首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stilbene compound resveratrol was glycosylated to give its 4′-O-β-D-glucoside as the major product in addition to its 3-O-β-D-glucoside by a plant glucosyltransferase from Phytolacca americana expressed in recombinant Escherichia coli. This enzyme transformed pterostilbene to its 4′-O-β-D-glucoside, and converted pinostilbene to its 4′-O-β-D-glucoside as a major product and its 3-O-β-D-glucoside as a minor product. An analysis of antioxidant capacity showed that the above stilbene glycosides had lower oxygen radical absorbance capacity (ORAC) values than those of the corresponding stilbene aglycones. The 3-O-β-D-glucoside of resveratrol showed the highest ORAC value among the stilbene glycosides tested, and pinostilbene had the highest value among the stilbene compounds. The tyrosinase inhibitory activities of the stilbene aglycones were improved by glycosylation; the stilbene glycosides had higher activities than the stilbene aglycones. Resveratrol 3-O-β-D-glucoside had the highest tyrosinase inhibitory activity among the stilbene compounds tested.  相似文献   

2.
Abstract

Biotransformation of daidzein was performed by using Bacillus amyloliquefaciens KCTC 13588, Lactococcus lactis subsp. lactis KCTC 3769, Leuconostoc citreum KCTC 13186, Kluyveromyces lactis var. lactis KCTC 17704, Pediococcus pentosaceus KCTC 3116, and Lactobacillus sakei KCTC 13416 cells as a biocatalyst. Four derivatives of daidzein such as daidzein-7-O-phosphate, daidzein-7-O-β-D-glucoside, daidzein-7-O-β-(6′′-O-succinyl)-D-glucoside, and 4′-Ethoxy-daidzein-7-O-β-(6′′-O-succinyl)-D-glucoside were isolated from the biotransformation reaction mixture. The structures of the molecules were elucidated by HPLC, HR-QTOF-ESI/MS and 1H-NMR analyses. Among them 4′-Ethoxy-daidzein-7-O-β-(6′′-O-succinyl)-D-glucoside derivative is novel compound and not reported elsewhere till now.  相似文献   

3.
ABSTRACT

A new biflavonoid, amentoflavone-7-O-β-D-glucoside, and thirteen known flavonoids were isolated from the fruits of Juniperus chinensis using a bioactivity-guided method and their tyrosinase inhibitory effects were tested using a mushroom tyrosinase bioassay. Two isolates, hypolaetin-7-O-β-D-glucoside and quercetin-7-O-α-L-rhamnoside, were found to reduce tyrosinase activity at a concentration of 50 μM. Quercetin-7-O-α-L-rhamnoside attenuated cellular tyrosinase activity and melanogenesis in α-MSH plus IBMX-stimulated B16F10 melanoma cells. Molecular docking simulation revealed that quercetin-7-O-α-L-rhamnoside inhibits tyrosinase activity by hydrogen bonding with residues His85, His244, Thr261, and Gly281 of tyrosinase.

Abbreviations: EtOH, ethanol; CH2Cl2, dichloromethane; EtOAc, ethylacetate; n-BuOH, n-butanol; MeOH, metanol; CHCl3,chloroform; DMSO, dimethylsulfoxide; DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum; α-MSH, α-melanocyte stimulating hormone; L-DOPA, L-3, 4-dihydroxyphenylalanine  相似文献   

4.
To investigate the substrate specificity and regio-selectivity of coumarin glycosyltransferases in transgenic hairy roots of Polygonum multiflorum, esculetin (1) and eight hydroxycoumarins (29) were employed as substrates. Nine corresponding glycosides (1018) involving four new compounds, 6-chloro-4-methylcoumarin 7-O-β-D-glucopyranoside (15), 6-chloro-4-phenylcoumarin 7-O-β-D-glucopyranoside (16), 8-hydroxy-4-methylcoumarin 7-O-β-D-glucopyranoside (17), and 8-allyl-4-methylcoumarin 7-O-β-D-glucopyranoside (18), were biosynthesized by the hairy roots.  相似文献   

