosphoenolpyruvate - RIC relative isotopic content - PI percent incorporation  相似文献   

15.
Abstract— The effects of supramaximal electrical stimulation on the metabolism of amino acids and proteins in incubated superior cervical ganglia of the rat were studied by the use of a gas-liquid chromatographic (GLC) assay procedure. Stimulation at 5 Hz for 2 h caused an apparent increase in tissue levels of free amino acids, with alanine, serine, glycine, valine, threonine, isoleucine and aspartate (+ asparagine) most noticeably affected. The amino acid composition (partial) of the TCA-insoluble proteins of resting and stimulated ganglia was approximately the same after 60 min of incubation, but there was less TCA-insoluble protein in the stimulated ganglia. The addition of amino acids (at plasma concentrations) to the standard media had no apparent affect on the amino acid composition of this protein fraction. Stimulation for 0 , 5 h initially increased the efflux of alanine, valine, proline and ornithine into the incubation media but prolonged stimulation (for 4–0 h) decreased the efflux of alanine, serine, glycine and isoleucine and increased the efflux of lysine into the incubation media. The leakage of amino acids from the ganglia appeared to be a sodium-dependent process. The incorporation of 14C from [U-14C]glucose into glutamate (+ glutamine) and aspartate (+ asparagine) was greater in stimulated than in resting ganglia. However, the conversion of glutamate carbons from [U-14C]l -glutamate into aspartate was not affected by stimulation. Incorporation of 14C from [U-14C]glucose into glycine and serine was apparently not affected by stimulation during the 60 min of incubation. However, serine was the only amino acid which exhibited a higher specific radioactivity in stimulated ganglia than in resting ganglia incubated for 4 h in standard media. Lithium ions had the apparent specific effect of increasing the labelling with 14C from [U-14C]glucose into ornithine, and increasing the efflux and overall metabolism of serine in the ganglia. Incorporation of 14C from [U-14C]glucose into proteins was lower in the stimulated than in the resting ganglia if compensation was made for the higher radioactivity available in the total free amino acid pool of the stimulated ganglia. The rate of 14C incorporation from [U-14C]glutamate into the TCA-insoluble proteins of resting ganglia was greater when no other amino acids at concentrations approximating plasma levels were added to the bathing media; this rate was lower in stimulated than in resting ganglia.  相似文献   

16.
(14C) acetylcholine synthesis by cortex slices of rat brain   总被引:13,自引:0,他引:13  
Abstract—
  • 1 A procedure has been developed to measure ACh synthesis from [14C]-precursors. As little as 10?9 moles of ACh were detected as the result of de nova synthesis. Following incubation of cortex slices of rat brain with eserine and a tagged metabolite, ACh carrier was added to the incubation medium and to an extract from the slices. ACh was purified by chromatography on Amberlite CG-50, precipitation and recrystallization of ACh chloroaurate.
  • 2 [U?14C]glucose and [2?14C]pyruvate formed similar amounts of [14C]ACh. Hydrolysis of ACh with subsequent chromatography of the resultant acetic acid demonstrated that all of the label was located in the acetyl moiety. [14C]acetate did not serve as a precursor of the acetyl group of ACh. Equivalent incorporation of carbons 1 and 6 of glucose into ACh indicated that glucose metabolism to ACh occurred via the Embden-Meyerhof pathway.
  • 3 The amount of ACh detected by bioassay after incubation of cortex slices with [U?14C]glucose was approximately the same as that calculated as labelled ACh; this demonstrates that all of the acetyl groups of ACh formed during incubation were derived from glucose.
  • 4 [14C]choline, either methyl or chain labelled, formed [14C]ACh while labelled ethanolamine, serine and methionine did not. Synthesis from labelled choline did not occur in the absence of glucose.
  • 5 When both [U?14C]glucose and [14C]choline were incubated with brain slices, the acetyl and choline moieties of ACh were equally labelled; this demonstrates that the entire molecule was formed from added precursors. Slices supported a high rate of ACh synthesis without addition of choline. The addition of 10?4m -hemicholinium-3 inhibited ACh formation by more than 90 per cent from either [U-14C]glucose or [Me-14C]choline.
  • 6 Study of the time course of ACh synthesis from glucose demonstrated a rapid formation of [14C]ACh within the slices which reached a maximum during the first hour of incubation. [14C]ACh in the incubation medium accumulated at a linear rate for 3 hr. Replacement of a portion of the sodium chloride of the incubation medium by potassium chloride to a final concentration of 31 mm -KCI markedly increased the formation of [14C]ACh found in the incubation medium. Decreased amounts of [14C]ACh were extracted from the slices by homogenization or by subsequent heating at pH 4 in the high potassium ion medium.
  相似文献   