5.
6.
Phytochemical research of Pteris multifida Poir. led to the isolation of fifteen compounds, including six flavonoids (16) and nine sesquiterpenoids (715). Their structures were characterized by NMR, MS, ORD and CD data. Compounds kaempferol 3-O-α-L-rhamnoside-7-O-β-D-glucoside (1), myricetin 3-O-β-D-glucoside (2), kaempferol 3-O-β-D-glucoside (4), luteolin-7-O-β-D-rutinoside (5), quercetin-3-O-α-L-rhamnopyranoside (6), (2S,3S)-12-hydroxypterosin Q (7), (2S,3S)-pterosin Q (8), 2-hydroxypterosin C (9) and (2S)-12-hydroxypterosin A (10) were first isolated from P. multifida, and compounds 12 and 10 were first isolated from the family Pteridaceae. Furthermore, the chemotaxonomic significance of the isolates was discussed.  相似文献   

7.
Withanolide-type steroids, withametelin Q (1) and 12α-hydroxydaturametelin B (2) along with three known withanolides, were isolated from leaves of Datura metel L. (Solanaceae). The respective structures, characterized mainly by NMR spectroscopy, were identified as (20R,22R,24R)-21,24-epoxy-1α,3β-dihydroxywitha-5,25(27)-dienolide-3-O-β-d-glucopyranoside (1) and (20R,22R,24R)-12α,21,27-trihydroxy-1-oxowitha-2,5,24-trienolide-27-O-β-d-glucopyranoside (2). The cytotoxicity of isolated compounds was evaluated against human lung carcinoma cells (A549) and human colorectal adenocarcinoma cells (DLD-1), respectively. Compound 2 exhibited cytotoxicity against A549 and DLD-1 cell lines, with IC50 values of 7 and 2.0 μM, respectively. However, for compounds 6 and 7, cytotoxicities were higher against DLD-1 cells with IC50 values of 0.6 and 0.7 μM. Both compounds blocked the cell cycle in the S-phase and induced apoptosis.  相似文献   

8.
Gao L  Zhang L  Li N  Liu JY  Cai PL  Yang SL 《Carbohydrate research》2011,346(18):2881-2885
Phytochemical investigation of the methanol extract from the whole plants of Patrinia scabiosaefolia Fisch. resulted in the isolation of four new triterpenoid saponins (14) along with six known compounds (510). On the basis of spectroscopic and chemical methods, the structures of the new compounds were established as 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide (1), 3-O-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide (2), 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl-12β, 30-dihydroxy-olean-28,13β-olide (3), and 3-O-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-oleanolic acid 28-O-β-d-glucopyranoside (4), respectively. Compounds 1–3 possess a novel 12β,30-dihydroxy-olean-28,13β-lactone aglycone and a 12β-hydroxy substituent that is rarely found in this kind of triterpenoid saponin.  相似文献   

9.
Phytochemical investigation of the underground parts of Liriope graminifolia (Linn.) Baker resulted in the isolation of two new steroidal saponins lirigramosides A (1) and B (2) along with four known compounds. The structures were determined by extensive spectral analysis, including two-dimensional (2D) NMR spectroscopy and chemical methods, to be 3-O-{β-d-xylopyranosyl-(1→3)-α-l-arabinopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→4)]-β-d-glucopyranosyl-(25S)-spirost-5-ene-3β,17α-diol (1), 1-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]-(25R)-ruscogenin (2), 1-O-β-d-xylopyranosyl-3-O-α-l-rhamnopyranosyl-(25S)-ruscogenin (3), 3-O-α-l-rhamnopyranosyl-1-O-sulfo-(25S)-ruscogenin (4), methylophiopogonanone B (5), and 5,7-dihydroxy-3-(4-methoxybenzyl)-6-methyl-chroman-4-one, (ophiopogonanone B, 6), respectively. Compound 1 has a new (25S)-spirost-5-ene-3β,17α-diol ((25S)-pennogenin) aglycone moiety. The isolated compounds were evaluated for their cytotoxic activities against Hela and SMMC-7721 cells.  相似文献   

10.
The ethanol extract of roots of Derris taiwaniana gave two undescribed compounds, 3,3′-dimethoxy-5′-hydroxystilbene-4-O-β-apiofuranosyl-(1→6)-β-D-glucopyranoside ( 1 ) and 4′,5-dihydroxy-3′-methoxyisoflavone-7-O-β-apiofuranosyl-(1→6)-β-D-glucopyranoside ( 2 ), along with thirty known components. Among them, compounds 14 , 16 – 17 , 23 , 26 – 32 were isolated from this genus for the first time. Their structures were established based on physico-chemical properties and spectroscopic data, the lung epithelial cell protective effects were evaluated using NNK-induced MLE-12 cells. Among them, 2α,3α-epoxy-5,7,3′,4′-tetrahydroxyflavan-(4β-8-catechin) ( 30 ) showed the best significant protective effect, speculated to be the key component of D. taiwaniana that plays a protective role in lung epithelial cells.  相似文献   

11.
Three new triterpenoid saponins, elucidated as 3-O-β-d-glucopyranosyloleanolic acid 28-O-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside A, 1), 3-O-[β-d-apifuranosyl-(1→3)-β-d-glucopyranosyl]oleanolic acid 28-O-[β-d-apifuranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)β-d-xylopyranoside (parkioside B, 2) and 3-O-β-d-glucuronopyranosyl-16α-hydroxyprotobassic acid 28-O-α-l-rhamnopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside C, 3), were isolated from the n-BuOH extract of the root bark of Butyrospermum parkii, along with the known 3-O-β-d-glucopyranosyloleanolic acid (androseptoside A). The structures of the isolated compounds were established on the basis of chemical and spectroscopic methods, mainly 1D and 2D NMR data and mass spectrometry. The new compounds were tested for both radical scavenging and cytotoxic activities. Compound 2 showed cytotoxic activity against A375 and T98G cell lines, with IC50 values of 2.74 and 2.93 μM, respectively. Furthermore, it showed an antioxidant activity comparable to that of Trolox or butylated hydroxytoluene (BHT), used as controls, against 2,2-diphenyl-1-picryl hydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), oxygen and nitric oxide radicals.  相似文献   

12.
The chemical investigation of the roots of Vernonia guineensis Benth. (Asteraceae) resulted in the isolation of a new ceramide, named vernoguinamide (1), together with fifteen known compounds, including three anthraquinones, physion (2), erythroglaucin (3) and emodin (4), three triterpenoids, hop-17(21)-en-3β-yl acetate (5), lupeol (6) and betulinic acid (7), six steroids, vernoguinoside A (8), vernoguinoside (9), β-sitosterol 3-O-β-D-glucoside (10), stigmasterol 3-O-β-D-glucoside (11), stigmasterol (12) and β-sitosterol (13) and three fatty acid derivatives, tetracosanoic acid (14), tricosanic acid (15) and arachidic acid glycerol ester (16). The structure of the new compound as well as those of the known compounds were established by spectrometric analysis including HRESI-MS, 1D and 2D-NMR and by comparison with the previously reported data. Among these compounds, the anthraquinones 24 and the triterpene 5 were isolated for the first time from Vernonia genus and compounds 6, 7 and 1416 were extracted for the first time from the species. The isolated compounds were tested for their antibacterial activity and 3, 8 and 9 were the most active compounds against the tested bacteria. Furthermore, the chemophenetic relationships of the isolated compounds and their significance were also discussed.  相似文献   

13.
Natural products inhibiting fatty acid synthase (FAS) are appearing as potential therapeutic agents to treat cancer and obesity. The bioassay-guided chemical investigation of the hulls of Nephelium lappaceum L. resulted in the isolation of ten compounds (110) mainly including flavonoids and oleane-type triterpene oligoglycosides, in which all of the compounds were isolated from this plant for the first time. Additionally, compounds 8 and 9 were new hederagenin derivatives and were elucidated as hederagenin 3-O-(2,3-di-O-acetyl-α-l-arabinofuranosyl)-(1→3)-[α-l-rhamnopyranosyl(1→2)]-β-l-arabinopyranoside and hederagenin 3-O-(3-O-acetyl-α-l-arabinofuranosyl)-(1→3)-[α-l-rhamnopyranosyl-(1→2)]-β-l-arabinopyranoside, respectively. All these isolates were evaluated for inhibitory activities of FAS, which showed these isolates had inhibitory activity against FAS with IC50 values ranging from 6.69 to 204.40 μM, comparable to the known FAS inhibitor EGCG (IC50 = 51.97 μM). The study indicates that the hulls of Nephelium lappaceum L. could be considered as potential sources of promising FAS inhibitors and the oleane-type triterpene oligoglycosides could be considered as another type of natural FAS inhibitors.  相似文献   