17.
ABSTRACT. The fate of the [methyl-14C] group of S-adenosylmethionine (AdoMet) in bloodstream forms of Trypanosoma brucei brucei, was studied. Trypanosomes were incubated with either [methyl-14C]methionine, [U-14C]methionine, S-[methyl-14C]AdoMet or [35S]methionine and incorporation into the total TCA precipitable fractions was followed. Incorporation of label into protein through methylation was estimated by comparing molar incorporation of [methyl-14C] and [U-14C]methionine to [35S]methionine. After 4-h incubation with [U-14C]methionine, [methyl-14C]methionine or [35S]methionine, cells incorporated label at mean rates of 2,880 pmol, 1,305 pmol and 296 pmol per mg total cellular protein, respectively. Cells incubated with [U-14C] or [methyl-14C]methionine in the presence of cycloheximide (50 μg/ml) for four hours incorporated label eight- and twofold more rapidly, respectively, than cells incubated with [35S]methionine and cycloheximide. [Methyl-14C] and [U-14C]methionine incorporation were > 85% decreased by co-incubation with unlabeled AdoMet (1 mM). The level of protein methylation remaining after 4-h treatment with cycloheximide was also inhibited with unlabeled AdoMet. The acid precipitable label from [U-14C]methionine incorporation was not appreciably hydrolyzed by DNAse or RNAse treatment but was 95% solubilized by proteinase K. [U-14C]methionine incorporated into the TCA precipitable fraction was susceptible to alkaline borate treatment, indicating that much of this label (55%) was incorporated as carboxymethyl groups. The rate of total lipid methylation was found to be 1.5 times that of protein methylation by incubating cells with [U-14C]methionine for six hours and differential extraction of the TCA lysate. These studies show T. b. brucei maintains rapid lipid and protein methylation, confirming previous studies demonstrating rapid conversion of methionine to AdoMet and subsequent production of post-methylation products of AdoMet in African trypanosomes.  相似文献   

18.
The metabolism of [1-14C]- and [6-14C]glucose, [1-14]ribose, [1-14C]- and [U-14C]alanine, and [1-14C]- and [5-14C]glutamate by the promastigotes of Leishmania braziliensis panamensis was investigated in cells resuspended in Hanks' balanced salt solution supplemented with ribose, alanine, or glutamate. The ratio of 14CO2 produced from [1-14C]glucose to that from [6-14C]glucose ranged from about two to six, indicating appreciable carbon flow through the pentose phosphate pathway. A functional pentose phosphate pathway was further demonstrated by the production of 14CO2 from [1-14C]ribose although the rate of ribose oxidation was much lower than the rate of glucose oxidation. The rate of 14CO2 production from [1-14C]glucose was almost linear with time of incubation, whereas that of [6-14C]glucose accelerated, consistent with an increasing rate of flux through the Embden-Meyerhof pathway during incubation. Increasing the assay temperature from 26°C to 34°C had no appreciable effect on the rates or time courses of oxidation of either [1-14C]- or [6-14C]glucose or of [1-14C]ribose. Both alanine and glutamate were oxidized by L. b. panamensis, and at rates comparable to or appreciably greater than the rate of oxidation of glucose. The ratios of 14CO2 produced from [1-14C]- to [U-14C]alanine and from [1-14C]- to [5-14C]glutamate indicated that these compounds were metabolized via a functioning tricarboxylic acid cycle and that most of the label that entered the tricarboxylic acid cycle was oxidized to carbon dioxide. Heating the cultures for 6 or 12 h at 34°C, which converts the promastigotes into an ellipsoidally shaped intermediate form, decreased the rates of oxidation of glucose, alanine, and glutamate. The oxidation of glutamate decreased by about 50% and 70% after a 6-h or 12-h heat treatment, respectively. Returning the heated cultures to 26°C initiated a reversion to the promastigote form and recovery of the rate of glucose oxidation, but glutamate oxidation did not return to control levels by 19 h at 26°C.  相似文献   

19.
Cellular metabolite analyses by 13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2 aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly 13C-labelled acetate (13CH3-COOH or CH3-13COOH) supported that both the 13C nuclei give rise to bicarbonate and CO2 aq. The observed metabolite(s) upon further incubation led to the production of starch and triacylglycerol (TAG) in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2 aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2 aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2 aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.  相似文献   

20.
Sodium [1-14C]acetate, sodium [1-14C]propionate, sodium [2-14C]propionate, sodium [3-14C]propionate and sodium [methyl-14C]methylmalonate were readily incorporated into the cuticular hydrocarbons of nymphal stages of the cockroach Periplaneta fuliginosa both in vivo and in vitro, whereas no incorporation of [methyl-14C]methionine was observed. The alkanes of the nymphal stages of this insect are 25+% n-alkanes, 14% 3-methylalkanes, and 59+% internally branched monomethylalkanes, principally 13-methylpentacosane. Sodium [1-14C]acetate was incorporated into each class of alkane at about its percentage composition. In contrast, labeled sodium propionate and sodium methylmalonate were preferentially incorporated into the branched fractions. Radio-gas-liquid chromatography showed that sodium [1-14C]propionate was incorporated almost exclusively into 3-methyltricosane and 13-methylpentacosane, whereas sodium [1-14C]acetate was incorporated into each glc peak at about its percentage composition. These data suggest that propionate, incorporated during chain elongation, serves as the branching methyl group donor for both the 3-methyl and the internally branched monomethylalkanes in insects. The location of hydrocarbon synthesis in P. fuliginosa was studied using an in vitro tissue slice system. Excised cuticle slices, with adhering fat body tissue removed, gave good incorporation of labeled substrates into the hydrocarbon fraction. No hydrocarbon synthesis was observed in fat body preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号