14.
Three quercetin glycosides, quercetin 5-O-β-D-glucoside, quercetin 7-O-β-D-glucoside, and quercetin 4′-O-β-D-glucoside, and two kaempferol glycosides, kaempferol 5-O-β-D-glucoside and kaempferol 7-O-β-D-glucoside, along with their aglycones, quercetin and kaempferol, were isolated from an ethanolic extract of Sasamayu cocoon shells. The chemical structures were characterized by chemical and spectroscopic methods including UV spectrometry and HPLC-ESI-MS. The five flavonol glycosides of the shell are different structurally from those of the leaves of mulberry (Morus alba). It was suggested that potent antioxidative activity in the cocoon is mainly due to flavonoid compounds since free radical scavenging activity was found in the cocoon flavonoids identified here.  相似文献   

15.
From the commercial extract of the leaves of Stevia rebaudiana, two new diterpenoid glycosides were isolated besides the known steviol glycosides including stevioside, rebaudiosides A–F, rubusoside, and dulcoside A. The structures of the two new compounds were identified as 13-[(2-O-6-deoxy-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-6-deoxy-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies.  相似文献   

16.
From the commercial extract of the leaves of Stevia rebaudiana, two new minor diterpene glycosides having α-glucosyl linkage were isolated besides the known steviol glycosides including stevioside, steviolbioside, rebaudiosides A–F, rubusoside and dulcoside A. The structures of the two compounds were identified as 13-[(2-O-(3-α-O-d-glucopyranosyl)-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-β-d-glucopyranosyl-3-O-(4-O-α-d-glucopyranosyl)-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies.  相似文献   

17.
From the commercial extract of the leaves of Stevia rebaudiana, three new diterpenoid glycosides were isolated besides eight known steviol glycosides including stevioside, rebaudiosides A–F and dulcoside A. The structures of the three compounds were identified as 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-kaur-16-en-18-oic acid-(6-O-β-d-xylopyranosyl-β-d-glucopyranosyl) ester (1), 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-17-hydroxy-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (2), and 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-17-oxo-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (3) on the basis of extensive NMR and MS spectral studies. Another known diterpenoid glycoside, 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (4) was also isolated and its complete NMR spectral assignments were made on the basis of COSY, HSQC and HMBC spectral data.  相似文献   

18.
Using cholesterol as starting material, a series of 6-substituted-3-aza-A-homo-3-oxycholestanes and 6-substituted-4-aza-A-homo-3-oxycholestanes were synthesized by the oxidation, reduction, oximation, Beckman rearrangement and condensation reaction. These synthesized compounds displayed a distinct cytotoxicity against MGC 7901, HeLa and SMMC 7404 cancer cells. Our results revealed that the structures of functional groups at position-6 on the steroidal ring are crucial for the IC50 value of antiproliferative activities of these compounds and the cytotoxic activity against MGC 7901 and SMMC 7404 cells was not significantly different between 4-N-lactams and 3-N-lactams when its 6-substituted group was a carbonyl or a hydroximino, but all 3-N-lactams showed a higher cytotoxicity against HeLa cells than 4-N-lactams. In particular, compounds 6, 8, 9 (IC506: 6.5 μmol/L; 8: 7.7 μmol/L; 9: 5.6 μmol/L) were even more cytotoxic than cisplatin to HeLa cells (positive contrast, 10.1 μmol/L). The information obtained from the studies may be useful for the design of novel chemotherapeutic drugs.  相似文献   

19.
Transketolase mutants derived from Bacillus pumilus IFO 12089 produced two unknown compounds. One of them was isolated from the culture broth and was determined to be a new monosaccharide, l-deoxy-d-altro-heptulose (1-deoxy-sedoheptulose) (1). Compound 1 was easily converted into its non-reducing anhydride in acidic solution at room temperature, which was identified as 2,7-anhydro-l-deoxy-β-d-altro-heptulopyranose (2). Compounds 1 and 2 were also chemically synthesized from 2,7-anhydro-β-d-altro-heptulopyranose (3) to confirm the chemical structures.  相似文献   

20.
3′-O-Caffeylerigeroside (pyromeconic acid 3-O-β-D-glucoside 3′-O-caffeyl ester) was obtained from the leaves of Erigeron annuus as a new pyromeconic acid derivative, and its structure was elucidated. Together with the γ-pyrone derivative, pyromeconic acid (3-hydroxy-4H-pyran-4-one) and its β-glucoside (erigeroside) were also isolated from the aerial parts of E. annuus. The siderophile activity of pyromeconic acid was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号